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 This paper introduces an innovative application of the driving training-based 

optimization (DTBO) technique to optimize a multiple linear regression 

(MLR) model for estimating synchronous motor (SM) excitation current. 

Inspired by structured learning in driving training, DTBO is utilized to 

accurately determine regression coefficients with fast convergence. The 

DTBO-based MLR model is compared with other optimization techniques, 

such as gravitational search algorithm (GSA), artificial bee colony (ABC), 

genetic algorithm (GA), symbiotic organisms search (SOS), and various 

machine learning algorithms. Using a dataset of 557 samples (390 for 

training, 167 for testing), the DTBO-based model achieves the lowest 

objective function value, demonstrating superior performance in minimizing 

estimation errors. Key metrics like maximum error, error percentage, 

standard deviation, and root mean square error (RMSE) validate the results. 

The DTBO-based approach not only outperforms other methods but also 

provides a clear mathematical relationship between excitation current and 

input features, enabling easier hardware implementation and faster 

computation. This study establishes the DTBO-based MLR model as a 

robust and efficient alternative to complex machine learning algorithms for 

estimating SM excitation current, offering significant contributions to power 

systems engineering and smart grid applications. 
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1. INTRODUCTION 

Synchronous motors (SMs) are known for their efficiency, dependability, good power factor control 

and less warmth to power quality issues. SMs operate at synchronous speed with applications mainly to drive 

pumps, fans and to support in power factor correction [1]. SMs require both AC and DC power unlike other 

motors requiring any one power [1]. Hence, SMs need special arrangement as the motor starts as an induction 

motor (IM) and when the rotor reaches synchronous speed, the rotor of SMs is interlocked with the stator 

using excitation current [1], [2]. When the SM is running at synchronous speed, it is possible to change the 

power factor of the motor by adjusting the field current [3], [4]. Capacitors can also be employed to recover 

power factor in the power system but it requires frequent switching. Also, when SM is not driving any load, it 

can provide improved voltage regulation by continuously absorbing or generating reactive power [5], [6]. 

Reactive power management plays a dynamic role in refining the stability of today’s smart grid. An over-
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excited SM famously known as synchronous condenser improves the stability of transmission lines in smart 

grid. Inertia of SM improves short-circuit strength and frequency stability [7], [8].  

SMs possess the capability to operate at three different power factors for reactive power 

management, making the accurate determination of SM parameters under these conditions a challenging task 

due to the complex and nonlinear relationships involved [9]. To address this, researchers have explored 

various artificial intelligence-based modeling techniques, including proportional integral derivative (PID) 

control [10], pulse width modulation (PWM) [11], [12], Kalman filter-based methods [13]-[15], and artificial 

neural networks (ANNs) [16]-[19]. Various optimization techniques have been suggested to address this 

estimation challenge, including gravitational search algorithms (GSA) [16], artificial bee colony (ABC) 

methods [18], particle swarm optimization (PSO) [20], k-nearest neighbor (k-NN) estimators enhanced by 

genetic algorithms (GA) [21], adaptive ANN [22], and symbiotic organisms search (SOS) [23]. Furthermore, 

machine learning algorithms such as support vector machines (SVM), decision trees (DT), and extreme 

gradient boosting regressors (XGBoost) [24] have been utilized to forecast excitation current. However, these 

machine learning techniques are often criticized for being "black boxes," where the relationship between 

input and output is not easily expressed in linear terms. Moreover, the real-time implementation of ANN-

based systems is computationally intensive, resulting in delays due to complex calculations and difficulties in 

finding suitable hardware [25].  

A significant research gap exists in developing a model that not only accurately predicts the 

excitation current of SMs but also offers a more transparent and computationally efficient approach. To 

address this gap, a multiple linear regression (MLR) model has been proposed, which conveniently represents 

excitation current in terms of four input parameters: load current, power factor, power factor error, and 

change in excitation current [25]. Estimating the excitation current is of great importance to regulating the 

output voltage of synchronous machinery [26]-[28]. Previous studies have employed GA, ABC, GSA, and 

SOS algorithms to estimate the regression coefficients of the MLR model, with the quality of these 

coefficients directly influencing the model's estimation performance. However, the application of the driving 

training-based optimization (DTBO) technique, known for its quick convergence characteristics and superior 

performance compared to 11 other optimization algorithms [29], has not been explored in this context. 

In this work, we introduce the DTBO technique to enhance the MLR model for estimating SM 

excitation current. The DTBO algorithm, which has demonstrated success in solving power system problems 

such as optimal power flow with stochastic wind and solar power generators [30] and optimal maximum 

power point tracking of wind turbine doubly fed induction generators [31], offers a computationally efficient 

alternative to existing methods. By leveraging the DTBO's high exploitation and exploration capabilities, the 

proposed MLR model achieves better regression coefficients than those reported in the literature, thereby 

reducing estimation errors and addressing the identified research gap. 

 

 

2. MULTIPLE LINEAR REGRESSION MODEL FOR ESTIMATING EXCITATION CURRENT 

Today’s smart grid provides self-balanced real and reactive power to ensure quality and reliability of 

power to consumers. Grid power factor is reduced due to IM loads resulting in higher reactive power. Power 

factor correction helps in improving the efficiency of the power system. SM through its wide operating 

characteristics is utilized to adapt the changing power factor of the power system. SM operating at leading 

power factor can deliver reactive power to the system as shown in Figure 1. The power factor of the SM 

depends on the excitation current. An accurate and quick estimation of excitation current helps to ensure 

desired power factor. Hence there is a need for a regression model to estimate the excitation current. The 

input features for the regression model are load current, power factor, power factor error and change in 

excitation current as shown in Table 1. The output parameter is the excitation current which is given as (1): 

 

 𝐼𝑓
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑=𝑓(𝐼𝐿 , 𝑝𝑓, 𝑒, ∆𝐼𝑓) = 𝑐1. 𝐼𝐿 + 𝑐2. 𝑝𝑓 + 𝑐3. 𝑒 + 𝑐4. ∆𝐼𝑓  + 𝑐5 (1) 

 

where 𝑐1, 𝑐2, 𝑐3, 𝑐4, and 𝑐5 are the regression coefficients of the estimated excitation current. 

The power factor error is: 

 

𝑒 = 𝑐𝑜𝑠𝜑𝑟𝑒𝑓 − 𝑐𝑜𝑠𝜑𝑠𝑦𝑠𝑡𝑒𝑚 (2) 
 

The change in excitation current is calculated by subtracting the previous sample of excitation current with 

the current sample as (3): 
 

∆𝐼𝑓 = 𝐼𝑓(𝑖) − 𝐼𝑓(𝑖−1)  (3) 
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Figure 1. Reactive power injection using SM 

 

 

Table 1. Input and output parameters considered for MLR model of SM 
Input features Output (target) 

Load current Power factor Power factor error Change in excitation current Excitation current 

𝐼𝐿 𝑝𝑓 𝑒 ∆𝐼𝑓 𝐼𝑓 

 

 

Accurately estimating the regression coefficients is crucial for precisely estimating the excitation 

current in SM. In this work, we applied the DTBO technique, known for its fast convergence and accuracy, to 

determine these coefficients. These coefficients reveal the influence of each input feature on the output 

excitation current, making them essential for understanding and improving the model’s performance. Table 1 

outlines the input features and the resulting output used in our model. By employing a MLR model with 

inputs such as load current, power factor, power factor error, and change in excitation current, we aim to 

create a model that is not only accurate but also straightforward, offering a clear and reliable method for 

estimating excitation current. 

 

 

3. DRIVING TRAINING-BASED OPTIMIZATION ALGORITHM IN ESTIMATING 

EXCITATION CURRENT OF SYNCHRONOUS MOTOR 

3.1.  Overview of driving training-based optimization algorithm 

For the first time, the DTBO technique is applied to determine the regression coefficients of a 

mathematical model for estimating excitation current. Inspired by the human process of learning to drive, 

DTBO is designed to mimic the structured training provided in driving schools, with a particular focus on the 

guidance offered by instructors [29]. The DTBO method is modeled in three distinct phases: i) instruction by 

the driving teacher, ii) students emulating the instructor’s skills, and iii) practice by the learner [29]. 

As shown in (1), the mathematical model for excitation current requires five regression coefficients 

to achieve accurate predictions. These coefficients must account for various operating conditions of the SM, 

making the optimization process crucial. To ensure robustness, the experimental dataset includes diverse 

operating conditions, as represented in (4). DTBO then optimizes the regression coefficients by considering 

all the training data, aiming to minimize the objective function (error) in (5) and deliver precise estimates of 

the excitation current across different scenarios. The excitation current for N samples are related to: 

 

 

[
 
 
 
𝐼𝑓1

𝐼𝑓2

⋮
𝐼𝑓𝑁]

 
 
 

= [

𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

𝑐21 𝑐22 𝑐23 𝑐24 𝑐25

⋮ ⋮ ⋮ ⋮ ⋮
𝑐𝑁1 𝑐𝑁2 𝑐𝑁3 𝑐𝑁4 𝑐𝑁5

]

𝑁×5

 ̇  

[
 
 
 
 
𝐼𝐿1 𝐼𝐿2 ⋯ 𝐼𝐿𝑁

𝑝𝑓1 𝑝𝑓2 ⋯ 𝑝𝑓𝑁

𝑒1 𝑒2 ⋯ 𝑒𝑁

∆𝐼𝑓1 ∆𝐼𝑓2 ⋯ ∆𝐼𝑓𝑁

1 1 ⋯ 1 ]
 
 
 
 

5×𝑁

 (4) 

 

 𝐹𝑛(𝑂𝑛) = ∑ (𝐼𝑓𝑖
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝐼𝑓𝑖

𝑎𝑐𝑡𝑢𝑎𝑙)
2𝑁

𝑖=1  (5) 

 

In (6) shows the population matrix of DTBO. The initial value of this matrix is randomly assigned using (7). 
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 𝐶 = [

𝐶1

𝐶2

⋮
𝐶𝑁

]

𝑁×5

= [

𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

𝑐21 𝑐22 𝑐23 𝑐24 𝑐25

⋮ ⋮ ⋮ ⋮ ⋮
𝑐𝑁1 𝑐𝑁2 𝑐𝑁3 𝑐𝑁4 𝑐𝑁5

]

𝑁×5

 (6) 

 

 𝑐𝑖𝑗 = 𝑙𝑏𝑗 + 𝑟. (𝑢𝑏𝑗 − 𝑙𝑏𝑗) (7) 

 

where 𝑖 = 1,2,3, … , 𝑁 and 𝑗 = 1,2,3,4,5 (number of variables/regression coefficient). 𝑐𝑖𝑗  is the value of the 

𝑗𝑡ℎ variable determined by the 𝑖𝑡ℎ candidate solution. 𝑁 is the size of the population of DTBO. 𝑟 is a random 

number from the interval [0 , 1]. 𝑙𝑏𝑗 and 𝑢𝑏𝑗 are the lower and upper bounds of the 𝑗𝑡ℎ problem variable. 

To begin the estimation process, the initialized regression coefficients are substituted into (4) to 

calculate the excitation current. These estimated values are then compared to the actual excitation currents 

from the training data using (5). The objective functions, derived from these initial regression coefficients, 

are presented in (8). This comparison and adjustment process is key to refining the model for more accurate 

predictions. 

 

𝐹 = [

𝐹1

𝐹2

⋮
𝐹𝑁

]

𝑁×1

=[

𝐹(𝐶1)

𝐹(𝐶2)
⋮

𝐹(𝐶𝑁)

]

𝑁×1

 (8) 

 

where 𝐹 is the vector of the objective functions. 

Based on the objective function values, the top-performing regression coefficients from the initial 

population matrix are selected to serve as the "driving instructors," while the remaining coefficients are 

designated as "learner drivers." This distinction allows the model to focus on refining and improving the 

performance of the learner coefficients by emulating the successful patterns of the instructors. 

− Phase 1: training by the driving instructor (exploration) 

In each iteration, the matrix representing the driving instructors, as shown in (9), is updated with the 

best regression coefficients from the previous iteration. This continuous refinement ensures that the model 

evolves by incorporating the most effective strategies, ultimately leading to more accurate predictions. 

 

𝐷𝐼 =

[
 
 
 
 
𝐷𝐼11 𝐷𝐼12 𝐷𝐼13 𝐷𝐼14 𝐷𝐼15

⋮ ⋮ ⋮ ⋮ ⋮
𝐷𝐼𝑖1 𝐷𝐼𝑖2 𝐷𝐼𝑖3 𝐷𝐼𝑖4 𝐷𝐼𝑖5
⋮ ⋮ ⋮ ⋮ ⋮

𝐷𝐼𝑁𝐷1
𝐷𝐼𝑁𝐷2

𝐷𝐼𝑁𝐷3
𝐷𝐼𝑁𝐷4

𝐷𝐼𝑁𝐷5]
 
 
 
 

𝑁𝐷𝐼×𝟓

 (9) 

 

Where 𝐷𝐼 is the matrix of driving instructors. The number of driving instructors: 

 

𝑁𝐷𝐼=[0.1 ∙ 𝑁 ∙  (1 −
𝑡

𝑇
)] (10) 

 

𝑡 is the current iteration, 𝑇 is the maximum number of iterations. 

During the first phase, the regression coefficients are initially calculated using (11). These 

coefficients are then updated only if they lead to an improvement in the objective function by lowering its 

value. If no improvement is achieved, the regression coefficients remain unchanged, as outlined in (12). This 

selective updating process ensures that only beneficial adjustments are made, enhancing the model's 

accuracy. 

 

𝑐𝑖𝑗
𝑃1={

𝑐𝑖𝑗 + 𝑟 ∙ (𝐷𝐼𝑘𝑖𝑗
− 𝐼 ∙ 𝑐𝑖𝑗) , 𝐹𝐷𝐼𝑘𝑖

< 𝐹𝑖

𝑐𝑖𝑗 + 𝑟 ∙ (𝑐𝑖𝑗 − 𝐷𝐼𝑘𝑖𝑗
) , Otherwise 

 (11) 

 

𝐶𝑖 = {
𝐶𝑖

𝑃1  𝐹𝑖
𝑃1 <  𝐹𝑖

𝐶𝑖  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (12) 
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𝐶𝑖
𝑃1 is the new calculated status for the 𝑖𝑡ℎ candidate solution based on the first phase of DTBO. 𝑐𝑖𝑗

𝑃1 is its 

𝑗𝑡ℎ dimension.  𝐹𝑖
𝑃1 is the objective function value. 𝐼 is a number randomly selected from the set {1,2}. 𝑟 is a 

random number in the interval [0,1]. 𝐷𝐼𝑘𝑖
 represents a randomly selected driving instructor to train the 𝑖𝑡ℎ 

member (𝑘𝑖 is randomly selected {1,2, … , 𝑁𝐷𝐼}. 𝐷𝐼𝑘𝑖𝑗
 is its 𝑗𝑡ℎ dimension with its objective function value 

𝐹𝐷𝐼𝑘𝑖
. 

− Phase 2: patterning of the instructor skills of the student driver (exploration) 

In this phase of DTBO, the learner driver emulates the driving instructor's techniques. 

Mathematically, this is implemented by calculating new regression coefficient values for the learner using 

(13). These coefficients are only updated if they lead to an improvement in the objective function, as 

indicated in (14). This process ensures that the learner driver continually enhances performance by adopting 

the most effective strategies. 

 

𝑐𝑖𝑗
𝑃2=𝑃 ∙ 𝑐𝑖𝑗 + (1 − 𝑃) ∙ 𝐷𝐼𝑘𝑖𝑗

  (13) 

 

𝐶𝑖 = {
𝐶𝑖

𝑃2  𝐹𝑖
𝑃2 <  𝐹𝑖

𝐶𝑖  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14) 

 

𝐶𝑖
𝑃2 is the new calculated status for the 𝑖𝑡ℎ candidate solution based on the second phase of DTBO. 𝑐𝑖𝑗

𝑃2 is its 

𝑗𝑡ℎ dimension.  𝐹𝑖
𝑃2 is the objective function value. 𝑃 is the patterning index. 

 

𝑃 = 0.01 + 0.9 (1 −
𝑡

𝑇
) ∙ 𝑐𝑖𝑗  (15) 

 

− Phase 3: training by the driving instructor 

In the final phase of DTBO, the learner driver refines their driving skills through personal practice. 

This is mathematically represented by calculating new regression coefficient values for the learner using 

(16). These coefficients are updated only if they result in an improvement in the objective function, as 

detailed in (17). This phase focuses on individual enhancement, allowing the learner to achieve better 

performance through self-directed improvement. 

 

𝑐𝑖𝑗
𝑃3=𝑐𝑖𝑗 + (1 − 2𝑟) ∙ 𝑅 ∙ (1 −

𝑡

𝑇
) ∙ 𝑐𝑖𝑗   (16) 

 

𝐶𝑖 = {
𝐶𝑖

𝑃3  𝐹𝑖
𝑃3 <  𝐹𝑖

𝐶𝑖  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (17) 

 

𝐶𝑖
𝑃3 is the new calculated status for the 𝑖𝑡ℎ candidate solution based on the third phase of DTBO. 𝑐𝑖𝑗

𝑃3 is its 

𝑗𝑡ℎ dimension.  𝐹𝑖
𝑃3 is the objective function value. 𝑟 is a random number in the interval [0,1]. 𝑅=0.05 

(constant). 𝑡=counter of iterations, 𝑇=maximum number of iterations. 

After updating the regression coefficients through phases 1 to 3, one iteration of DTBO is 

considered complete. These three phases are then repeated in subsequent iterations. The update process 

continues, guided by (9) through (17), until the maximum number of iterations is reached. The DTBO 

technique excels in determining the optimal regression coefficients by effectively balancing exploration and 

exploitation within the solution search space. At the end of the maximum iterations, the best regression 

coefficients are identified, representing the most effective solution for the objective function. 

 

 

4. RESULTS AND DISCUSSION 

This section delves into the performance of the DTBO-based MLR model employed in this study. 

We benchmark its effectiveness against several other techniques, including GSA [25], ABC [25], GA [25], 

SOS [23], and various machine learning algorithms [24] reported in the literature. The evaluation utilizes 390 

training samples randomly selected from an experimental dataset [21], with the remaining 167 samples 

reserved for testing. The sample distribution follows a 70% training and 30% testing ratio. For reference, 

Table 2 displays ten examples from the experimental data, while Figures 2(a) and (b) illustrates the actual 

excitation current values for both training and test samples. 
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Table 2. Samples of the training and test data set 
Type of sample Sample index 𝐼𝐿 (A) 𝑝𝑓 𝑒 ∆𝐼𝑓 𝐼𝑓 (A) 

Training 5 3 0.74 0.26 0.317 1.497 

Training 79 3.4 0.78 0.22 0.306 1.486 
Training 185 4 0.74 0.26 0.406 1.586 

Training 274 4.5 0.72 0.28 0.442 1.622 

Training 313 4.7 0.79 0.21 0.49 1.67 
Training 403 5.2 0.79 0.21 0.536 1.716 

Training 540 6 0.65 0.35 0.769 1.949 

Testing 22 3.1 0.72 0.28 0.369 1.549 
Testing 205 4.1 0.78 0.22 0.436 1.616 

Testing 553 6 0.91 0.09 0.142 1.322 

 

 

 
(a) 

 

 
(b) 

 

Figure 2. Excitation current; (a) training samples and (b) test samples 

 

 

Table 3 outlines the parameters needed for various optimization algorithms. Notably, DTBO 

simplifies the process by requiring no additional tuning beyond specifying the number of agents and the 

maximum number of iterations. Figure 3 illustrates the convergence behavior of the DTBO algorithm for the 

objective function defined in (5). The algorithm achieves its optimal solution by the 20th iteration, 

demonstrating its rapid convergence and efficiency. 

 

 

Table 3. Parameters required by algorithms compared 
Algorithm Tuning parameters 

GA [25] number of chromosomes=100/200, number of generations=20000, parent selection method, crossover method, 
mutation coefficient=[0.001;0.01], mutation method. 

ABC [25] number of ants=100/200, maximum iteration number=20000, onlooker bees=50/100, employed bees=50/100, 

neighborhood coefficient=[0.001;0.01]. 
GSA [25] population size=100/200, number of iterations=20000, gravitational constant=0.01. 

SOS [23] number of organisms=30, maximum number of iterations=40. 

DTBO number of agents=30, maximum number of iterations=1000. 
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Figure 3. Convergence characteristics of DTBO algorithm for four features 
 
 

Table 4 presents the regression coefficients and objective function values achieved using the DTBO 

algorithm for the experimental dataset. For comparison, these results are contrasted with those obtained using 

GA based simulated annealing GASA [32], SOS [23], GSA [25], ABC [25], and GA [25] algorithms reported 

in the literature. As highlighted in Table 4, the DTBO-based regression coefficients deliver the most optimal 

outcome, achieving minimum objective function value of 𝐹1=2.832×10−7. This is significantly lower than the 

values obtained with SOS (𝐹1=2.66×10−4), GSA (𝐹1=76.26×10−4), GA (𝐹1=55.86×10−4) and GASA 

(𝐹1=1.16×10−4). Using the regression coefficients obtained from DTBO, a linear expression that relates the 

selected features to the excitation current can be formulated as (18): 

 

𝐼𝑓
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 =0.0000487*𝐼𝐿+0.78398∗ 𝑝𝑓+0.78453* 𝑒+0.99963∗ ∆𝐼𝑓+0.39584 (18) 

 

Using (18), we calculated the excitation current for the 167 test samples, and the results are illustrated in 

Figure 4. Table 5 presents a comparison of the maximum error in estimating excitation current, along with 

the percentage error, standard deviation, and root mean square error (RMSE) for the DTBO-based MLR 

model and other algorithms reported in the literature. The DTBO-based MLR model demonstrates superior 

performance compared to other machine learning algorithms. 
 

 

Table 4. Regression coefficients of optimization algorithms and objective function values 

Method 
Regression coefficients Objective function value 

𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝐹1 

SOS [23] 0.000246 0.595301 0.611129 0.989786 0.584195 2.66×10−4 
GSA [25] 0.069097 0.135676 0.815564 0.575546 0.824279 76.26×10−4 

ABC [25] 0.010779 0.637809 0.637809 0.946734 0.533464 108.4×10−4 

GA [25] 0.117146 0.286163 0.999948 0.304766 0.557133 55.86×10−4 
GASA [32] 0.000763 0.619446 0.628955 0.992026 0.558231 1.16×10−4 

DTBO (proposed) 0.0000487 0.78398 0.78453 0.99963 0.39584 2.832×10−7 

 
 

 
 

Figure 4. Excitation current estimation of test samples 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 813-822 

820 

Table 5. Performance metrics of test data with different algorithms 
Algorithm Maximum error (A) Error (%) Standard deviation RMSE 

IKE [21] - 3.4 1.9 - 
KNN [21] - 6.0 1.7 - 

SOS [23] 0.018 0.0398 0.0278 6.956×10−7 

GA [25] 0.2906 5.16 3.01 0.111 
ABC [25] 0.0474 4.16 2.78 5.3292×10−4 

GSA [25] 0.1703 3.48 3.58 0.0056 

SVM 0.005 0.0083 0.0112 0.0052 
ELA 0.0085 0.1192 0.1024 0.0021 

DT 0.0176 0.2224 0.1937 0.0048 

DTBO (proposed) 0.00011 2.9×10−4 0.0021 9.48×10−10 

 

 

To enhance the performance of SVM, ensemble learning algorithms (ELA), and DT, 

hyperparameter tuning was conducted using Bayesian optimization. Additionally, five-fold cross-validation 

was applied during the training of these algorithms [33]-[35]. This advanced hyperparameter tuning 

significantly improved the performance of these machine learning algorithms beyond what was previously 

reported [24]. However, machine learning algorithms are often considered "black boxes" because the 

relationship between input features and output variables is not explicitly mathematically defined [35]. This 

complexity can increase computation time during testing. The DTBO-based MLR model's (18) distinctly 

illustrates the connection between excitation current and input features, thereby facilitating straightforward 

hardware implementation through a basic arithmetic logic unit. 

 

 

5. CONCLUSION 

In this paper, we introduced and evaluated a DTBO technique applied to a MLR model for 

estimating SM excitation current. Our approach leverages DTBO's rapid convergence and optimization 

capabilities to determine the regression coefficients with high precision. The DTBO-based MLR model 

demonstrated superior performance in comparison to several established optimization algorithms, including 

GSA, SOS, ABC, and GA, as well as various machine learning algorithms. The results presented show that 

the DTBO-based MLR model achieved the lowest objective function value, indicating its effectiveness in 

minimizing estimation error. The model's simplicity, compared to more complex machine learning 

algorithms that are often treated as "black boxes," offers a clear mathematical relationship between excitation 

current and input features. This transparency facilitates easier hardware implementation and faster 

computation. Additionally, hyperparameter tuning for SVM, ELA, and DT algorithms, performed through 

Bayesian optimization and five-fold cross-validation, improved their performance but did not surpass the 

accuracy and efficiency of the DTBO-based MLR model. The comprehensive evaluation of performance 

metrics maximum error, error percentage, standard deviation, and RMSE further confirms the robustness of 

our proposed model. 

Overall, the DTBO-based MLR model presents a promising and efficient solution for estimating SM 

excitation current, combining accuracy with ease of implementation and computation. This approach could 

serve as a valuable tool in power systems engineering, enhancing both theoretical research and practical 

applications in smart grids. Future work could explore nonlinear models, such as polynomial regression or 

neural networks, to capture more complex relationships between excitation current and input features. 

Implementing the DTBO-based MLR model in real-time systems, such as smart grid platforms, would assess 

its practical performance. 
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