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 Aerial image segmentation of natural disaster-impacted areas and detailed 

and automatic natural disaster assessment are the main focus of this study. 

Detecting and recognizing objects on aerial images of areas impacted by 

natural disasters and assessing natural disaster-impacted areas are still 

difficult problems. To solve these problems, this study utilizes four of the 

latest transformer-based semantic segmentation network models, 

bidirectional encoder representation from image transformers (BEIT), dense 

prediction transformer (DPT), OneFormer, and SegFormer, and proposes a 

detailed and automatic natural disaster assessment of the segmented image. 

The SegFormer model achieved the first-best result, and the OneFormer 

model achieved the second-best result. The SegFormer model outperformed 

OneFormer by 1.58% higher for the mean accuracy value and 4.28% for the 

mean intersection over union (mIoU) value. All receiver operating 

characteristics (ROC) curves have mean area under curve (AUC) values 

above 0.9, which means that the SegFormer model performs well in 

generating semantic segmentation images. The fuzzy c-means (FCM) 

clustering algorithm performed well and could automatically cluster the 

natural disaster assessments into four categories. This study has produced 

semantic segmentation of aerial images of areas impacted by natural 

disasters and natural disaster assessments, which can be used in natural 

disaster management systems. 
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1. INTRODUCTION 

Catastrophic events known as natural disasters arise from natural occurrences, including floods, 

landslides, earthquakes, volcanic eruptions, tsunamis, hurricanes, and droughts. Natural calamities are 

occurring more frequently. Given the rising frequency of disasters, all parties must comprehend and apply 

disaster management strategies. Accurately assessing the areas impacted by natural disasters is crucial in the 

natural disaster management system to enable quick, effective, and efficient emergency responses. 

Unmanned aerial vehicles (UAVs) or drone technology are used to acquire aerial images of natural disaster 

damage and impacted areas. Analyzing aerial images of natural disaster-impacted areas presents challenges 

in segmenting important objects impacted by natural disasters, particularly those with irregular shapes, 

varying sizes, and small sizes. Additionally, conducting detailed and automated assessments of disaster-

impacted areas based on segmented images is complex. Until now, researchers have used several methods to 
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try to produce accurate image segmentation in the field of natural disasters. The state-of-the-art methods used 

today can be broadly classified into two categories: models that rely on traditional handcrafted features 

created by researchers [1], [2], and models based on deep learning. Research using deep learning is divided 

into two models: convolutional neural network (CNN) and transformer. Studies using CNN-based 

segmentation models have been conducted by researchers [3]-[13] and studies using transformer-based 

models have been conducted by researchers [14]-[27]. 

The studies that have used segmentation in solving natural disaster problems with transformers. 

Researcher [14] detected building damage using DamFormer, research [15] detected building damage using 

swin transformer encoder and UPerNet semantic segmentation head, and research [16] detected building 

damage using SDAFormer. The studies [14]-[16] used the xBD dataset. Researcher [17] classified building 

damage based on satellite images (xBD and LEVIR-CD datasets) after natural disasters using a transformer-

based network called DAHiTrA. Researcher [18] automatically detected damaged buildings using improved 

Swin-Unet on the Gaofen-2/Jilin-1 dataset, satellite images dataset (xBD), and the AIST building change 

detection (ABCD) dataset. Researcher [19] segmented post-earthquake solid buildings using the swin 

transformer from remote sensing images with complex backgrounds. The studies [14]-[17] have the 

advantage of detecting four types of building damage: no damage, minor damage, major damage, and 

destroyed. However, these studies suffer from the drawback of relying on a comparison between pre-disaster 

and post-disaster image pairs to assess building damage. This results in a lengthier process for generating 

segmentation images. This is because each time a natural disaster takes place at a specific location, change 

detection is performed on both pre-disaster and post-disaster images to identify and detect building objects 

impacted by the disaster. Researcher [15] also has shortcomings that result in low model performance values. 

Researcher [18] has the advantage of testing to detect building damage in several remote sensing image 

datasets but has the disadvantage of producing very low model performance values. 

The studies addressing the problem of flood natural disasters have been conducted by research [20] 

which detects and segments flooded areas from aerial images at the disaster site using FloodTransformer on 

the SWOC flood segmentation dataset, research [21] detects flooded areas using synthetic aperture radar 

(SAR) images on the S1GFloods dataset with differential attention metric-based network (DAM-Net), and 

studies [22], [23] detect flood-impacted objects using several models, one of which is SegFormer on the 

FloodNet dataset. The studies addressing the problem of landslide natural disasters have been conducted by 

[24] which detects landslides on the Bijie and Iburi small datasets using vision transformer (ViT), research 

[25] determines the exact extent of landslide areas using separable channel attention network (SCANet) on 

loess plateau landslide image dataset, and studies [26], [27] identifies coseismic landslides from coseismic 

landslide dataset using SegFormer semantic segmentation network. Researcher [20] has the advantage of 

using multiple open-source datasets but has the disadvantage of using very different image resolutions. 

Researcher [22] has the advantage of comprehensively testing several encoder-decoder and two-path-based 

architectures. The studies [22], [23] evaluated their performance on aerial image datasets but have the 

disadvantage of producing model performance values that are still lacking. Researcher [24] has the advantage 

of using two datasets with different landslide characteristics, and research [25] has the advantage of 

conducting extensive experiments on landslide datasets using several mainstream semantic segmentation 

networks compared with transformer architecture, but studies [24], [25] have the disadvantage of using image 

datasets with small image size and a small number of images for training, validation, and testing. 

Based on a search of related previous studies, it is concluded that some studies use satellite-derived 

image datasets, namely studies [1], [4], [14]-[19], [24]. However, these datasets have drawbacks, such as being 

captured from a higher altitude and being susceptible to cloud and smoke interference. Additionally, they lack 

comprehensive information about disaster areas and objects impacted by natural disasters, which hinders their 

usefulness for detailed assessment of natural disasters. In contrast, this study uses a dataset of low-altitude, 

UAV-derived aerial images, which has many advantages over satellite images. The dataset used in this study is 

high-resolution aerial images of natural disaster-impacted areas to generate segmentation images that can be 

used automatically for detailed natural disaster assessment. Previous studies have also produced segmented 

images that only display a small number of object classes, namely studies [2]-[4], [14]-[18], [20], [21],  

[24]-[27], which have the disadvantage of not being able to detect and identify other important objects 

impacted by natural disasters that appear in post-disaster images, making them incomplete for use in a detailed 

and automated natural disaster assessment process. In contrast, this study includes nine object classes that 

represent various objects impacted by natural disasters, like buildings and roads impacted by floods, 

irregularly shaped objects like trees and grass, and small objects like vehicles, so that they can be used in the 

natural disaster assessment process in more detail and automatically. This cannot be done if only a small 

number of object classes are displayed. To produce a detailed and automatic assessment of areas impacted by 

natural disasters, it is also important to calculate the number of objects in each object class, calculate the area 
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of objects in each object class, and calculate the percentage impacted by natural disasters (PIND) so that 

natural disaster assessments can be calculated and clustered automatically into several categories. 

Deep learning-based semantic segmentation has advanced quickly and is commonly applied in 

satellite image recognition for remote sensing. However, its utilization in recognizing aerial images from 

UAVs for addressing natural disaster issues, particularly with transformers for segmenting multiple objects, is 

limited. This study has the advantage of using post-disaster aerial images so that it can produce segmentation 

images more quickly without the need to compare with pre-disaster images. All of the previous research 

described above has the disadvantage of only segmenting the image and visually displaying the segmented 

image without conducting a detailed and automatic natural disaster assessment on the segmented image and 

still requiring human intervention in performing manual calculations to obtain detailed information about the 

impact of the disaster. In contrast, this study performs a detailed and automatic assessment of natural disaster-

impacted areas (natural disaster assessment) on the segmented image. The main challenge is accurately 

performing aerial image semantic segmentation of natural disaster-impacted areas and performing detailed and 

automatic natural disaster assessments with several categories. The main contribution in this study is twofold: 

first, applying transformers for aerial image semantic segmentation of natural disaster-impacted areas that have 

complexity and diversity of objects visible in aerial images with four latest models of semantic segmentation 

networks, namely: bidirectional encoder representation from image transformers (BEIT), dense prediction 

transformer (DPT), OneFormer, and SegFormer, to segment various objects impacted by natural disasters, 

irregularly shaped and sized objects, and small objects in post-disaster aerial images; second, perform 

automatic natural disaster assessment on segmented images with categories: areas not impacted by natural 

disasters, areas lightly impacted by natural disasters, areas moderately impacted by natural disasters, and areas 

heavily impacted by natural disasters, using k-means and fuzzy c-means (FCM) clustering algorithms. 

This paper is structured into multiple sections. Section 1 discusses the introduction and related research 

relevant to this study. Section 2 discusses the proposed framework or method, segmentation, transformer model 

built, datasets used, data augmentation and transfer learning, natural disaster assessment consisting of k-means 

clustering algorithm, FCM clustering algorithm, calculation of PIND, and calculation of object area in aerial 

images of areas impacted by natural disasters, and implementation details. Section 3 displays quantitative and 

qualitative results produced by the transformer model for semantic segmentation, displays quantitative and 

qualitative comparisons of the transformer model test results for semantic segmentation of aerial images of natural 

disaster-impacted areas with previous studies, and displays the results of detailed and automatic natural disaster 

assessments on segmented images. Section 4 summarizes the results of this study and explains further research. 

 

 

2. METHOD 

This section presents the proposed framework or method for semantic segmentation of aerial images 

of areas impacted by natural disasters using transformers for natural disaster assessment. An overview of the 

process is shown in Figure 1. The proposed method comprises eight stages, i.e.,: pre-processing stage; pre-

training stage for transfer learning; training, validation, and testing stage; semantic segmentation model 

evaluation (performance evaluation) stage; segmentation result display stage (display of segmented objects in 

the image and object class label information); calculation stage of the number of objects and object area in 

each object class and PIND; natural disaster assessment stage using k-means clustering algorithm and FCM 

clustering algorithm; and natural disaster assessment result display stage. Each stage will be discussed in 

detail in this section. 

 

2.1.  Image segmentation 

In the field of computer vision, one of the most crucial subjects is image segmentation. It has 

various applications, including scene understanding, analysis of medical images, perception for robots, video 

surveillance, augmented reality, image compression, and many other applications. Several researchers have 

developed various methods for image segmentation. Lately, there has been a considerable effort to build 

image segmentation methods utilizing deep learning models, driven by the achievements of these models in 

several computer vision tasks [28]. Image segmentation is the task of classifying pixels according to semantic 

labels or separating them into distinct objects. Semantic segmentation is the process of labeling individual 

pixels in an image based on a predefined set of categories, such as buildings, roads, and trees. 

 

2.2.  Transformer 

Transformer-based models have achieved promising results in many computer vision and natural 

language processing (NLP) tasks [29]. The success of transformers in NLP has generated attention not just in 

various fields of computer vision but also in the aerial image semantic segmentation of natural disaster-

impacted areas, where this study explores several transformer-based models. This study uses BEIT [30], DPT 

[31], OneFormer [32], and SegFormer [33] as transformer models. BEIT is a self-supervised vision 
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representation model inspired by bidirectional encoder representations from transformers (BERT) [34] in NLP. 

BEIT is designed for pre-training ViT using a masked image modeling (MIM) task. BEIT uses a pre-training 

task to help the model recognize images and identify objects in the images. Each image has two views in the 

pre-training phase: image patches and visual tokens. The model is pre-trained to recover the original visual 

tokens based on the corrupted image. MIM aims to recover masked image patches based on the encoding 

vector. The pre-training task aims to predict the original image's visual tokens based on the corrupted image's 

encoding vectors. After pre-training, the model parameters can be fine-tuned on downstream tasks, such as 

image classification and semantic segmentation, by appending task layers to the pre-trained model. 
 
 

 
 

Figure 1. Overview of the proposed overall method 
 

 

DPT is a neural network model architecture that combines image segmentation techniques with 

transformer architecture. DPT uses the ViT as the backbone for dense prediction tasks such as semantic 

image segmentation and monocular depth estimation. DPT is a dense prediction architecture based on an 

encoder-decoder design that utilizes the transformer as the basic computational building block of the encoder. 

DPT processes images for semantic segmentation by converting the input image into tokens through 

transformer stages. Thereafter, the tokens are recombined into image representations at several different 

resolutions. This process is followed by progressive merging to generate predictions at full resolution using a 

convolutional decoder. 

OneFormer is a transformer designed to overcome the problems of using transformers as models for 

image segmentation. OneFormer uses a single transformer to perform image segmentation. Thus, the name 

"OneFormer" is derived from "One Transformer." OneFormer is a multi-task universal image segmentation 

framework that utilizes transformers. It requires training only once using a single universal architecture, 

model, and dataset. OneFormer utilizes a task-conditioned joint training approach, which uniformly selects 

several ground truth domains (semantic, instance, or panoptic) by utilizing all labels from panoptic 

annotations to train its multi-task model. OneFormer utilizes a pair of inputs: a sample image and a task 

input. OneFormer utilizes a backbone and pixel decoder to extract multiscale features from the input image.  

SegFormer is a semantic segmentation model architecture used to identify and segment objects in 

images. SegFormer is a streamlined and effective semantic segmentation system that combines the 

transformer with a lightweight multilayer perceptron (MLP) decoder. SegFormer possesses two distinct 

characteristics: SegFormer comprises a novel transformer encoder with a hierarchical structure that produces 

multiscale features. The transformer encoder is positional encoding free and hierarchical. The model utilizes 

a hierarchical transformer encoder to extract high-resolution coarse and low-resolution fine features from the 

input image. Additionally, SegFormer simplifies the decoding process by avoiding using sophisticated 

decoders. The MLP decoder aggregates input from multiple layers, integrating local and global attention to 

provide a robust representation. The MLP decoder, which is lightweight, utilizes multi-level features to 

provide the final semantic segmentation mask. 
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In this study, BEIT and DPT use the ViT [35] architecture, OneFormer uses the swin transformer-

large (Swin-L) [36] architecture, and SegFormer uses the mix transformer-B0 (MiT-B0) [33] architecture as 

their respective backbones. The parameters for BEIT, DPT, and SegFormer, 0.00006 and 0.01, were used for 

the learning rate and weight decay, respectively, and the optimizer used was Adam. Crop size and batch size 

for BEIT and DPT are set at 256×256 and 2, and for SegFormer are set at 512×512 and 4. The parameters for 

OneFormer are the learning rate is 0.0001, weight decay is 0.05, the optimizer used is Adam, crop size is set 

at 1024×1024, and batch size is set at 2. Cross entropy is a loss function in BEIT, DPT, and SegFormer. 

Contrastive query is a loss function in OneFormer. 

 

2.3.  Datasets 

This study uses FloodNet [6] as a dataset in semantic segmentation of natural disaster-impacted area 

images, a dataset of post-disaster aerial images derived from UAVs, especially in flooded areas. FloodNet 

images are labeled at the pixel level, which makes them useful for semantic segmentation tasks. FloodNet has 

2,343 images with a total of 55,739 objects annotated. FloodNet images and annotations have an average 

resolution of 3000×4000 pixels, with nine classes including building non-flooded, road non-flooded, building 

flooded, road flooded, vehicle, tree, grass, water, and pool. The FloodNet dataset is divided into 1686 images 

for training, 422 for validation, and 235 for testing. 

This study uses an external dataset, namely ADE20K [37], for the pre-training dataset. ADE20K is a 

densely annotated dataset, which includes various annotations of scenes, objects, parts of objects, and, in 

some cases, even parts of parts. There are 25,000 images of complex daily scenes containing various objects 

in their natural spatial context. 

 

2.4.  Data augmentation and transfer learning 

Data augmentation in aerial image semantic segmentation of natural disaster-impacted areas has 

several primary objectives that can enhance the semantic segmentation model performance. The following 

are some of the objectives of data augmentation in the semantic segmentation of aerial images of areas 

impacted by natural disasters: i) increase data diversity: by performing data augmentation, the variety and 

diversity of images can be increased. This helps the model to handle better scale differences, rotation, and 

perspective changes that may occur in aerial images of natural disaster-impacted areas; ii) reduce overfitting: 

data augmentation helps reduce overfitting by providing more variety in the training data. Models trained on 

diverse data are more likely to handle well-test data or situations in the field that are not encountered during 

training; iii) increase robustness: data augmentation can help make models more resilient to environmental 

variations that may occur in aerial images during or after natural disasters. This helps the model perform well 

under varying conditions; iv) improve segmentation accuracy: data augmentation can help improve 

segmentation accuracy by creating more variation in image detail and texture. This helps the model to 

identify better and map important objects or features in the aerial images of natural disaster-impacted areas; 

and v) minimize the limitations of limited data: sometimes, limited data availability can be a problem in 

semantic segmentation tasks. Data augmentation can help expand the available dataset and optimize the use 

of existing data. Designing appropriate data augmentation can improve the model's ability to deal with 

variations that may occur in aerial images of natural disaster-impacted areas, resulting in a more reliable and 

responsive semantic segmentation model. 

Transfer learning aims to utilize the knowledge gained from models trained on related tasks in other 

environments or domains. In this context, some of the objectives of transfer learning involve: i) improved 

model performance: transfer learning can enhance the performance of the model on aerial image semantic 

segmentation of natural disaster-impacted areas. By using a model trained on a large and diverse dataset, the 

model can extract more general and in-depth features, which may be difficult to obtain from a limited dataset; 

ii) reduction of training data requirements: by using transfer learning, the model can utilize existing 

knowledge without the need to train it from the beginning. This is very important in natural disaster situations 

where training data may be limited or difficult to obtain. Transfer learning can help models adapt to relatively 

small datasets; iii) adapt to environmental variability: areas impacted by natural disasters often have unique 

and complex environmental conditions. Transfer learning can help models adapt more quickly to changing 

environmental conditions and characteristics that may not be present in the original training dataset;  

iv) resource utilization optimization: training a model from the beginning requires significant computational 

resources. Transfer learning can help optimize the use of resources by leveraging existing knowledge, 

thereby reducing training time and costs; v) handling contextual changes: natural disasters can result in major 

changes in the conditions of the impacted area. Transfer learning can help models adjust quickly to 

contextual changes, such as landform changes, infrastructure damage, or land cover changes; and vi) model 

generalization: transfer learning can help create more general models that can be used for different types of 

natural disasters. The obtained model can recognize patterns and features relevant to semantic segmentation 

without relying on the specific details of one particular disaster type. As such, transfer learning can be a 
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powerful tool in improving model performance on aerial image semantic segmentation of natural disaster-

impacted areas and help better understand the emergency situation. 

In this study, BEIT and DPT use flip and resize for data augmentation. OneFormer uses random 

scale, and SegFormer uses random scale, random brightness contrast, vertical flip, resize, horizontal flip, and 

Gaussian noise. This study uses the ADE20K pre-training dataset for transfer learning, which helps improve 

the semantic segmentation model's performance in detecting and recognizing objects in aerial images of areas 

impacted by natural disasters. Transfer learning is applied to each semantic segmentation model in a way that 

the model is first trained on the pre-training dataset, transferred, and used to retrain on the FloodNet dataset 

for semantic segmentation of aerial images of areas impacted by natural disasters efficiently. 

 

2.5.  Natural disaster assessment 

2.5.1. K-means clustering algorithm 

The k-means clustering algorithm is a frequently employed method for clustering data, including in 

the context of clustering areas affected by natural disasters. It does so by analyzing the area of objects in 

aerial images of such areas. The K-means algorithm is widely recognized as a prominent unsupervised 

clustering technique utilized for the automated clustering of data into coherent clusters. The algorithm aims 

to cluster the data into k clusters by identifying the centroid or cluster center and thereafter clustering the data 

with the nearest points. To correctly cluster data points into k clusters, a cost function is required to minimize 

the distance metric (e.g., Euclidean distance and Manhattan distance) [38]. The k-means clustering algorithm 

is a simple approach to clustering a dataset into k clusters (C1, C2, C3,..., Ck), which are represented by their 

cluster centers (centroids) [39]. The k-means clustering algorithm tries to cluster existing data into several 

clusters, where the data in one cluster has the same characteristics/features as each other and has 

characteristics/features that are different from the data in other clusters. The k-means algorithm can be used 

for image segmentation. The k-means technique is based on clustering similar pixels and median allocation. 

Repeating the same process multiple times provides better object identification [40]. In the context of 

clustering areas impacted by natural disasters based on the area of objects in aerial images of areas impacted 

by natural disasters, the following are the steps of the k-means clustering algorithm: 

Step 1:  data representation. Use all aerial images of natural disaster-impacted areas and calculate the areas 

of natural disaster-impacted objects in the ground truth image to obtain information about the area of 

objects in each image. 

Step 2:  cluster center (centroid) initialization. Select the desired number of clusters (k), and randomly select 

k points from the data as initial cluster centers (centroids) (Ci); the equation is shown in (1). 
 

𝐶𝑖 = (𝑥𝑖 , 𝑦𝑖) (1) 
 

Step 3: clustering the data. Calculate the distance between each data point and each centroid. Determine the 

cluster for each data point based on the closest distance. The Euclidean distance between a data 

point P(xp, yp) and a cluster center Ci(xi, yi) is shown in (2). 
 

𝐷𝑖,𝑝 = √(𝑥𝑝‒ 𝑥𝑖)2 + (𝑦𝑝‒ 𝑦𝑖)2 (2) 
 

Step 4: centroid update. Calculate the mean of all data points in each cluster to get a new centroid. Move the 

centroid to the mean point. The new cluster center (centroid) formula is shown in (3). 
 

𝐶𝑗 =
1

𝑛𝑗
∑ 𝑋𝑖

𝑛𝑗
𝑖=1  (3) 

 

where Cj is the j-th cluster center, nj is the number of data points in the j-th cluster, and Xi is the i-th data 

point in the j-th cluster. 

Step 5: iteration. Repeat step 3 of clustering the data and step 4 of updating the cluster centers until 

convergence (until there is no significant change in the clustering) or reaching the specified 

maximum number of iterations. The objective function used for clustering is shown in (4). 
 

𝐽 = ∑ ∑ 𝐷(𝑋𝑖 , 𝐶𝑗)2𝑛𝑗
𝑖=1

𝐾
𝑗=1 = ∑ ∑ ‖𝑋𝑖‒ 𝐶𝑗‖

2𝑛𝑗
𝑖=1

𝐾
𝑗=1  (4) 

 

where J is an objective function that tries to minimize the sum of squared distances between each data point 

and its cluster center. 

Step 6:  final result. The algorithm stops when the cluster center point does not change significantly or the 

maximum number of iterations is reached. After convergence, clusters are formed, and the object 

area data on aerial images of natural disaster-impacted areas are clustered into four clusters of 

natural disaster-impacted areas. 
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2.5.2. Fuzzy c-means clustering algorithm 

FCM clustering is a clustering technique commonly employed inside the framework of the hard k-

means method. FCM employs a fuzzy clustering technique to allow data to be included in all established 

clusters, each with varying degrees or membership levels ranging from 0 to 1. The extent to which data is 

present within a cluster is contingent upon its level of membership. The FCM algorithm is one of the most 

widely used clustering techniques, and it uses one of the Euclidean distance metrics as a similarity 

measurement. An important component of clustering algorithms is the measurement of similarity between 

data points [41]. The basic concept of FCM is to determine the cluster center, which will mark the mean 

location for each cluster. Among the many algorithms for image segmentation, the FCM algorithm is one of 

the most popular. The prominent advantage of the FCM algorithm is that the segmentation process is 

unsupervised, and the algorithm can be applied to images that have noise [42]. In the context of clustering 

areas impacted by natural disasters based on the area of objects in aerial images of areas impacted by natural 

disasters, the FCM algorithm can be adapted to determine clusters that reflect the level of damage or the level 

of impacted areas. The following are the steps to adapt FCM in that context: 

Step 1: data representation. Use all aerial images of natural disaster-impacted areas and calculate the area of 

natural disaster-impacted objects in the ground truth image to obtain information about the area of 

objects in each image. 

Step 2: initialization. Determine the desired number of clusters (c) to describe the level/category of natural 

disaster impacted. Initialize the membership matrix (U={uij}) with a random value between 0 and 1, 

where uij is the membership level of the i-th data in cluster j. Ensure that each row of the U matrix 

sums to 1 (∑ 𝑢𝑖𝑗 = 1𝑗 ). 

Step 3: cluster center calculation. Calculate the cluster center (vj) using the (5). 
 

𝑣𝑗 =
∑ 𝑢𝑖𝑗

𝑚𝑛
𝑖=1 𝑥𝑖

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑖=1

 (5) 

 

where vj is the j-th cluster center, m is a fuzzification parameter usually set between 1<m<∞, xi is the i-th 

data, and n is the number of data. 

Step 4: membership function calculation. Calculate the new membership matrix using the adjusted FCM  

in (6). 
 

𝑢𝑖𝑗 =
1

∑ (
𝑑𝑖𝑗

𝑑𝑖𝑘
)

2
𝑚‒1𝑐

𝑘=1

=
1

∑ (
‖𝑥𝑖‒𝑣𝑗‖

‖𝑥𝑖‒𝑣𝑘‖
)

2
𝑚‒1

𝑐
𝑘=1

 (6) 

 

where uij is the membership level of data i to cluster j, dij=‖xi‒vj‖ is the Euclidean distance between data i 

and cluster j center, dik=‖xi‒vk‖ is the Euclidean distance between data i and cluster k center, c is the number 

of clusters, and m is the fuzzification parameter. 

Step 5: iteration. Repeat steps 3 and 4 until the membership matrix converges, i.e., does not change 

significantly. When the iteration is complete, each data will have a membership level to each cluster, 

and the cluster centers will be updated. The result is a fuzzy cluster where each data has a 

membership level to each cluster. The FCM objective function is shown in (7). 
 

𝐽 = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑛

𝑖=1 𝑑𝑖𝑗
2 =𝑐

𝑗=1 ∑ ∑ 𝑢𝑖𝑗
𝑚𝑛

𝑖=1 ‖𝑥𝑖‒ 𝑣𝑗‖
2𝑐

𝑗=1  (7) 
 

Step 6: cluster determination. Each data will belong to the cluster with the highest membership level. 

Step 7: result analysis. Analyze the cluster results to determine the clustering of natural disaster-impacted 

areas with a high degree of membership. 

 

2.5.3. Percentage impacted by natural disasters 

Calculating the percentage impacted by natural disasters is an important first step in disaster 

management and recovery. PIND is used to detect how much impact a natural disaster has on the impacted 

objects and areas. In post-disaster aerial images, PIND is needed to inform the percentage of objects and 

areas impacted by natural disasters. Calculating PIND can provide a clearer understanding of the scale and 

impact of natural disasters in an area and is used to analyze the percentage of areas vulnerable to natural 

disasters. The PIND value is used for damage assessment or assessment of areas impacted by natural 

disasters. The formula for calculating PIND is shown in (8)-(10): 
 

PIND = 
Number of pixels of objects and areas impacted by natural disasters

Total number of pixels
 × 100 (8) 
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PIND = 
∑ (pixBFi  + pixRFi)

n
i=1

width of an image resolution × length of an image resolution
 × 100 (9) 

 

or  PIND = ∑
pixBFi + pixRFi

pixBNFi + pixRNFi + pixBFi + pixRFi + pixVi + pixTi + pixGi + pixWi  + pixPi + pixBi
 n

i=1 × 100 (10) 

 

Where pixBNF is the number of pixels of the building non-flooded object, pixRNF is the number of pixels of 

the road non-flooded object, pixBF is the number of pixels of the building flooded object, pixRF is the 

number of pixels of the road-flooded object, pixV is the number of pixels of the vehicle object, pixT is the 

number of pixels of the tree object, pixG is the number of pixels of the grass object, pixW is the number of 

pixels of the water object, pixP is the number of pixels of the pool object, pixB is the number of background 

pixels, n is the total number of each object, and i symbolizes each object respectively. 

 

2.5.4. Area of objects in aerial images of natural disaster-impacted areas 

For the assessment of natural disasters, it is necessary to calculate the area of objects in aerial 

images of areas impacted by natural disasters, which has several important purposes, including: i) the area of 

objects impacted by natural disasters in images resulting from semantic segmentation of aerial images of 

areas impacted by natural disasters can provide a real description of the extent to which the area is impacted 

and the area obtained matches the area in the real world; ii) this information can be used to measure the level 

of damage and assist in emergency response planning and post-disaster recovery; iii) data on the area of 

objects impacted by natural disasters can be used to plan recovery and rehabilitation efforts; iv) a better 

understanding of how large the impacted area is can help in the efficient allocation of resources to restore the 

area, v) information on the area and type of objects impacted by natural disasters helps in prioritizing 

recovery, vi) information on the area impacted by natural disasters can help in evacuation planning and 

support evacuation route planning, and vii) information on the area of objects can be utilized to help the 

development of disaster mitigation policies and as reference data for further research in the field of natural 

disaster management. The formula for calculating the object area in each object class is shown in (11)-(13). 
 

Actual width = 2 × camera altitude × tan ( 
FOVh

2
) (11) 

 

Actual height = 2 × camera altitude × tan ( 
FOVv

2
) (12) 

 

Segmentation area of each object class = ( 
Total pixel of each object

w × l
)  × Actual width × Actual height (13) 

 

where FOV is the field of view, FOVh is the angle of view that the camera can capture horizontally, FOVv is 

the angle of view that the camera can capture vertically, w is the width of an image resolution, and l is the 

length of an image resolution. 

Using (11)-(13), the area of the objects in all ground truth segmentation mask images of the 

FloodNet dataset was calculated, resulting in the number of images, number of objects, and the size of the 

object area corresponding to each object class shown in Table 1. 
 

 

Table 1. Number of images, number of objects, and area of objects that correspond with the object classes in 

FloodNet 
Object class Number of images Number of objects Area of objects (m2) 

Building non-flooded 880 3427 919080.46 
Road non-flooded 1175 2155 1625586.62 

Building flooded 245 3248 460791.95 

Road flooded 264 495 742013.49 
Vehicle 813 4535 49385.88 

Tree 1882 19682 5078292.70 

Grass 2161 19682 16008212.91 
Water 1059 1374 3124001.20 

Pool 531 1141 56425.02 
Total 55739 28063790.23 

 

 

Data normalization is then carried out after calculating the number of objects and the area of objects. 

Data normalization is the process of adjusting data values in a dataset so that they can have a uniform or 

normal scale. The data normalization function involves data transformation so that the values are within a 

certain range or have a more controlled distribution. For the normalization method, this study chose min-max 

normalization. Min-max normalization transforms values in a certain range into a range between 0 and 1. The 

min-max normalization formula is shown in (14): 
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Xnorm = 
X ‒ Xmin

Xmax ‒ Xmin
 (14) 

 

where Xnorm is the normalized value, X is the original value to be normalized, Xmin is the minimum value in 

the original range, and Xmax is the maximum value in the original range. 

Furthermore, using the normalized data, the k-means clustering algorithm and the FCM clustering 

algorithm are used to calculate and cluster the data of the area of objects impacted by natural disasters into four 

clusters of natural disaster-impacted areas, which are the four categories of natural disaster assessment, namely 

areas not impacted by natural disasters, areas lightly impacted by natural disasters, areas moderately impacted 

by natural disasters, and areas heavily impacted by natural disasters. The clustering of natural disaster-impacted 

areas reflects the level of damage or impact of an area. The results of the calculation and clustering of natural 

disaster assessments are used to automatically calculate and predict natural disaster assessments on images 

resulting from semantic segmentation. These results are very useful for conducting natural disaster assessments 

on all aerial images of natural disaster-impacted areas. The clustering results of the k-means algorithm are 

shown in Table 2 and the clustering results of the FCM algorithm are shown in Table 3. 
 

 

Table 2. The centroid value of each cluster using the k-means clustering algorithm 
Cluster number Building flooded Road flooded Cluster name 

0 0.00130667 0.0012569 Areas not impacted by natural disasters 

1 0.09480807 0.75438608 Areas lightly impacted by natural disasters 

2 0.12038973 0.30203463 Areas moderately impacted by natural disasters 

3 0.25212445 0.17462374 Areas heavily impacted by natural disasters 

 

 

Table 3. The centroid value of each cluster using the FCM clustering algorithm 
Cluster number Building flooded Road flooded Cluster name 

0 0.000856336 0.00074293 Areas not impacted by natural disasters 

1 0.091169744 0.772654604 Areas lightly impacted by natural disasters 

2 0.131145276 0.278849165 Areas moderately impacted by natural disasters 

3 0.255703145 0.173164929 Areas heavily impacted by natural disasters 

 

 

2.6.  Implementation details 

This study builds the transformer model and implements the segmentation network using the deep 

learning framework PyTorch 1.13.1. All transformer models were trained for 50 epochs. This study uses 

personal computer hardware with an Intel Core i7 processor, 32 GB RAM, and NVIDIA GeForce RTX 3080 

GPU (10 GB), with CUDA version 11.7 and Windows 10 Pro operating system. 

To evaluate and compare the transformer model performance, this study displays evaluation metrics 

consisting of accuracy, mean accuracy (mAcc), intersection over union (IoU), and mean intersection over 

union (mIoU). Accuracy is a commonly employed evaluation metric for assessing the performance of 

models. Accuracy measures how well the model predicts correctly compared to all predictions made. The 

accuracy metric can be defined as the proportion of accurately predicted pixels compared to the total number 

of pixels. Mean accuracy (mAcc) is the ratio of the sum of the accuracy of each object class to the total 

number of object classes. IoU is a metric that measures the pixel-level similarity between the segmentation 

result image and the ground truth segmentation mask image. mIoU is the ratio of the number of IoU of each 

class to the total number of classes. The formulas for calculating accuracy, mean accuracy (mAcc), IoU, and 

mIoU are respectively shown in (15)-(18): 
  

Accuracy = 
TP + TN

TP + TN + FP + FN
 (15) 

 

mAcc = 
1

k
∑

TPi + TNi

TPi + TNi + FPi + FNi

k
i=1  (16) 

 

IoU = 
TP

TP + FP + FN
 (17) 

 

mIoU = 
1

k
∑

TPi

TPi + FPi + FNi

k
i=1  (18) 

  
Where TP is true positive, TN is true negative, FP is false positive, FN is false negative, k is the total number 

of object classes, and i represents each object class respectively, namely building non-flooded, road non-

flooded, building flooded, road flooded, vehicle, tree, grass, water, and pool. 
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3. RESULTS AND DISCUSSION 

A comparison of the accuracy and performance (quantitative results) of all transformer models for 

semantic segmentation of aerial images of areas impacted by natural disasters is shown in Table 4, with the 

accuracy and IoU values for each object class (the values highlighted in bold are the best). The visualization 

results (qualitative results) of all transformer models are provided in Figure 2. The results presented in  

Table 4 demonstrate that the SegFormer model outperforms other models on the mAcc and mIoU evaluation 

metrics. The second best result is achieved by the OneFormer model, while the BEIT and DPT models have 

lower mIoU values. The IoU values for small shaped object classes, like vehicles and pools, produced by the 

BEIT and DPT models, are still very low. 

 

 

Table 4. Comparison of transformer model test results with accuracy and IoU values (in %) for each object 

class 

Object class 
BEIT DPT OneFormer SegFormer 

Accuracy IoU Accuracy IoU Accuracy IoU Accuracy IoU 

Building non-flooded 96.83 31.58 97.39 39.60 99.35 80.47 98.64 65.74 

Road non-flooded 97.10 55.13 97.94 65.44 99.41 75.45 98.78 76.99 

Building flooded 97.94 29.86 97.49 26.59 93.90 72.19 98.77 58.29 
Road flooded 96.06 31.86 97.28 38.49 93.47 65.80 97.01 50.33 

Vehicle 99.81 4.37 99.65 10.33 99.59 43.14 99.87 49.60 

Tree 90.82 56.25 93.25 68.33 91.98 71.69 96.35 81.85 
Grass 79.12 66.33 85.70 76.96 88.28 61.39 91.40 85.28 

Water 86.08 33.27 93.45 59.05 96.39 40.41 95.52 66.36 

Pool 99.37 2.29 99.56 3.91 99.52 42.05 99.83 56.70 
 mAcc=93.68 mIoU=34.55 mAcc=95.75 mIoU= 43.19 mAcc=95.77 mIoU= 61.40 mAcc=97.35 mIoU=65.68 

 

 

The SegFormer model performed well, outperforming the second-best model, OneFormer, by 

97.35% in the mAcc value and 65.68% in the mIoU value. The difference in mIoU of BEIT, DPT, and 

OneFormer models with SegFormer is 31.13% (65.68−34.55%) between SegFormer and BEIT, 22.49% 

(65.68−43.19%) between SegFormer and DPT, and 4.28% (65.68−61.40%) between SegFormer and 

OneFormer. The difference in mAcc between the first-best model (SegFormer) and the second-best model 

(OneFormer) is 1.58% (97.35−95.77%). The segmented image shows that buildings and roads impacted by 

floods (building flooded and road flooded) and small shaped objects (vehicles and pools) are not well 

segmented by the BEIT and DPT models. These results show that the BEIT and DPT models can still not 

learn feature mapping well and have limited ability to segment objects impacted by natural disasters and 

small shaped objects. 

Figure 2 visually compares the segmentation results of the overall transformer model. Figure 2(a) 

shows aerial images of natural disasters-impacted areas, Figure 2(b) shows the ground truth segmentation 

mask images, and Figures 2(c)-(f) are the predicted images (segmented images) generated by all transformer 

models, namely BEIT, DPT, OneFormer, and SegFormer. The SegFormer model shows that it is capable of 

segmenting objects of buildings and roads impacted by natural disasters and various irregularly shaped and 

sized objects, which are important objects in natural disaster events. The SegFormer model is also able to 

segment vehicles and pools, which are the smallest objects. In this study, it is very important to distinguish 

objects impacted by natural disasters and objects that are not impacted by natural disasters. The SegFormer 

model successfully segmented and distinguished buildings that were flooded, buildings that were not flooded, 

roads that were flooded, roads that were not flooded, and other objects. 

Figure 3 shows the receiver operating characteristics (ROC) curve and the area under curve (AUC) 

value for each example of the predicted images (segmentation results) in Figure 2, providing a visual 

representation of the performance of the SegFormer model. Figure 3(a) shows aerial images of natural 

disasters-impacted areas, Figure 3(b) shows the segmented images using SegFormer, and Figure 3(c) shows 

the ROC curve and AUC values, which have colors corresponding to their respective object classes, with the 

x-axis is the false positive rate (FPR) and the y-axis is the true positive rate (TPR). The AUC value is used to 

measure the SegFormer model performance in segmenting objects in aerial images of natural disaster-

impacted areas according to their respective object classes. From the four ROC curves, it can be seen that all 

object class curves are above the discontinuous black baseline line or diagonal line crossing from point 0.0, 

which means that the SegFormer model performs well in producing semantic segmentation images for their 

respective object classes. All ROC curves have a mean AUC value above 0.9, indicating that each object's 

semantic segmentation results in aerial images of natural disaster-impacted areas are excellent, and the 

objects are segmented according to their respective object classes. 
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Figure 2. Visual comparison of transformer models; (a) aerial images of natural disasters-impacted areas,  

(b) ground truth, (c) BEIT, (d) DPT, (e) OneFormer, and (f) SegFormer 
 

 

  

 

  

 

  

 

  

 
(a) (b) (c) 

 

Figure 3. ROC curve and AUC values of segmentation results; (a) aerial images of natural disasters-impacted 

areas, (b) segmentation results using SegFormer, and (c) ROC curve and AUC values 

  Building flooded  Building non-flooded  Road flooded  Road non-flooded  Water  Tree  Vehicle  Pool  Grass  Background 
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The test results of the SegFormer model produced in this study outperformed the test outcomes 

produced by other studies in the literature review that also used the transformer model and the same dataset 

(FloodNet) on aerial image recognition in the context of natural disasters using semantic segmentation. 

Researcher [22] produced mAcc values of 89.50% and mIoU of 61.60%, and research [23] produced mAcc 

values of 88.50% and mIoU of 59.69%, for the SegFormer model, which are the highest mAcc and mIoU 

values in these studies. In comparison, this study produces higher mAcc and mIoU values of 97.35% and 

65.68% for the same model, SegFormer. The results of this study also outperformed the test outcomes 

produced by other studies that used convolutional neural network-based models and used the same dataset for 

semantic segmentation. Researcher [5] used the U-Net, PSPNet, and DeepLabV3+ models, which resulted in 

the highest mIoU value of 56.22% in the DeepLabV3+ model. Researcher [7] used the PSPNet, DeepLabV3, 

and U-Net models, which resulted in the highest mIoU value of 56% in the PSPNet model. Researcher [8] 

used several encoder-decoder models, which resulted in the highest mIoU value of 50.44% in the UNet-

MobileNetV2 model. Researcher [13] used the DeepLabV3 model with the EfficientNet-B4 backbone, which 

resulted in the best mIoU and mAcc values of 48.1% and 90%, respectively. The results in studies  

[5], [7], [8], [13] have lower mIoU performance values compared to the results of this study. The studies  

[6], [9]-[12] have weaknesses in the visual display of segmented images that are less accurate; important 

objects impacted by natural disasters, irregularly shaped and sized objects, and small objects in the 

segmented image samples are not segmented properly in these studies. This study produces a better visual 

appearance of semantic segmentation results of aerial images of areas impacted by natural disasters. A 

quantitative comparison of the advantages of the SegFormer model produced in this study compared to 

previous studies is shown in Table 5, the values highlighted in bold are the best. Figure 4 shows a qualitative 

comparison of the advantages of the SegFormer model produced in this study compared to previous studies. 

Figure 4(a) shows aerial images of natural disasters-impacted areas, Figure 4(b) shows the ground truth 

segmentation mask images, Figure 4(c) shows the segmented images generated by the deep learning models 

for semantic segmentation used in previous studies, and Figure 4(d) shows the segmented images generated 

by the SegFormer model in this study. 
 

 

Table 5. Quantitative comparison of transformer model test results against previous studies using evaluation 

metrics (in %) 

Model 
Building
-flooded 

Building-non 
flooded 

Road-
flooded 

Road-non-
flooded 

Water Tree Vehicle Pool Grass 
Evaluation 

metrics 

DeepLabV3+ [5] 48.00 69.00 48.00 75.00 72.00 76.00 15.00 18.00 85.00 mIoU=56.22 

PSPNet (152) [7] N/A mIoU=56.00 
UNet-MobileNetV2 

[8] 

43.50 59.30 21.20 61.20 73.30 64.90 15.10 32.70 82.80 mIoU=50.44 

DeepLabV3-
EfficientNet-B4 [13] 

N/A mAcc=90.00 
N/A mIoU=48.10 

SegFormer [22] N/A mAcc=89.50 

66.80 59.30 44.60 67.70 67.10 69.60 45.60 48.30 85.50 mIoU=61.61 
SegFormer [23] N/A mAcc=88.50 

44.31 69.80 44.50 77.62 74.77 78.95 19.35 40.35 87.57 mIoU=59.69 

SegFormer (this 
study) 

98.77 98.64 97.01 98.78 95.52 96.35 99.87 99.83 91.40 mAcc=97.35 

58.29 65.74 50.33 76.99 66.36 81.85 49.60 56.70 85.28 mIoU=65.68 

 
 

The segmentation results of the model with the best accuracy and performance, SegFormer, are then 

integrated with the k-means and FCM clustering algorithms to automatically assess areas impacted by natural 

disasters with four categories: areas not impacted by natural disasters, areas lightly impacted by natural 

disasters, areas moderately impacted by natural disasters, and areas heavily impacted by natural disasters. 

The results of semantic segmentation using the model with the best accuracy and performance, SegFormer, 

and the results of automatic natural disaster assessment using k-means and FCM clustering algorithms are 

shown in Figure 5. Figure 5(a) shows aerial images of natural disaster-impacted areas, Figure 5(b) shows the 

ground truth segmentation mask images and the natural disaster assessment results on the ground truth 

images, Figure 5(c) shows the segmented images generated by the SegFormer model, Figure 5(d) shows the 

natural disaster assessment results on the segmented images using the k-means clustering algorithm, and 

Figure 5(e) shows the natural disaster assessment results on the segmented images using the FCM clustering 

algorithm. The first row in Figure 5 shows an example of natural disaster assessment with the category of 

areas not impacted by natural disasters, the second row shows an example of natural disaster assessment with 

the category of areas lightly impacted by natural disasters, the third row shows an example of natural disaster 

assessment with the category of areas moderately impacted by natural disasters, and the fourth row shows an 

example of natural disaster assessment with the category of areas heavily impacted by natural disasters. 
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Figure 4. Visual (qualitative) comparison of transformer model test results against previous studies;  

(a) aerial images, (b) ground truth, (c) previous studies, and (d) SegFormer (this study) 
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Figure 5. Semantic segmentation results using SegFormer and natural disaster assessment results using  

k-means and FCM clustering algorithms; (a) aerial images of natural disasters-impacted areas, (b) ground 

truth and the results of natural disaster assessment on ground truth, (c) segmentation results using SegFormer, 

(d) the results of natural disaster assessment on segmented images using the k-means clustering algorithm, 

and (e) the results of natural disaster assessment on segmented images using the FCM clustering algorithm 
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The SegFormer model and FCM clustering algorithm work well, as evidenced by the natural 

disaster assessment results in the ground truth images (Figure 5(b)) and the natural disaster assessment results 

in the segmented images (Figure 5(e)), showing the same assessment results and PIND values are in 

accordance with the respective natural disaster impacted area categories. Figure 5 shows the effective 

performance of the FCM clustering algorithm in categorizing the natural disaster assessment into four 

different clusters. This study succeeded in performing a detailed and automatic natural disaster assessment on 

the segmented images, which completely displays information on the number of each object class, displays 

information on the area of objects in each object class, displays information on the PIND, and displays 

information on the assessment of areas impacted by natural disasters, all of which have not been done by 

previous studies. This study accurately produces semantic segmentation of aerial images of areas impacted 

by natural disasters and natural disaster assessments, which can be used for emergency disaster management 

quickly, effectively, and efficiently in natural disaster management systems. 

 

 

4. CONCLUSION 

This study has succeeded in producing semantic segmentation of aerial images of areas impacted by 

natural disasters, and detailed and automatic assessment of natural disasters on the segmented images. The 

use of technology transformer model, aerial images of natural disaster-impacted areas derived from UAVs, 

semantic segmentation, counting the number of objects in each object class, counting the area of objects 

impacted by natural disasters, counting the percentage impacted by natural disasters, and clustering 

algorithms in natural disaster assessment can provide accurate and extensive information to support effective 

decisions and actions in the face of natural disasters. It can be a crucial component in effective disaster 

management efforts and post-disaster recovery. The SegFormer model achieved good segmentation results 

and outperformed other transformer models on semantic segmentation of natural disaster-impacted areas 

using post-disaster aerial images. The best natural disaster assessment results are shown by the FCM 

clustering algorithm, which can automatically cluster natural disaster assessments into four categories 

accurately on the segmented images. Further study will integrate the aerial image segmentation system of 

natural disaster-impacted areas, UAV video results, and web-based natural disaster assessment to build a 

natural disaster management system that can assist disaster emergency management more quickly, 

effectively, and efficiently. 
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