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Aerial image segmentation of natural disaster-impacted areas and detailed
and automatic natural disaster assessment are the main focus of this study.
Detecting and recognizing objects on aerial images of areas impacted by
natural disasters and assessing natural disaster-impacted areas are still
difficult problems. To solve these problems, this study utilizes four of the
latest transformer-based semantic segmentation network models,
bidirectional encoder representation from image transformers (BEIT), dense
prediction transformer (DPT), OneFormer, and SegFormer, and proposes a
detailed and automatic natural disaster assessment of the segmented image.
The SegFormer model achieved the first-best result, and the OneFormer
model achieved the second-best result. The SegFormer model outperformed
OneFormer by 1.58% higher for the mean accuracy value and 4.28% for the
mean intersection over union (mloU) value. All receiver operating
characteristics (ROC) curves have mean area under curve (AUC) values
above 0.9, which means that the SegFormer model performs well in
generating semantic segmentation images. The fuzzy c-means (FCM)
clustering algorithm performed well and could automatically cluster the
natural disaster assessments into four categories. This study has produced
semantic segmentation of aerial images of areas impacted by natural
disasters and natural disaster assessments, which can be used in natural
disaster management systems.
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1. INTRODUCTION

Catastrophic events known as natural disasters arise from natural occurrences, including floods,
landslides, earthquakes, volcanic eruptions, tsunamis, hurricanes, and droughts. Natural calamities are
occurring more frequently. Given the rising frequency of disasters, all parties must comprehend and apply
disaster management strategies. Accurately assessing the areas impacted by natural disasters is crucial in the
natural disaster management system to enable quick, effective, and efficient emergency responses.
Unmanned aerial vehicles (UAVSs) or drone technology are used to acquire aerial images of natural disaster
damage and impacted areas. Analyzing aerial images of natural disaster-impacted areas presents challenges
in segmenting important objects impacted by natural disasters, particularly those with irregular shapes,
varying sizes, and small sizes. Additionally, conducting detailed and automated assessments of disaster-
impacted areas based on segmented images is complex. Until now, researchers have used several methods to
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try to produce accurate image segmentation in the field of natural disasters. The state-of-the-art methods used
today can be broadly classified into two categories: models that rely on traditional handcrafted features
created by researchers [1], [2], and models based on deep learning. Research using deep learning is divided
into two models: convolutional neural network (CNN) and transformer. Studies using CNN-based
segmentation models have been conducted by researchers [3]-[13] and studies using transformer-based
models have been conducted by researchers [14]-[27].

The studies that have used segmentation in solving natural disaster problems with transformers.
Researcher [14] detected building damage using DamFormer, research [15] detected building damage using
swin transformer encoder and UPerNet semantic segmentation head, and research [16] detected building
damage using SDAFormer. The studies [14]-[16] used the xBD dataset. Researcher [17] classified building
damage based on satellite images (xBD and LEVIR-CD datasets) after natural disasters using a transformer-
based network called DAHITrA. Researcher [18] automatically detected damaged buildings using improved
Swin-Unet on the Gaofen-2/Jilin-1 dataset, satellite images dataset (xBD), and the AIST building change
detection (ABCD) dataset. Researcher [19] segmented post-earthquake solid buildings using the swin
transformer from remote sensing images with complex backgrounds. The studies [14]-[17] have the
advantage of detecting four types of building damage: no damage, minor damage, major damage, and
destroyed. However, these studies suffer from the drawback of relying on a comparison between pre-disaster
and post-disaster image pairs to assess building damage. This results in a lengthier process for generating
segmentation images. This is because each time a natural disaster takes place at a specific location, change
detection is performed on both pre-disaster and post-disaster images to identify and detect building objects
impacted by the disaster. Researcher [15] also has shortcomings that result in low model performance values.
Researcher [18] has the advantage of testing to detect building damage in several remote sensing image
datasets but has the disadvantage of producing very low model performance values.

The studies addressing the problem of flood natural disasters have been conducted by research [20]
which detects and segments flooded areas from aerial images at the disaster site using FloodTransformer on
the SWOC flood segmentation dataset, research [21] detects flooded areas using synthetic aperture radar
(SAR) images on the S1GFloods dataset with differential attention metric-based network (DAM-Net), and
studies [22], [23] detect flood-impacted objects using several models, one of which is SegFormer on the
FloodNet dataset. The studies addressing the problem of landslide natural disasters have been conducted by
[24] which detects landslides on the Bijie and Iburi small datasets using vision transformer (ViT), research
[25] determines the exact extent of landslide areas using separable channel attention network (SCANet) on
loess plateau landslide image dataset, and studies [26], [27] identifies coseismic landslides from coseismic
landslide dataset using SegFormer semantic segmentation network. Researcher [20] has the advantage of
using multiple open-source datasets but has the disadvantage of using very different image resolutions.
Researcher [22] has the advantage of comprehensively testing several encoder-decoder and two-path-based
architectures. The studies [22], [23] evaluated their performance on aerial image datasets but have the
disadvantage of producing model performance values that are still lacking. Researcher [24] has the advantage
of using two datasets with different landslide characteristics, and research [25] has the advantage of
conducting extensive experiments on landslide datasets using several mainstream semantic segmentation
networks compared with transformer architecture, but studies [24], [25] have the disadvantage of using image
datasets with small image size and a small number of images for training, validation, and testing.

Based on a search of related previous studies, it is concluded that some studies use satellite-derived
image datasets, namely studies [1], [4], [14]-[19], [24]. However, these datasets have drawbacks, such as being
captured from a higher altitude and being susceptible to cloud and smoke interference. Additionally, they lack
comprehensive information about disaster areas and objects impacted by natural disasters, which hinders their
usefulness for detailed assessment of natural disasters. In contrast, this study uses a dataset of low-altitude,
UAV-derived aerial images, which has many advantages over satellite images. The dataset used in this study is
high-resolution aerial images of natural disaster-impacted areas to generate segmentation images that can be
used automatically for detailed natural disaster assessment. Previous studies have also produced segmented
images that only display a small number of object classes, namely studies [2]-[4], [14]-[18], [20], [21],
[24]-[27], which have the disadvantage of not being able to detect and identify other important objects
impacted by natural disasters that appear in post-disaster images, making them incomplete for use in a detailed
and automated natural disaster assessment process. In contrast, this study includes nine object classes that
represent various objects impacted by natural disasters, like buildings and roads impacted by floods,
irregularly shaped objects like trees and grass, and small objects like vehicles, so that they can be used in the
natural disaster assessment process in more detail and automatically. This cannot be done if only a small
number of object classes are displayed. To produce a detailed and automatic assessment of areas impacted by
natural disasters, it is also important to calculate the number of objects in each object class, calculate the area
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of objects in each object class, and calculate the percentage impacted by natural disasters (PIND) so that
natural disaster assessments can be calculated and clustered automatically into several categories.

Deep learning-based semantic segmentation has advanced quickly and is commonly applied in
satellite image recognition for remote sensing. However, its utilization in recognizing aerial images from
UAVs for addressing natural disaster issues, particularly with transformers for segmenting multiple objects, is
limited. This study has the advantage of using post-disaster aerial images so that it can produce segmentation
images more quickly without the need to compare with pre-disaster images. All of the previous research
described above has the disadvantage of only segmenting the image and visually displaying the segmented
image without conducting a detailed and automatic natural disaster assessment on the segmented image and
still requiring human intervention in performing manual calculations to obtain detailed information about the
impact of the disaster. In contrast, this study performs a detailed and automatic assessment of natural disaster-
impacted areas (natural disaster assessment) on the segmented image. The main challenge is accurately
performing aerial image semantic segmentation of natural disaster-impacted areas and performing detailed and
automatic natural disaster assessments with several categories. The main contribution in this study is twofold:
first, applying transformers for aerial image semantic segmentation of natural disaster-impacted areas that have
complexity and diversity of objects visible in aerial images with four latest models of semantic segmentation
networks, namely: bidirectional encoder representation from image transformers (BEIT), dense prediction
transformer (DPT), OneFormer, and SegFormer, to segment various objects impacted by natural disasters,
irregularly shaped and sized objects, and small objects in post-disaster aerial images; second, perform
automatic natural disaster assessment on segmented images with categories: areas not impacted by natural
disasters, areas lightly impacted by natural disasters, areas moderately impacted by natural disasters, and areas
heavily impacted by natural disasters, using k-means and fuzzy c-means (FCM) clustering algorithms.

This paper is structured into multiple sections. Section 1 discusses the introduction and related research
relevant to this study. Section 2 discusses the proposed framework or method, segmentation, transformer model
built, datasets used, data augmentation and transfer learning, natural disaster assessment consisting of k-means
clustering algorithm, FCM clustering algorithm, calculation of PIND, and calculation of object area in aerial
images of areas impacted by natural disasters, and implementation details. Section 3 displays quantitative and
qualitative results produced by the transformer model for semantic segmentation, displays quantitative and
qualitative comparisons of the transformer model test results for semantic segmentation of aerial images of natural
disaster-impacted areas with previous studies, and displays the results of detailed and automatic natural disaster
assessments on segmented images. Section 4 summarizes the results of this study and explains further research.

2. METHOD

This section presents the proposed framework or method for semantic segmentation of aerial images
of areas impacted by natural disasters using transformers for natural disaster assessment. An overview of the
process is shown in Figure 1. The proposed method comprises eight stages, i.e.,: pre-processing stage; pre-
training stage for transfer learning; training, validation, and testing stage; semantic segmentation model
evaluation (performance evaluation) stage; segmentation result display stage (display of segmented objects in
the image and object class label information); calculation stage of the number of objects and object area in
each object class and PIND; natural disaster assessment stage using k-means clustering algorithm and FCM
clustering algorithm; and natural disaster assessment result display stage. Each stage will be discussed in
detail in this section.

2.1. Image segmentation

In the field of computer vision, one of the most crucial subjects is image segmentation. It has
various applications, including scene understanding, analysis of medical images, perception for robots, video
surveillance, augmented reality, image compression, and many other applications. Several researchers have
developed various methods for image segmentation. Lately, there has been a considerable effort to build
image segmentation methods utilizing deep learning models, driven by the achievements of these models in
several computer vision tasks [28]. Image segmentation is the task of classifying pixels according to semantic
labels or separating them into distinct objects. Semantic segmentation is the process of labeling individual
pixels in an image based on a predefined set of categories, such as buildings, roads, and trees.

2.2. Transformer

Transformer-based models have achieved promising results in many computer vision and natural
language processing (NLP) tasks [29]. The success of transformers in NLP has generated attention not just in
various fields of computer vision but also in the aerial image semantic segmentation of natural disaster-
impacted areas, where this study explores several transformer-based models. This study uses BEIT [30], DPT
[31], OneFormer [32], and SegFormer [33] as transformer models. BEIT is a self-supervised vision

Transformers for aerial images semantic segmentation of natural disaster ... (Deny Wiria Nugraha)



1394 O ISSN: 2302-9285

representation model inspired by bidirectional encoder representations from transformers (BERT) [34] in NLP.
BEIT is designed for pre-training ViT using a masked image modeling (MIM) task. BEIT uses a pre-training
task to help the model recognize images and identify objects in the images. Each image has two views in the
pre-training phase: image patches and visual tokens. The model is pre-trained to recover the original visual
tokens based on the corrupted image. MIM aims to recover masked image patches based on the encoding
vector. The pre-training task aims to predict the original image's visual tokens based on the corrupted image's
encoding vectors. After pre-training, the model parameters can be fine-tuned on downstream tasks, such as
image classification and semantic segmentation, by appending task layers to the pre-trained model.

Ground truth

Aerial images segmentation mask image
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Figure 1. Overview of the proposed overall method

DPT is a neural network model architecture that combines image segmentation techniques with
transformer architecture. DPT uses the ViT as the backbone for dense prediction tasks such as semantic
image segmentation and monocular depth estimation. DPT is a dense prediction architecture based on an
encoder-decoder design that utilizes the transformer as the basic computational building block of the encoder.
DPT processes images for semantic segmentation by converting the input image into tokens through
transformer stages. Thereafter, the tokens are recombined into image representations at several different
resolutions. This process is followed by progressive merging to generate predictions at full resolution using a
convolutional decoder.

OneFormer is a transformer designed to overcome the problems of using transformers as models for
image segmentation. OneFormer uses a single transformer to perform image segmentation. Thus, the name
"OneFormer" is derived from "One Transformer."” OneFormer is a multi-task universal image segmentation
framework that utilizes transformers. It requires training only once using a single universal architecture,
model, and dataset. OneFormer utilizes a task-conditioned joint training approach, which uniformly selects
several ground truth domains (semantic, instance, or panoptic) by utilizing all labels from panoptic
annotations to train its multi-task model. OneFormer utilizes a pair of inputs: a sample image and a task
input. OneFormer utilizes a backbone and pixel decoder to extract multiscale features from the input image.

SegFormer is a semantic segmentation model architecture used to identify and segment objects in
images. SegFormer is a streamlined and effective semantic segmentation system that combines the
transformer with a lightweight multilayer perceptron (MLP) decoder. SegFormer possesses two distinct
characteristics: SegFormer comprises a novel transformer encoder with a hierarchical structure that produces
multiscale features. The transformer encoder is positional encoding free and hierarchical. The model utilizes
a hierarchical transformer encoder to extract high-resolution coarse and low-resolution fine features from the
input image. Additionally, SegFormer simplifies the decoding process by avoiding using sophisticated
decoders. The MLP decoder aggregates input from multiple layers, integrating local and global attention to
provide a robust representation. The MLP decoder, which is lightweight, utilizes multi-level features to
provide the final semantic segmentation mask.
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In this study, BEIT and DPT use the ViT [35] architecture, OneFormer uses the swin transformer-
large (Swin-L) [36] architecture, and SegFormer uses the mix transformer-B0 (MiT-B0) [33] architecture as
their respective backbones. The parameters for BEIT, DPT, and SegFormer, 0.00006 and 0.01, were used for
the learning rate and weight decay, respectively, and the optimizer used was Adam. Crop size and batch size
for BEIT and DPT are set at 256x256 and 2, and for SegFormer are set at 512x512 and 4. The parameters for
OneFormer are the learning rate is 0.0001, weight decay is 0.05, the optimizer used is Adam, crop size is set
at 1024x1024, and batch size is set at 2. Cross entropy is a loss function in BEIT, DPT, and SegFormer.
Contrastive query is a loss function in OneFormer.

2.3. Datasets

This study uses FloodNet [6] as a dataset in semantic segmentation of natural disaster-impacted area
images, a dataset of post-disaster aerial images derived from UAVSs, especially in flooded areas. FloodNet
images are labeled at the pixel level, which makes them useful for semantic segmentation tasks. FloodNet has
2,343 images with a total of 55,739 objects annotated. FloodNet images and annotations have an average
resolution of 3000%4000 pixels, with nine classes including building non-flooded, road non-flooded, building
flooded, road flooded, vehicle, tree, grass, water, and pool. The FloodNet dataset is divided into 1686 images
for training, 422 for validation, and 235 for testing.

This study uses an external dataset, namely ADE20K [37], for the pre-training dataset. ADE20K is a
densely annotated dataset, which includes various annotations of scenes, objects, parts of objects, and, in
some cases, even parts of parts. There are 25,000 images of complex daily scenes containing various objects
in their natural spatial context.

2.4. Data augmentation and transfer learning

Data augmentation in aerial image semantic segmentation of natural disaster-impacted areas has
several primary objectives that can enhance the semantic segmentation model performance. The following
are some of the objectives of data augmentation in the semantic segmentation of aerial images of areas
impacted by natural disasters: i) increase data diversity: by performing data augmentation, the variety and
diversity of images can be increased. This helps the model to handle better scale differences, rotation, and
perspective changes that may occur in aerial images of natural disaster-impacted areas; ii) reduce overfitting:
data augmentation helps reduce overfitting by providing more variety in the training data. Models trained on
diverse data are more likely to handle well-test data or situations in the field that are not encountered during
training; iii) increase robustness: data augmentation can help make models more resilient to environmental
variations that may occur in aerial images during or after natural disasters. This helps the model perform well
under varying conditions; iv) improve segmentation accuracy: data augmentation can help improve
segmentation accuracy by creating more variation in image detail and texture. This helps the model to
identify better and map important objects or features in the aerial images of natural disaster-impacted areas;
and v) minimize the limitations of limited data: sometimes, limited data availability can be a problem in
semantic segmentation tasks. Data augmentation can help expand the available dataset and optimize the use
of existing data. Designing appropriate data augmentation can improve the model's ability to deal with
variations that may occur in aerial images of natural disaster-impacted areas, resulting in a more reliable and
responsive semantic segmentation model.

Transfer learning aims to utilize the knowledge gained from models trained on related tasks in other
environments or domains. In this context, some of the objectives of transfer learning involve: i) improved
model performance: transfer learning can enhance the performance of the model on aerial image semantic
segmentation of natural disaster-impacted areas. By using a model trained on a large and diverse dataset, the
model can extract more general and in-depth features, which may be difficult to obtain from a limited dataset;
ii) reduction of training data requirements: by using transfer learning, the model can utilize existing
knowledge without the need to train it from the beginning. This is very important in natural disaster situations
where training data may be limited or difficult to obtain. Transfer learning can help models adapt to relatively
small datasets; iii) adapt to environmental variability: areas impacted by natural disasters often have unique
and complex environmental conditions. Transfer learning can help models adapt more quickly to changing
environmental conditions and characteristics that may not be present in the original training dataset;
iv) resource utilization optimization: training a model from the beginning requires significant computational
resources. Transfer learning can help optimize the use of resources by leveraging existing knowledge,
thereby reducing training time and costs; v) handling contextual changes: natural disasters can result in major
changes in the conditions of the impacted area. Transfer learning can help models adjust quickly to
contextual changes, such as landform changes, infrastructure damage, or land cover changes; and vi) model
generalization: transfer learning can help create more general models that can be used for different types of
natural disasters. The obtained model can recognize patterns and features relevant to semantic segmentation
without relying on the specific details of one particular disaster type. As such, transfer learning can be a
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powerful tool in improving model performance on aerial image semantic segmentation of natural disaster-
impacted areas and help better understand the emergency situation.

In this study, BEIT and DPT use flip and resize for data augmentation. OneFormer uses random
scale, and SegFormer uses random scale, random brightness contrast, vertical flip, resize, horizontal flip, and
Gaussian noise. This study uses the ADE20K pre-training dataset for transfer learning, which helps improve
the semantic segmentation model's performance in detecting and recognizing objects in aerial images of areas
impacted by natural disasters. Transfer learning is applied to each semantic segmentation model in a way that
the model is first trained on the pre-training dataset, transferred, and used to retrain on the FloodNet dataset
for semantic segmentation of aerial images of areas impacted by natural disasters efficiently.

2.5. Natural disaster assessment

2.5.1. K-means clustering algorithm
The k-means clustering algorithm is a frequently employed method for clustering data, including in

the context of clustering areas affected by natural disasters. It does so by analyzing the area of objects in

aerial images of such areas. The K-means algorithm is widely recognized as a prominent unsupervised
clustering technique utilized for the automated clustering of data into coherent clusters. The algorithm aims
to cluster the data into k clusters by identifying the centroid or cluster center and thereafter clustering the data
with the nearest points. To correctly cluster data points into k clusters, a cost function is required to minimize
the distance metric (e.g., Euclidean distance and Manhattan distance) [38]. The k-means clustering algorithm
is a simple approach to clustering a dataset into k clusters (C1, C2, C3,..., Ck), which are represented by their
cluster centers (centroids) [39]. The k-means clustering algorithm tries to cluster existing data into several
clusters, where the data in one cluster has the same characteristics/features as each other and has
characteristics/features that are different from the data in other clusters. The k-means algorithm can be used
for image segmentation. The k-means technique is based on clustering similar pixels and median allocation.

Repeating the same process multiple times provides better object identification [40]. In the context of

clustering areas impacted by natural disasters based on the area of objects in aerial images of areas impacted

by natural disasters, the following are the steps of the k-means clustering algorithm:

Step 1: data representation. Use all aerial images of natural disaster-impacted areas and calculate the areas
of natural disaster-impacted objects in the ground truth image to obtain information about the area of
objects in each image.

Step 2: cluster center (centroid) initialization. Select the desired number of clusters (k), and randomly select
k points from the data as initial cluster centers (centroids) (Ci); the equation is shown in (1).

Ci = (xp,y1) 1)

Step 3: clustering the data. Calculate the distance between each data point and each centroid. Determine the
cluster for each data point based on the closest distance. The Euclidean distance between a data
point P(x,, Yp) and a cluster center Ci(xi, yi) is shown in (2).

Di,p = \/(xp_xi)z + (Yp_Yi)z (2)

Step 4: centroid update. Calculate the mean of all data points in each cluster to get a new centroid. Move the
centroid to the mean point. The new cluster center (centroid) formula is shown in (3).

G =3 X, ©)

where Cj is the j-th cluster center, nj is the number of data points in the j-th cluster, and X; is the i-th data

point in the j-th cluster.

Step 5: iteration. Repeat step 3 of clustering the data and step 4 of updating the cluster centers until
convergence (until there is no significant change in the clustering) or reaching the specified
maximum number of iterations. The objective function used for clustering is shown in (4).

J=X5 i DX, ) =X, Z?=j1||Xi_Cj"2 )

where J is an objective function that tries to minimize the sum of squared distances between each data point

and its cluster center.

Step 6: final result. The algorithm stops when the cluster center point does not change significantly or the
maximum number of iterations is reached. After convergence, clusters are formed, and the object
area data on aerial images of natural disaster-impacted areas are clustered into four clusters of
natural disaster-impacted areas.
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2.5.2. Fuzzy c-means clustering algorithm
FCM clustering is a clustering techniqgue commonly employed inside the framework of the hard k-

means method. FCM employs a fuzzy clustering technique to allow data to be included in all established
clusters, each with varying degrees or membership levels ranging from 0 to 1. The extent to which data is
present within a cluster is contingent upon its level of membership. The FCM algorithm is one of the most
widely used clustering techniques, and it uses one of the Euclidean distance metrics as a similarity
measurement. An important component of clustering algorithms is the measurement of similarity between
data points [41]. The basic concept of FCM is to determine the cluster center, which will mark the mean
location for each cluster. Among the many algorithms for image segmentation, the FCM algorithm is one of
the most popular. The prominent advantage of the FCM algorithm is that the segmentation process is
unsupervised, and the algorithm can be applied to images that have noise [42]. In the context of clustering
areas impacted by natural disasters based on the area of objects in aerial images of areas impacted by natural
disasters, the FCM algorithm can be adapted to determine clusters that reflect the level of damage or the level
of impacted areas. The following are the steps to adapt FCM in that context:

Step 1: data representation. Use all aerial images of natural disaster-impacted areas and calculate the area of
natural disaster-impacted objects in the ground truth image to obtain information about the area of
objects in each image.

Step 2: initialization. Determine the desired number of clusters (c) to describe the level/category of natural
disaster impacted. Initialize the membership matrix (U={u;}) with a random value between 0 and 1,
where uj; is the membership level of the i-th data in cluster j. Ensure that each row of the U matrix
sumsto 1 (X u;; = 1).

Step 3: cluster center calculation. Calculate the cluster center (v;) using the (5).

n m
_ Ui Ui

Vi =~<m .m
T N

®)

where v;j is the j-th cluster center, m is a fuzzification parameter usually set between /<m<oo, X; is the i-th
data, and n is the number of data.
Step 4. membership function calculation. Calculate the new membership matrix using the adjusted FCM

in (6).
1 1
Uij = P —Z_ (6)
lnkl Xi-V; m-1
Zi:l(di,) Zi:l(”X:—”ﬂID

where u;j is the membership level of data i to cluster j, d;=||x—v,]|| is the Euclidean distance between data i

and cluster j center, d;.=||x;—v,|| is the Euclidean distance between data i and cluster k center, c is the number

of clusters, and m is the fuzzification parameter.

Step 5: iteration. Repeat steps 3 and 4 until the membership matrix converges, i.e., does not change
significantly. When the iteration is complete, each data will have a membership level to each cluster,
and the cluster centers will be updated. The result is a fuzzy cluster where each data has a
membership level to each cluster. The FCM objective function is shown in (7).

2
J=3 I ultdy =Y, T ult [|x- v ™)

Step 6: cluster determination. Each data will belong to the cluster with the highest membership level.
Step 7: result analysis. Analyze the cluster results to determine the clustering of natural disaster-impacted
areas with a high degree of membership.

2.5.3. Percentage impacted by natural disasters

Calculating the percentage impacted by natural disasters is an important first step in disaster
management and recovery. PIND is used to detect how much impact a natural disaster has on the impacted
objects and areas. In post-disaster aerial images, PIND is needed to inform the percentage of objects and
areas impacted by natural disasters. Calculating PIND can provide a clearer understanding of the scale and
impact of natural disasters in an area and is used to analyze the percentage of areas vulnerable to natural
disasters. The PIND value is used for damage assessment or assessment of areas impacted by natural
disasters. The formula for calculating PIND is shown in (8)-(10):

Number of pixels of objects and areas impacted by natural disasters

PIND = x 100 (8)

Total number of pixels
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PIND = iz (BT + piRE) x 100 9)

width of an image resolution x length of an image resolution

ixBF; + pixRF;
or PIND = 3" ,— , , e T T ——
PIXBNF; + pixRNF; + pixBF; + pixRF; + pixV; + pixT; + pixG; + pixW; + pixP; + pixB;

x 100 (10)

Where pixBNF is the number of pixels of the building non-flooded object, pixRNF is the number of pixels of
the road non-flooded object, pixBF is the number of pixels of the building flooded object, pixRF is the
number of pixels of the road-flooded object, pixV is the number of pixels of the vehicle object, pixT is the
number of pixels of the tree object, pixG is the number of pixels of the grass object, pixW is the number of
pixels of the water object, pixP is the number of pixels of the pool object, pixB is the number of background
pixels, n is the total number of each object, and i symbolizes each object respectively.

2.5.4. Area of objects in aerial images of natural disaster-impacted areas

For the assessment of natural disasters, it is necessary to calculate the area of objects in aerial
images of areas impacted by natural disasters, which has several important purposes, including: i) the area of
objects impacted by natural disasters in images resulting from semantic segmentation of aerial images of
areas impacted by natural disasters can provide a real description of the extent to which the area is impacted
and the area obtained matches the area in the real world; ii) this information can be used to measure the level
of damage and assist in emergency response planning and post-disaster recovery; iii) data on the area of
objects impacted by natural disasters can be used to plan recovery and rehabilitation efforts; iv) a better
understanding of how large the impacted area is can help in the efficient allocation of resources to restore the
area, v) information on the area and type of objects impacted by natural disasters helps in prioritizing
recovery, vi) information on the area impacted by natural disasters can help in evacuation planning and
support evacuation route planning, and vii) information on the area of objects can be utilized to help the
development of disaster mitigation policies and as reference data for further research in the field of natural
disaster management. The formula for calculating the object area in each object class is shown in (11)-(13).

Actual width = 2 x camera altitude x tan ( ﬂ;” ) (11)

Actual height = 2 x camera altitude X tan ( FOZVV) (12)

Total pixel of each object

Segmentation area of each object class = [ X Actual width x Actual height  (13)

wxl
where FOV is the field of view, FOVj is the angle of view that the camera can capture horizontally, FOV, is
the angle of view that the camera can capture vertically, w is the width of an image resolution, and | is the
length of an image resolution.

Using (11)-(13), the area of the objects in all ground truth segmentation mask images of the
FloodNet dataset was calculated, resulting in the number of images, number of objects, and the size of the
object area corresponding to each object class shown in Table 1.

Table 1. Number of images, number of objects, and area of objects that correspond with the object classes in

FloodNet
Object class Number of images  Number of objects  Area of objects (m?)

Building non-flooded 880 3427 919080.46
Road non-flooded 1175 2155 1625586.62
Building flooded 245 3248 460791.95
Road flooded 264 495 742013.49
Vehicle 813 4535 49385.88
Tree 1882 19682 5078292.70
Grass 2161 19682 16008212.91
Water 1059 1374 3124001.20
Pool 531 1141 56425.02

Total 55739 28063790.23

Data normalization is then carried out after calculating the number of objects and the area of objects.
Data normalization is the process of adjusting data values in a dataset so that they can have a uniform or
normal scale. The data normalization function involves data transformation so that the values are within a
certain range or have a more controlled distribution. For the normalization method, this study chose min-max
normalization. Min-max normalization transforms values in a certain range into a range between 0 and 1. The
min-max normalization formula is shown in (14):
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= X - Xmin (14)

Xnorm
Xmax = Xmin

where Xnorm is the normalized value, X is the original value to be normalized, Xmin is the minimum value in
the original range, and Xmax is the maximum value in the original range.

Furthermore, using the normalized data, the k-means clustering algorithm and the FCM clustering
algorithm are used to calculate and cluster the data of the area of objects impacted by natural disasters into four
clusters of natural disaster-impacted areas, which are the four categories of natural disaster assessment, namely
areas not impacted by natural disasters, areas lightly impacted by natural disasters, areas moderately impacted
by natural disasters, and areas heavily impacted by natural disasters. The clustering of natural disaster-impacted
areas reflects the level of damage or impact of an area. The results of the calculation and clustering of natural
disaster assessments are used to automatically calculate and predict natural disaster assessments on images
resulting from semantic segmentation. These results are very useful for conducting natural disaster assessments
on all aerial images of natural disaster-impacted areas. The clustering results of the k-means algorithm are
shown in Table 2 and the clustering results of the FCM algorithm are shown in Table 3.

Table 2. The centroid value of each cluster using the k-means clustering algorithm

Cluster number  Building flooded Road flooded Cluster name
0 0.00130667 0.0012569 Areas not impacted by natural disasters
1 0.09480807 0.75438608  Areas lightly impacted by natural disasters
2 0.12038973 0.30203463  Areas moderately impacted by natural disasters
3 0.25212445 0.17462374  Areas heavily impacted by natural disasters

Table 3. The centroid value of each cluster using the FCM clustering algorithm
Cluster number  Building flooded Road flooded Cluster name
0.000856336 0.00074293  Areas not impacted by natural disasters
0.091169744 0.772654604  Areas lightly impacted by natural disasters
0.131145276 0.278849165  Areas moderately impacted by natural disasters
0.255703145 0.173164929  Areas heavily impacted by natural disasters

W N - O

2.6. Implementation details

This study builds the transformer model and implements the segmentation network using the deep
learning framework PyTorch 1.13.1. All transformer models were trained for 50 epochs. This study uses
personal computer hardware with an Intel Core i7 processor, 32 GB RAM, and NVIDIA GeForce RTX 3080
GPU (10 GB), with CUDA version 11.7 and Windows 10 Pro operating system.

To evaluate and compare the transformer model performance, this study displays evaluation metrics
consisting of accuracy, mean accuracy (mAcc), intersection over union (loU), and mean intersection over
union (mloU). Accuracy is a commonly employed evaluation metric for assessing the performance of
models. Accuracy measures how well the model predicts correctly compared to all predictions made. The
accuracy metric can be defined as the proportion of accurately predicted pixels compared to the total number
of pixels. Mean accuracy (mAcc) is the ratio of the sum of the accuracy of each object class to the total
number of object classes. loU is a metric that measures the pixel-level similarity between the segmentation
result image and the ground truth segmentation mask image. mloU is the ratio of the number of loU of each
class to the total number of classes. The formulas for calculating accuracy, mean accuracy (mAcc), loU, and
mloU are respectively shown in (15)-(18):

TP + TN
Accuracy = ————— (15)

TP+ TN + FP + FN

1 TP; + TN;
mAcc=-)% ,———1 16
k‘v’?{—l TP; + TN; + FP; + FN; (16)

7P
loU=—2__ (17)
TP+ FP+FN
1 7P

mloU=-}% , ————— 18
k“?’k—f TP; + FP; + FN; (18)

Where TP is true positive, TN is true negative, FP is false positive, FN is false negative, k is the total number
of object classes, and i represents each object class respectively, namely building non-flooded, road non-
flooded, building flooded, road flooded, vehicle, tree, grass, water, and pool.
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3. RESULTS AND DISCUSSION

A comparison of the accuracy and performance (quantitative results) of all transformer models for
semantic segmentation of aerial images of areas impacted by natural disasters is shown in Table 4, with the
accuracy and loU values for each object class (the values highlighted in bold are the best). The visualization
results (qualitative results) of all transformer models are provided in Figure 2. The results presented in
Table 4 demonstrate that the SegFormer model outperforms other models on the mAcc and mloU evaluation
metrics. The second best result is achieved by the OneFormer model, while the BEIT and DPT models have
lower mloU values. The loU values for small shaped object classes, like vehicles and pools, produced by the
BEIT and DPT models, are still very low.

Table 4. Comparison of transformer model test results with accuracy and loU values (in %) for each object

class
Object class BEIT DPT OneFormer SegFormer
Accuracy loU Accuracy loU Accuracy loU Accuracy loU
Building non-flooded 96.83 31.58 97.39 39.60 99.35 80.47 98.64 65.74
Road non-flooded 97.10 55.13 97.94 65.44 99.41 75.45 98.78 76.99
Building flooded 97.94 29.86 97.49 26.59 93.90 72.19 98.77 58.29
Road flooded 96.06 31.86 97.28 38.49 93.47 65.80 97.01 50.33
Vehicle 99.81 4.37 99.65 10.33 99.59 43.14 99.87 49.60
Tree 90.82 56.25 93.25 68.33 91.98 71.69 96.35 81.85
Grass 79.12 66.33 85.70 76.96 88.28 61.39 91.40 85.28
Water 86.08 33.27 93.45 59.05 96.39 40.41 95.52 66.36
Pool 99.37 2.29 99.56 391 99.52 42.05 99.83 56.70

mACcc=93.68 mloU=34.55 mAcc=95.75 mloU= 43.19 mAcc=95.77 mloU= 61.40 mAcc=97.35 mloU=65.68

The SegFormer model performed well, outperforming the second-best model, OneFormer, by
97.35% in the mAcc value and 65.68% in the mloU value. The difference in mloU of BEIT, DPT, and
OneFormer models with SegFormer is 31.13% (65.68-34.55%) between SegFormer and BEIT, 22.49%
(65.68—43.19%) between SegFormer and DPT, and 4.28% (65.68—61.40%) between SegFormer and
OneFormer. The difference in mAcc between the first-best model (SegFormer) and the second-best model
(OneFormer) is 1.58% (97.35-95.77%). The segmented image shows that buildings and roads impacted by
floods (building flooded and road flooded) and small shaped objects (vehicles and pools) are not well
segmented by the BEIT and DPT models. These results show that the BEIT and DPT models can still not
learn feature mapping well and have limited ability to segment objects impacted by natural disasters and
small shaped objects.

Figure 2 visually compares the segmentation results of the overall transformer model. Figure 2(a)
shows aerial images of natural disasters-impacted areas, Figure 2(b) shows the ground truth segmentation
mask images, and Figures 2(c)-(f) are the predicted images (segmented images) generated by all transformer
models, namely BEIT, DPT, OneFormer, and SegFormer. The SegFormer model shows that it is capable of
segmenting objects of buildings and roads impacted by natural disasters and various irregularly shaped and
sized objects, which are important objects in natural disaster events. The SegFormer model is also able to
segment vehicles and pools, which are the smallest objects. In this study, it is very important to distinguish
objects impacted by natural disasters and objects that are not impacted by natural disasters. The SegFormer
model successfully segmented and distinguished buildings that were flooded, buildings that were not flooded,
roads that were flooded, roads that were not flooded, and other objects.

Figure 3 shows the receiver operating characteristics (ROC) curve and the area under curve (AUC)
value for each example of the predicted images (segmentation results) in Figure 2, providing a visual
representation of the performance of the SegFormer model. Figure 3(a) shows aerial images of natural
disasters-impacted areas, Figure 3(b) shows the segmented images using SegFormer, and Figure 3(c) shows
the ROC curve and AUC values, which have colors corresponding to their respective object classes, with the
x-axis is the false positive rate (FPR) and the y-axis is the true positive rate (TPR). The AUC value is used to
measure the SegFormer model performance in segmenting objects in aerial images of natural disaster-
impacted areas according to their respective object classes. From the four ROC curves, it can be seen that all
object class curves are above the discontinuous black baseline line or diagonal line crossing from point 0.0,
which means that the SegFormer model performs well in producing semantic segmentation images for their
respective object classes. All ROC curves have a mean AUC value above 0.9, indicating that each object's
semantic segmentation results in aerial images of natural disaster-impacted areas are excellent, and the
objects are segmented according to their respective object classes.
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Figure 2. Visual comparison of transformer models; (a) aerial images of natural disasters-impacted areas,
(b) ground truth, (c) BEIT, (d) DPT, (e) OneFormer, and (f) SegFormer
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Figure 3. ROC curve and AUC values of segmentation results; (a) aerial images of natural disasters-impacted
areas, (b) segmentation results using SegFormer, and (¢) ROC curve and AUC values
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The test results of the SegFormer model produced in this study outperformed the test outcomes
produced by other studies in the literature review that also used the transformer model and the same dataset
(FloodNet) on aerial image recognition in the context of natural disasters using semantic segmentation.
Researcher [22] produced mAcc values of 89.50% and mloU of 61.60%, and research [23] produced mAcc
values of 88.50% and mloU of 59.69%, for the SegFormer model, which are the highest mAcc and mloU
values in these studies. In comparison, this study produces higher mAcc and mloU values of 97.35% and
65.68% for the same model, SegFormer. The results of this study also outperformed the test outcomes
produced by other studies that used convolutional neural network-based models and used the same dataset for
semantic segmentation. Researcher [5] used the U-Net, PSPNet, and DeepLabV3+ models, which resulted in
the highest mloU value of 56.22% in the DeepLabV3+ model. Researcher [7] used the PSPNet, DeepLabV3,
and U-Net models, which resulted in the highest mloU value of 56% in the PSPNet model. Researcher [8]
used several encoder-decoder models, which resulted in the highest mloU value of 50.44% in the UNet-
MobileNetV2 model. Researcher [13] used the DeepLabV3 model with the EfficientNet-B4 backbone, which
resulted in the best mloU and mAcc values of 48.1% and 90%, respectively. The results in studies
[51, [71, [8], [13] have lower mloU performance values compared to the results of this study. The studies
[6], [9]-[12] have weaknesses in the visual display of segmented images that are less accurate; important
objects impacted by natural disasters, irregularly shaped and sized objects, and small objects in the
segmented image samples are not segmented properly in these studies. This study produces a better visual
appearance of semantic segmentation results of aerial images of areas impacted by natural disasters. A
quantitative comparison of the advantages of the SegFormer model produced in this study compared to
previous studies is shown in Table 5, the values highlighted in bold are the best. Figure 4 shows a qualitative
comparison of the advantages of the SegFormer model produced in this study compared to previous studies.
Figure 4(a) shows aerial images of natural disasters-impacted areas, Figure 4(b) shows the ground truth
segmentation mask images, Figure 4(c) shows the segmented images generated by the deep learning models
for semantic segmentation used in previous studies, and Figure 4(d) shows the segmented images generated
by the SegFormer model in this study.

Table 5. Quantitative comparison of transformer model test results against previous studies using evaluation
metrics (in %)

Building  Building-non Road- Road-non- . Evaluation
Model -flooded flooded flooded flooded Water Tree Vehicle Pool Grass metrics

DeepLabV3+ [5] 48.00 69.00 48.00 75.00 72.00 76.00 15.00 18.00 85.00 mloU=56.22
PSPNet (152) [7] N/A mloU=56.00
UNet-MobileNetV2 43.50 59.30 21.20 61.20 73.30 64.90 15.10 32.70 82.80 mloU=50.44
[8]
DeeplLabV3- N/A mAcc=90.00
EfficientNet-B4 [13] N/A mloU=48.10
SegFormer [22] N/A mAcc=89.50

66.80 59.30 44.60 67.70 67.10 69.60 45.60 4830 8550 mloU=61.61
SegFormer [23] N/A mAcc=88.50

4431 69.80 44.50 77.62 7477 7895 19.35 40.35 87.57 mloU=59.69
SegFormer (this 98.77 98.64 97.01 98.78 9552 96.35 99.87 99.83 91.40 mAcc=97.35
study) 58.29 65.74 50.33 76.99 66.36 81.85 49.60 56.70 85.28 mloU=65.68

The segmentation results of the model with the best accuracy and performance, SegFormer, are then
integrated with the k-means and FCM clustering algorithms to automatically assess areas impacted by natural
disasters with four categories: areas not impacted by natural disasters, areas lightly impacted by natural
disasters, areas moderately impacted by natural disasters, and areas heavily impacted by natural disasters.
The results of semantic segmentation using the model with the best accuracy and performance, SegFormer,
and the results of automatic natural disaster assessment using k-means and FCM clustering algorithms are
shown in Figure 5. Figure 5(a) shows aerial images of natural disaster-impacted areas, Figure 5(b) shows the
ground truth segmentation mask images and the natural disaster assessment results on the ground truth
images, Figure 5(c) shows the segmented images generated by the SegFormer model, Figure 5(d) shows the
natural disaster assessment results on the segmented images using the k-means clustering algorithm, and
Figure 5(e) shows the natural disaster assessment results on the segmented images using the FCM clustering
algorithm. The first row in Figure 5 shows an example of natural disaster assessment with the category of
areas not impacted by natural disasters, the second row shows an example of natural disaster assessment with
the category of areas lightly impacted by natural disasters, the third row shows an example of natural disaster
assessment with the category of areas moderately impacted by natural disasters, and the fourth row shows an
example of natural disaster assessment with the category of areas heavily impacted by natural disasters.
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Figure 4. Visual (qualitative) comparison of transformer model test results against previous studies;
(a) aerial images, (b) ground truth, (c) previous studies, and (d) SegFormer (this study)
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Figure 5. Semantic segmentation results using SegFormer and natural disaster assessment results using
k-means and FCM clustering algorithms; (a) aerial images of natural disasters-impacted areas, (b) ground
truth and the results of natural disaster assessment on ground truth, (c) segmentation results using SegFormer,
(d) the results of natural disaster assessment on segmented images using the k-means clustering algorithm,
and (e) the results of natural disaster assessment on segmented images using the FCM clustering algorithm
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The SegFormer model and FCM clustering algorithm work well, as evidenced by the natural
disaster assessment results in the ground truth images (Figure 5(b)) and the natural disaster assessment results
in the segmented images (Figure 5(e)), showing the same assessment results and PIND values are in
accordance with the respective natural disaster impacted area categories. Figure 5 shows the effective
performance of the FCM clustering algorithm in categorizing the natural disaster assessment into four
different clusters. This study succeeded in performing a detailed and automatic natural disaster assessment on
the segmented images, which completely displays information on the number of each object class, displays
information on the area of objects in each object class, displays information on the PIND, and displays
information on the assessment of areas impacted by natural disasters, all of which have not been done by
previous studies. This study accurately produces semantic segmentation of aerial images of areas impacted
by natural disasters and natural disaster assessments, which can be used for emergency disaster management
quickly, effectively, and efficiently in natural disaster management systems.

4. CONCLUSION

This study has succeeded in producing semantic segmentation of aerial images of areas impacted by
natural disasters, and detailed and automatic assessment of natural disasters on the segmented images. The
use of technology transformer model, aerial images of natural disaster-impacted areas derived from UAVSs,
semantic segmentation, counting the number of objects in each object class, counting the area of objects
impacted by natural disasters, counting the percentage impacted by natural disasters, and clustering
algorithms in natural disaster assessment can provide accurate and extensive information to support effective
decisions and actions in the face of natural disasters. It can be a crucial component in effective disaster
management efforts and post-disaster recovery. The SegFormer model achieved good segmentation results
and outperformed other transformer models on semantic segmentation of natural disaster-impacted areas
using post-disaster aerial images. The best natural disaster assessment results are shown by the FCM
clustering algorithm, which can automatically cluster natural disaster assessments into four categories
accurately on the segmented images. Further study will integrate the aerial image segmentation system of
natural disaster-impacted areas, UAV video results, and web-based natural disaster assessment to build a
natural disaster management system that can assist disaster emergency management more quickly,
effectively, and efficiently.
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