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 Protein function is regulated by an important mechanism known as post-

translational modification (PTM). Covalent and enzymatic protein 

modifications are added during protein biosynthesis, and such alterations 

significantly influence the regulation of gene activity and the functionality of 

proteins. Glycosylation, one type of PTM, involves adding sugar groups to a 

protein's structure. Numerous illnesses, such as diabetes, cancer, and the flu, 

have been linked to glycosylation. Therefore, it is critical to predict the 

presence of glycosylation, whether it occurs or not. Currently, predicting 

glycosylation sites is still done manually using biological methods, which 

require repeated experiments and a significant amount of time. To address 

these challenges, it is essential to rapidly develop computational data models 

using machine learning methods. In this study, the extreme gradient boosting 

(XGBoost) method is implemented, and C-glycosylation data is obtained 

from the publicly accessible UniProt website. The objective is to enhance the 

accuracy of C-glycosylation prediction using the XGBoost method. Feature 

extraction is performed using amino acid index (AAindex), composition, 

transition, and distribution (CTD), solvent AccessiBiLitiEs (SABLE), 

hydrophobicity, and pseudo amino acid composition (PseAAC) to improve 

accuracy. The minimum redundancy maximum relevance (MRMR) method 

is applied for feature selection. The findings of the study demonstrate that 

the PTM C-glycosylation prediction achieved 100%. 
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1. INTRODUCTION 

Post-translational modification (PTM) is a vital process that impacts the regulation of protein 

activity [1]. During protein biosynthesis, PTM involves covalent and enzymatic alterations, which are 

fundamental for the regulation of gene expression and the adjustment of protein functions. Examples of 

PTMs include phosphoryl [2], [3]. Glycosylation is one of the PTMs that occur in eukaryotic cells and is 

characterized by the addition of carbohydrate moiety to proteins [4]. This modification affects a number of 

biological processes, including protein folding, intercellular communication, protein metabolism, and 

immune responses [5].   

Glycosylation is one of the post-translational protein modifications in eukaryotic cells that influence 

various biological processes, including protein folding, cell-cell interactions, and immune responses [5], [6]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Protein glycosylation is a major PTM event that is poorly understood in eukaryotic cells, which contributes to 

diverse functions that range from protein folding and communication between cells, to immune regulation 

[7]. Glycosylation is the covalent addition of carbohydrates to proteins post-translationally carbohydrates are 

composed of glycans, sugars or saccharides with complex linear or branched structures arranged by 

covalently bound monosaccharide molecules [8]. Although this is a general categorization, there are 4 

primary types of glycosylation: N-glycosylation (where the sugar connects through an amide nitrogen),  

O-glycosylation (the linking oxygen), C-glycosylation, and glycosylphosphatidylinositol (GPI) anchor [5], 

[9], [10]. N-linked glycosylation is a sugar bound to an asparagine residue, while O-glycosylation is a sugar 

bound to a serine residue [11]. C-glycosylation bound to tryptophan residues. glycosylation contributes to the 

prevention of various diseases, such as bone, nerve, and other diseases [12].  

These observations state that there are changes in sub-structural glycans from various diseases, 

including Alzheimer’s [13], cancer [14], neurological diseases in the context of glycol, diabetes glycan 

features, and antibody glycan structural features. Glycosylation changes observed in various diseases are 

important in understanding disease progression and advances in treatment [12], [15]. The problem of 

predicting glycosylation sites is still being conducted manually by implementing biological methods. These 

methods still require experiments with repeated performance, thus taking a considerable amount of time. This 

is important to address those challenges such that data-driven models are needed by integrating machine 

learning methods in order to predict the glycosylation sites efficiently [16], [17]. This research focuses on 

discussing in C-glycosylation. Machine learning is an approach in artificial intelligence (AI) that is widely 

used to imitate human behavior to solve problems automatically [18]-[22]. With the use of machine learning 

computing, it is hoped that it can increase the accuracy of glycosylation predictions. The machine learning 

algorithm used is extreme gradient boosting (XGBoost). What we aim to achieve in this research is an 

increase in the accuracy of glycosylation predictions when compared to previous research. 

Improvement to analyze C-glycosylation data and conducts several feature extraction experiments 

and feature selection to obtain optimal data ready for processing by machine learning. Several related studies 

previously developed include research on PTM using sequence data obtained from the UniProt website with 

a sequence length of 15 sequences. Feature extraction used amino acid index (AAindex), physicochemical 

properties of proteins position-specific, scoring matrices (PSSMs), and residue conversation score. Feature 

selection uses minimum redundancy maximum relevance (MRMR), then modeling and evaluation use the 

random forest algorithm. The results of this research show an accuracy rate of 95% [22]. Then, previously, 

we discussed research on glycosylation prediction using deep learning. The length of the sequence developed 

is 21. The results of this research show an accuracy rate of 83.20% [23]. Then research discussing  

C-glycosylation uses a sequence length of 31. Feature extraction uses a support vector machine (SVM). 

Modeling using XGBoost. The research results show that the accuracy value of C-glycosylation prediction is 

77.68% [24]. The research then discusses glycosylation prediction using sequence datasets with a length of 

21. They applied feature extraction techniques including binary, AAindex, amino acid composition (AAC), 

parallel correlation pseudo amino acid composition (PC-PseAAC), series correlation pseudo amino acid 

composition (SC-PseAAC), motif, relative surface accessibility/absolute surface accessibility (RSA/ASA), 

secondary structure (SS), and signal. Their research findings revealed an accuracy rate of 94.68% [25].  

Despite numerous studies conducted, there is still potential to improve the accuracy of predicting 

post-translational glycosylation modifications in C-glycosylation. We propose feature extraction using 

AAindex, hydrophobicity, solvent AccessiBiLitiEs (SABLE), composition, transition, and distribution 

(CTD), and PseAAC. The extraction of hydrophobicity and SABLE features represents a novel emphasis that 

has not been utilized in previous glycosylation prediction research. The extraction of hydrophobicity and 

SABLE features is a novelty of this study. The MRMR feature selection technique and XGBoost modeling 

approach are also employed in this study. Subsequently, the predictive performance of C-glycosylation will 

be compared with previously developed research [26]. This research plays important role for drug 

development in the area of clinical. Most of the proteins in human and other mammalian are undergoing the 

process of glycosylation; nonetheless, any deviations lead to numerous diseases such as cancer, Alzheimer’s 

disease as well as many infection pathobiological diseases among others [27]. 

 

 

2. METHOD  

This section describes the steps taken in conducting research. Starting from the stage of collecting 

data, preprocessing data, feature extraction (using AAIndex, hydrophobicity, SABLE, CTD, and PseAAC), 

feature selection (using MRMR), and classification (using XGBoost), performance measurement. The 

research stages can be seen in Figure 1.  
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Figure 1. Research stage classification of PTM in C-glycosylation 

 

 

2.1.  Collecting data 

The data analysis stage is identifying the data used in the form of sequence data, which is processed 

online in the Uniprot database (https://www.uniprot.org/) [28]. This stage is data preprocessing. Sequence data 

is taken with a length of 21 residues: 10 residues from the right and 10 residues from the left [25]. The C-

glycosylation is in the form of text data in the form of a sequence [28], [29]. The following is an example of an 

amino acid sequence from a C-glycosylation site where positive data appears, namely "C S P S S C L M T E W 

G E W D E C S A T C". Data is collected both from benchmark data and independent. Each dataset includes 

both negative and positive. This data is a class or target that shows glycosylated or non-glycosylated data.  

 

2.2.  Cleaning data 

The protein sequence order, which has been successfully collected, is then reprocessed to generate 

optimal data by performing data cleaning using the skip redundant tools. The purpose of cleaning data is to 

ensure that the data used for further analysis or modeling is of high quality and reliable. This includes various 

actions such as removing missing, handling outlier values, changing inappropriate data formats, and so on. 

cleaning data is important because poor data quality can lead to inaccurate. 

 

2.3.  Feature extraction 

Feature extraction aims to obtain data or characteristics from a class [30]. Feature extraction aims to 

improve accuracy and performance in protein glycosylation prediction [31]. This stage converts text data into 

numerical data so that it can be processed by the learning machine. There were five types of feature 

extraction, namely: 

 

2.3.1. Amino acid index 

The AAindex based feature extraction package and the Aaindex() function incorporated into 

BioSeqClass. The feature contains 21 amino acid sequences. Figure 2 Aacode snippet for an Aaindex feature 

extraction. 
 
 

 
 

Figure 2. Program code for AAIndex feature extraction 

https://www.uniprot.org/
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2.3.2. Hydrophobicity 

For hydrophobicity, we used BioSeqClass package to extract the feature by Hydro() function. 

Example of the program code used for extraction hydrophobicity is shown in Figure 3. 

 

 

 
 

Figure 3. Program code for hydrophobicity feature extraction 

 

 

2.3.3. Solvent accessiBiLitiEs 

SABLE is a tool that is developed to determine the suitable folding for a sequence with arbitrary 

structure. For results, the users have to provide the protein name and its amino acid sequence through the 

SABLE proteins web-site https://SABLE.cchmc.org/. An example of feature extraction is seen in Figure 4. 

 

 

 
 

Figure 4. Output of SABLE 

 

 

2.3.4. Composition, transition, and distribution 

This research also utilizes the feature extraction of CTD [21], [32], [33]. The program code snippet 

used to obtain CTD feature extraction results can be seen in Figure 5. 

 

 

 
 

Figure 5. Program code for CTD feature extraction 

 

 

2.3.5. Pseudo amino acid composition 

For this feature, the BioSeqClass. The relevant code for PseAAC feature extraction is shown in 

Figure 6. The feature extraction stage functions to identify each feature. Each feature has different 

dimensions in each feature extraction. Following are the dimensions of each feature in Table 1. 
 

 

 

Table 1. Characteristics of each feature 
Description Dimensions Percentage (%) 

AAndex 21 19 

Hindrophobicity 21 19 
SABLE 21 19 

CTD 21 19 

PseAAC 24 24 
Total 109  

 

 

Figure 6. Program code for PseAAC 
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2.4.  Feature selection 

Feature selection is very important in building a better classification so that the resulting data can be 

used [34]. Feature selection is used to reducing over fitting, reducing the number of features, or eliminate the 

irrelevant features that has lower prediction accuracy and achieve the better solutions. The feature selection 

method used here is MRMR [25]. A portion of the program code that was employed to realize the mRMR 

results is shown in Figure 7.  

 

 

 
 

Figure 7. Program code for feature selection using MRMR 

  

 

MRMR feature selection is the stage of selecting features with the highest target correlation with the 

class or output of the prediction and the lowest redundancy correlation [35]. At this stage, the simplest is 

determined, namely, finding which features are most relevant and exclude data redundancy. The features 

used are those features decided by an optimal procedure.  

 

2.5.  Classification 

This stage is the stage of machine learning modeling using 0 algorithms for classification [26]. Post-

translation modification in C-glycosylation. XGBoost is a method used to solve supervised learning 

problems. XGBoost consists of training data (xi) which can predict target data (yi). XGBoost performance 

can be seen in the following equation: the objective function consists of training losses and regularization 

terms [36], which can be seen in (1): 

 

 𝑂𝑏𝑗 (𝜃) = ℒ(𝜃) + 𝛺(𝜃) (1) 

  

the L function shows the training data, while Ω is the parameter used [9]. The function to define training can 

be seen in (2): 

 

ℒ(𝜃) =  ∑ 𝜄(𝑦𝑖, 𝑦̂𝑖)𝑛
𝑖=1   (2) 

 

There are various types of methods available in the evaluation procedure out of which k-fold cross 

validation technique is successfully implemented and in this process, data used in developing the model is 

called training data while the data used for validating the model is called testing data [37]. Evaluation uses 

 k-fold cross-validation five times. The steps of the k-fold simulation are shown in the Figure 8.  

 

2.6.  Performance measurement 

Evaluate the model using a confusion matrix. The model was evaluated using several indicators, 

including accuracy (ACC), sensitivity (SN), specificity (SP), and the Matthew correlation coefficient (MCC) 

[38], [39] as shown in (3)-(7): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (5) 

 

𝑀𝐶𝐶 =
𝑇𝑃 𝑋 𝑇𝑁−𝐹𝑃 𝑋 𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
  (6) 
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True positive (TP) is the number of glycosylation sites got correctly identified. False positive (FP) is 

the number of glycosylation sites classified as positive for glycosylation sites in the any specific condition. 

True negative (TN) indicates the number of non glycans where the program had successfully predicted them 

not to be glycosylated. False negative (FN) represents the number of non-glycosylated position classified as 

glycosylated. 

 

 

 
 

Figure 8. The k-fold simulation 

 

 

3. RESULTS AND DISCUSSION  

Feature extraction means the pinpointing of component attributes of the input raw data of the whole 

data source. The principal purpose is to reduce the size of the data, remove unwanted and isolate down 

important or representative variables for subsequent analysis. In this research utilized five feature extraction 

methods, namely: AAindex, SABLE, hydrophobicity, CTD, and PseAAC. Various feature extraction 

techniques used in the present study have shown to give improved results for the C-glycosylation prediction. 

This study shows how each feature extraction feature works to enhance the prediction accuracy as stated in 

Table 2. 

 

 

Table 2. The contribution of each feature 
Feature extraction type Total feature contribution Percentage (%) 

SABLE 3 6 

AAIndex 12 24 
CTD 9 18 

Hydrophobicity 12 24 

PseAAC 14 28 

Total 50 100 

 

 

The next step is features selection, which involves choosing a subset of features that are most 

relevant or significant for analysis or modeling purposes. This process aims at reducing the data 

dimensionality, the enhancement of model accuracy, reduction of the problem of overfitting as well as 

increased understanding of how various features are related to the target variable. According to Table 2, the 

MRMR technique results in the selection of 50 features. Each extracted feature contributes to an 

improvement in the accuracy of glycosylation PTM prediction. Among the five feature extraction techniques 

utilized, PseAAC demonstrates the highest contribution, accounting for 28% of the total. This dominance of 

PseAAC feature extraction indicates its greater impact compared to other extraction methods. These features 

serve as a numerical representation of amino acid sequences on proteins, which can be utilized as features to 

train prediction models. The contribution of PseAAC feature extraction is deemed greater than that of other 

feature extraction techniques due to its suitability and sensitivity to glycosylation-related data. PseAAC is 
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commonly employed to identify distances or relationships between amino acids in sequences, suggesting its 

significant impact on glycosylation prediction.  

The cross-validation method used in the study is the K-fold cross-validation process where the 

sample data is split into a training and a testing set. K- fold cross validation procedure involves partitioning 

of the dataset into K random subset which will be in affect K times used for training and testing. The study is 

opted for the five-fold cross-validation of the data set such that the data was split into equal five parts. In 

each loop, one part was used for validation and the remaining four segments were used in the training of the 

model. Five such splits were enacted and in each of the splits the corresponding subset was used for testing 

only. The XGBoost algorithm demonstrates superior performance, achieving higher accuracy compared to 

earlier studies. Our investigation reveals the widespread glycosylation of the carboxylate amino acid 

sequence. This improvement is attributed to the utilization of various feature extraction techniques, including 

SABLE, AAindex, CTD, hydrophobicity and PseAAC, along with the MRMR feature selection method 

Further details and findings are provided in Table 3. 

  

 

Table 3. The findings of the C-glycosylation prediction 
Glycosylation data ACC (%) SN (%) SP (%) MCC (%) 

C_glycosylation is not using MRMR 95 86.67 100 87.20 

C_glycosylation using MRMR 100 100 100 100 

 

 

Based on Table 3, the results of the study using the selection of MRMR features are 100%; without 

MRMR, they are 95%. This suggests that the MRMR technique is used in data analysis to determine which 

subset of features among the available feature sets is most relevant. The results of the current studies point 

that the carboxylate of amino acid sequence is almost always glycosylated. The test results using cross-

validation with five-fold repetition can be seen in Figure 9. 

 

 

 
 

Figure 9. Comparison of performance analyses of previously developed approaches  

 

 

Based on Figure 9, the performance of this study tends to be better than previous studies. This study 

achieved an accuracy of 100% when compared to the previous study, which was only 95.00%. The increase 

in performance resulting from the use of the approach carried out in this study reached 5% [40]. The results 

of the test also show that quantity of the feature affects the accuracy value.  

 

   

4. CONCLUSION  

Glycosylation prediction in C-glycosylation using the XGBoost algorithm consists of benchmark 

and independent data. Glycosylation prediction begins with feature extraction, which aims to convert the 

extracted string-type dataset into numeric-type features. They are five types of feature extraction techniques: 

SABLE, AAindex, CTD, hydrophobicity, PseAAC. After that, feature selection is done based on the MRMR 

method. Modeling using the XGBoost algorithm with k-fold testing 5 (five) times. Each iteration value is 

multiplied five times, and then the average value of the iteration is obtained. Next, the modeling was tested 

using cross-validation. The results of independent C-glycosylation data testing achieved an accuracy value of 

100%. 
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