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 Twitter sentiment analysis becomes a popular research subject in the last 

decade. It aims to extract sentiments of users through their public opinion 

about a given topic. This article proposes a hybrid approach for Twitter 

sentiment analysis founded on dynamic case based reasoning (DCBR), 

multinomial logistic regression machine learning algorithm and multi-agent 

system. Our approach proposes a method to find similar tweets based on 

content similarity measure using the scientific measurement of keyword 

weight term frequency-inverse document frequency (TF-IDF). This 

approach includes gathering and pre-processing tweets, getting score and 

polarity of tweets, the use of multinomial logistic regression machine 

learning algorithm to classify our tweets into various classes, using the 

feature extraction method to extract useful features and then the K-nearest 

neighbors (KNN) algorithm to make it easier to find similar tweets to our 

tweet target case. This approach is adaptive and generic and able to track 

users' tweet to predict their behavior and sentiments in critical situations and 

delivering personalized content. The current study focuses on Covid-19 

tweets, and a public Twitter dataset is used for this purpose. 
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1. INTRODUCTION 

Social network plays an important role for most people, it becomes an indispensable part for human 

interactions. It represents a relevant way for expressing opinions, thoughts, and sharing more personal 

emotions and sentiments about various topics as stated in [1]-[4]. Twitter is a widely used social networking 

platform that generates a significant amount of data from tweets. 

In recent years, several studies have been done on Twitter sentiment analyses using big social data 

by gathering and classifying users’ opinions on a topic. Those studies encompass many disciplines, like 

Covid-19, Covid-19 vaccine, and elections commercial activities. Twitter sentiment analyses is a process 

which determines the sentiment orientation of a text. The main idea of Twitter sentiment analysis becomes a 

question of whether a tweet is expressing positive, negative, or neutral towards the discussed subject. During 

Covid-19 pandemic, an increasing number of people used twitter platform to share their feelings with 

others [5]. So, feeling analysis has become a frequent research topic [6]. To help decision makers analyze 

users’ opinions and their reactions related to tweets content, and to predict their behavior and sentiments 

based on past experiences, we propose then a hybrid approach for Twitter sentiment analysis based on 

dynamic case based reasoning (DCBR), machine learning algorithms, natural language processing, and 

https://creativecommons.org/licenses/by-sa/4.0/
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multi-agent system. This approach proposes an adaptive system for sentiment analysis classification to ensure 

a personalized follow-up of users in critical situations. 

Several studies have been focused on the analysis of data from social networking platform, in 

particular those related to significant events. Many researchers have been realized to get relevant information 

about these events. Sentiment analysis on Twitter has become one of the most popular fields of study in 

recent years. Imamah and Rachman [7] proposed a solution for sentiment analysis about mental health, 

caused by Covid-19 disease, through public opinion on Twitter. They used a dataset for Covid-19 tweets and 

has been classified with logistic regression method and term frequency-inverse document frequency (TF-

IDF). The Covid-19 tweets sentiment classification reached an accuracy of 94.71%. Saad and Yang [8] has 

proposed an approach for tweets sentiment analysis based on ordinal regression. This approach aims to 

extricate efficient feature. Multiple machine learning algorithms have been used for this purpose. Shofiya and 

Abidi [9] shown an examination of people sentiment analysis on Covid-19 concerning social distancing in 

Canada. They used a tool to analyze and extract sentiment polarity of tweets, then a support vector machine 

algorithm has been used for tweets sentiment classification.  

In the last decade, several works have been conducted in the field of Twitter sentiment analysis 

classification based on machine learning, but mainly, all the earlier studies focused on transforming those 

problems into an ordinal regression or classification problem. Whereas, to extract and predict users’ sentiments 

through their public opinion about a specific topic or event, it would be more interesting to follow-up the 

users’ tweets traces and sentiment hidden behind them and provide them with an individualized content based 

on past experiences of another users. To solve this problem, we combine the dynamic case-based reasoning 

approach, machine learning algorithm and the TF-IDF method. With DCBR, we can solve new problems by 

reusing the applied solutions of previous problems. It consists in retrieving similar tweets based on similarity 

measures. Note that, our approach is also applicable to several fields where DCBR is requested.  

To fill this gap in the research, we performed our analysis on a Covid-19 dataset with one million  

(1 M) tweets to understand users’ behaviors. Using Twitter sentiment analysis, we can process tweets, check 

people feelings and assess them during this challenging period. Therefore, to retrieve similar tweets’ content 

using the DCBR approach, that aims to reuse similar past experiences, will help us to track users' tweet to 

predict their behavior and sentiments in critical situations and delivering personalized content. 

This paper is arranged as follows: the section 1, presents related studies about Twitter sentiment 

analysis classification using machine learning algorithms. Section 2 is devoted to the literature review. In 

section 3, we explain our approach and our research method. Section 4 presents the results of this approach. 

A conclusion with some recommendations is drawn in section 5. 

 

 

2. LITERATURE REVIEW 

2.1.  Term frequency-inverse document frequency 

To construct the classifier model we should first extricate relevant features from the collected 

tweets. There are many techniques for this purpose like bag of words (BoW), Word2Vec and BERT. This 

study uses TF-IDF as stated in [10] to extricate relevant features. TF-IDF is a statistical measure used to 

evaluate the importance of a word in a document relative to a collection of documents (corpus). TF-IDF 

vectorizer retrieves features according to word representation count, frequent words will be assigned less 

weight and rare words will be assigned more weight. 

 

2.2.  Dynamic case based reasoning 

Case based reasoning is as a field of artificial intelligence that can be dated back in the late 1980s. 

CBR is a paradigm that solves new problems by relying on the solutions of previous problems with the same 

nature. The current problem to solve is called target case and the problem that has been already solved is 

called source case. Aamodt and Plaza [11] are the first authors who described the CBR cycle. According to 

these authors, CBR consists of four phases, while others, the cycle of CBR is only on three phases [12]. 

Currently, the most adapted and used model for CBR is the five-step model which is an extended version of 

the old models. In this study, we exploit the five-step CBR cycle: elaboration, retrieve, reuse, revision, and 

retain as illustrated in Figure 1. Those steps are more detailed here [13]. 

In DCBR, the classical cycle has been adapted by changing the order on the concerned steps. DCBR 

is continuous and taking into consideration the dynamic change of the descriptors describing the new 

problem. In DCBR, some steps can be re-executed if there is a change in the specifications of the new 

problem, certain steps can be stopped, and others can be repeated more than once [13]. 
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Figure 1. Dynamic case based reasoning cycle inspired from [13] 

 

 

2.3.  Multinomial logistic regression 

Multinomial logistic regression is a supervised machine learning algorithm. It is also known as 

SoftMax regression or multinomial regression analysis [14]. It is used to analyze relationships between 

multiple independent variables and a categorical dependent variable with more than two categories. In other 

words, it is used to predict the probabilities of an outcome belonging to each category of a dependent variable 

based on the values of several independent variables. MLR can classify new data using continuous and 

discrete datasets. It is a generalization of binary logistic regression, which is used for modeling the 

relationship between a binary (two-category) dependent variable and one or more independent variables. 

 

 

3. METHOD 

Our proposed system architecture is basically composed of three principal modules. This hybrid 

approach integrates the benefits of multi-agent systems and DCBR techniques. The first module acquires new 

data and responsible for data preprocessing, which is a crucial process to clean and prepare the text data for 

analysis [15]. The second module is responsible of creating a classification model using sentiment analysis, 

which involves analyzing the emotional tone of a tweet. In this module, we extract useful characteristics and 

create a balancing and scoring method. The third module consists of applying multinomial logistic regression 

classifier that classify users’ tweets into five clusters of sentiment (high negative, moderate negative, neutral, 

moderate positive and highly positive) [16] to find the category where our target case belongs to, and then 

predict in this category, the most similar tweets based on content similarity measure using TF-IDF and then 

their sentiment to provide users with personalized content. Our proposed system requires the use of multi-

agent architecture based on DCBR cycle [17], as you can see in Figure 2. Algorithm 1 displays the overall 

steps used for the classification to find similar tweets of our tweet target case. 
 

 

 
 

Figure 2. Proposed our MAS and DCBR system architecture 
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Algorithm 1: Tweet similarity classification 

Begin: 

  Var InputQuery: String 

  Retrieve twitter data 

Procedure PreProcessing: 

for each tweet in range (len(twitter dataset)) : 

Pre-processing(tweet). // syntactic correction of the tweets 

Extract features using TF-IDF. 

Calculate the polarity and the score of each tweet. 

Feed the data base cases with source cases from Twitter. 

    End Procedure 

 

    Procedure Classification 

Classify tweets using Multinomial Logistic regression into several ordinal categories. 

Find the category where our tweet target case belongs to. 

Find similar tweets of our tweet target case in this category using KNN algorithm. 

    End Procedure 

   End 

 

3.1.  Dynamic case based reasoning in our proposed system model 

In this section, we will explain the use of DCBR in our proposed system architecture shown in 

Figure 2. Case based reasoning approach mainly include five steps, which are case representation, retrieval, 

reuse, revision and finally retain. 

 

3.1.1. Case representation 

Case representation refers to the way in which a case is stored and organized in a case-based 

reasoning system. It includes information such as the problem description, the process solution, and any 

relevant contextual details [18]. The case representation should be clear, concise, and structured in a way that 

makes it easy to retrieve and compare with new problems. Before starting our DCBR cycle, the retrieved data 

should be first cleaned and structured, so the new cases will be effectively described, and the retrieval case 

will be properly executed. The case representation is described in vector-based representations. Each case is 

usually consisting of two parts, the problem description part which is represented by a set of descriptors of 

the problem to be solved, and the recommended solution part which is represented by a set of steps or 

descriptors of the solution provided by the reasoning. The solution part provides steps that can be 

implemented by decision-maker. 

 

𝐶𝑎𝑠𝑒𝑖 =  (𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑖 , 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑖)) (1) 

 

Problemi={ds
1... ds

n} where ds
j represents the descriptor of the source problem. 

Solution(Problemi)={Ds
1... Ds

m} where Ds
j represents the descriptor of the recommended solution. 

The descriptors representations used are vector type representations (attributes, values). The 

objective of this stage of reasoning is to put in place the different mechanisms to move from an often poorly 

expressed problem to a well-defined problem to facilitate the following stages. To extract relevant features 

from the tweets, the IDF is used to weight the features of the case representation. The idea is to assign more 

weight to the features that are more discriminatory, while giving less weight to the features that are less 

discriminatory. By using IDF to weight the features, the CBR system can better distinguish between relevant 

and irrelevant cases and improve the retrieval and reuse process. 

   

3.1.2. Case retrieval 

In CBR approach, the case retrieval represents the core step. After the elaboration of the target 

problem, the case retrieval consists in retrieving similar cases to the target case [19]. A good case is obviously 

one where its solution represents a good candidate that will allow us to solve the current problem. The search 

in this step is based on similarity measures, where we compare the descriptors of the problem part of the target 

case with the source cases stored in the data base case. The most classical approach for similarity measures is 

to make a weighted sum of criteria on the case descriptor attributes, but generally it depends on the nature of 

the attributes describing the cases. There are also few metrics such as geometric similarity metrics, Euclidean 

distance, Mahalanobis distance or KNN. However, this paper uses the KNN algorithm for similarity measure. 

It is used to classify new objects by calculating the distance between the attributes describing the cases. 
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3.1.3. Case reuse 

In the reuse step of CBR process, the solution from a retrieved similar case is applied to the current 

problem. During this step, the solution is adapted to fit the specific needs of the new problem [20]. We 

calculate the similarity between the new case and other cases in the data base case. If the similarity measure 

is equal to 1, that means, the source case is the same as the new target case and can be directly reused, else, 

we sort the calculated similarity values from the biggest to the smallest value, then we select the nearest cases 

to the target case. 

In some cases, the solution from the retrieved source case may need only minor modifications to be 

used for the new target problem. In other cases, the solution from the retrieved case may need to be 

significantly modified to be used for the new problem. Once the solution has been adapted to fit the new 

problem, it is evaluated for its effectiveness. If the solution is found to be effective, it is used to solve the new 

problem. If the solution is found to be ineffective, the CBR system will look for another similar case and 

repeat the process. 

 

3.1.4. Case revision 

In the revision step, we are supposed to give feedback on the proposed solution. This step allows the 

case-based reasoning system to improve over time, as it incorporates new information and experiences into its 

data base case. The revision step can involve updating the description or attributes of a case, adding a new case, 

or discarding a case if it is no longer useful. Finally, after the new target case solution has been tested and 

verified based on an expert system, real world or simulation and correctness, the retain case is executed. 

 

3.1.5. Case retain 

The retain step in case-based reasoning involves storing a new case in the case base with its related 

problem and solution, typically after a solution has been generated and possibly revised. The retain step 

allows the CBR system to build up its knowledge over time, and to use that knowledge to solve new 

problems in the future. The new target case may be stored as a record of the problem, its solution, and any 

additional information or context that may be relevant. The retain step is important for ensuring that the CBR 

system becomes richer and richer by adding new and revised target cases and continues to grow and improve, 

and for maintaining the quality and relevance of the data base case. 

 

 

4. RESULTS AND DISCUSSION 

In this section, we present the obtained results of our approach for Twitter sentiment analysis. The 

originality of this paper is demonstrated by identifying the general feeling of Twitter users towards Covid-19 

tweets and looking for similar tweets according to their content. The KNN algorithm has been used to run 

different tests to find the nearest similar tweets’ content of our tweet target case. 

 

4.1.  Data collection 

The data being used has been collected using the Twitter API, which contains 1 M tweets. The data 

was collected in the form of a CSV file with several fields. In this study we require only the username, text of 

the tweet and the related hashtags, the rest is discarded. Each data tweet will be defined as a vector Casei of a set 

of characteristics (username, tweet, hash tags, and the related solution of each problem) as mentioned in (1). 

 

4.2.  Tweets preprocessing 

The collected tweets contain a lot of noise and redundant information. The data preprocessing is a 

crucial step, and it involves syntactic correction of the tweets as required. It aims to transform data into a 

better form to feed the tweet data to a machine learning algorithm, to extract valuable insights and minimize 

ambiguity in the feature extraction process. Many steps are used for tweet preprocessing by replacing URLs, 

usernames and emojis with their corresponding sentiment, removing repeated letters, converting upper case 

to lower case and finally applying the stemming method by replacing words with their root [21]-[23]. Table 1 

displays an example results of the tweets preprocessing steps. 

 

 

Table 1. Example of tweets preprocessing 
Tweets HashTags 

No one will be safe from Covid-19 until everyone is safe will you commit to ensure #COVID19 
Let all protect ourselves from Covid-19 it real and the number are climbing up fast in the continent #COVID19 

Nagaland police on Covid-19 awareness at city tower junction dimapur Covid-19 keep social distance 

Can imagine the same people profiting off the human suffering of Covid-19 will be studying these map to make 207 

#COVID19 

#COVID19 
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4.3.  Splitting the data 

After the pre-processing steps have been performed, we split our dataset into training and testing set 

for a better evaluation of the model. By evaluating the classifier model on data that it has not seen during 

training phase, we can get an estimate of its performance on new, unseen data. We allocated 70% of the data 

for the training and 30% for the testing. 

 

4.4.  Feature extraction 

A feature refers to an individual measurable property of the data being analyzed. Features are the 

input variables that are used by machine learning models to make predictions or classifications [24]. Feature 

extraction refers to the process of selecting and transforming raw data into a set of relevant features that can 

be used for machine learning and statistical analysis. In machine learning, the features extracted from the data 

are used as input to a learning algorithm to build a predictive model. Feature extraction is often used to 

reduce the dimensionality of the data and improving the accuracy and efficiency of the learning algorithms. 

In this paper, we used TF-IDF to extricate 10000 relevant features matrix from the tweets. Table 2 presents 

the matrix of TF-IDF features. 

 

 

Table 2. Matrix of TF-IDF features 
Casei Coronavirus Covid-19 Covid Help Case Hospital 

0 0.0 0.057475 0.0 0.0 0.0 0.0 
1 0.0 0.050703 0.0 0.0 0.0 0.0 

2 0.420171 0.127932 0.0 0.0 0.0 0.0 

3 0.0 0.104732 0.366245 0.0 0.0 0.0 
6 0.0 0.052958 0.0 0.0 0.157485 0.0 

 

 

To build a classifier model for Twitter sentiment analysis to classify the tweets according to their 

polarity, a scoring method is proposed [25]. It consists of: 

− Each tweet is classified as high negative, moderate negative, neutral, moderate positive or high positive 

according to the count of positive or negative terms in the given tweet. 

− Tweet polarity is calculated using natural language processing. 

− The score is then assigned according to the tweet polarity. 1 for highly negative tweets, 2 for moderate 

negative, 3 for neutral, 4 for moderate positive, and 5 for highly positive ones.  

 

4.5.  Classification using TF-IDF, multinomial logistic regression and KNN 

After processing, splitting the dataset into training and testing dataset, extracting features matrix 

using TF-IDF [26], [27], and calculating the overall polarity score [28] of each tweet, we retrain our model 

using the multinomial logistic regression to classify our tweets into several classes (high negative, moderate 

negative, neutral, moderate positive, high positive) as labels in order to predict a sentiment category for a 

given target tweet. The evaluation of the model is necessary to understand the performance metrics of the 

proposed approach for Covid-19 tweets classification. Our classification model reached an accuracy of 88% 

as shown in Figure 3. The source case tweet of our target case is “Covid is very bad for our health”. Table 3 

illustrates the results of the similar tweets using the KNN algorithm. 
 
 

 
 

Figure 3. Model evaluation of Covid-19 tweets 
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Table 3. Similar tweets using KNN algorithm 
Similar tweets using the model after applying the KNN algorithm Distance 

Case 80332 I smell something bad brewing for our little country!!!                                           #Covid19 1.2 

Case 65535 This news is very very bad. Mistakes by @BorisJohnson allowed #COVID19 to spread and 

caused further economic damage 

1.21 

Case 30565 his is very bad news for the #cruise industry. Hurtigruten crew #COVID19 numbers increase 
significantly 

1.235 

Case 60572 This #COVID19 is not good for our older peeps.                    1.249 

Case 34303 One of the reasons #COVID19 is very bad in the US is due to the political intonation put into it. 
US is as a develo… 

1.250 

Case 92967 How increased screen time during Covid is affecting your mental health #ExerciseIsMedicine 

#COVID19 

1.251 

 

 

5. CONCLUSION 

In this study, we proposed a hybrid approach for Twitter sentiment analysis. This approach proposes 

an adaptive system for sentiment analysis classification to ensure a personalized follow-up of users in critical 

situations. It aims to extract relevant features matrix from the tweets using TF-IDF, building a balancing and 

scoring model, and then feeding the data to a machine learning model to categorize our tweets into several 

classes and applying the KNN algorithm in the retrieve phase of our DCBR cycle to make it easier to find 

similar tweets to our tweet target case. The tweets are classified into several ordinal categories with similar 

tweets sentiment, and then the KNN algorithm ise applied to retrieve the nearest similar tweets of the tweet 

target case, on the category, that the tweet target case belongs to. In this approach we used a public Twitter 

dataset consisting of 1 M tweets. 

Some major constraints and limitations of this study and further research to enhance this approach 

are discussed. The proposed approach can be improved from several angles. Firstly, the public Twitter 

dataset is limited to english tweets only. It would be useful to acquire more real-world tweets from different 

locations, to evaluate the effectiveness of the proposed approach in order to build a robust classifier model. 

Another limitation is the use of the scientific measurement of keyword weight TF-IDF which cannot 

understand the context of the words and derive their meaning, the users in different locations may behave 

with different characteristics, then it will be difficult to follow their tweets traces and predict their behaviors. 

As such, it is necessary to conduct further evaluation with different algorithms for text classification. So, 

future work includes the improvement of our classification model for tweet similarity measure. Furthermore, 

we intend to test different machine learning algorithms to obtain better classification accuracy. 
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