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The palm oil industry is a significant component of Indonesia’s economy,
driven by increasing global demand across various industries. Manual
identification of palm oil fruit ripeness is often subjective and labor-
intensive, creating a need for a faster and more accurate solution. This study
proposes the use of deep learning models based on transfer learning to
enhance the classification of palm oil fruit ripeness. Our research evaluates
several models, finding that ResNet152V/2 achieves the highest performance
with superior accuracy and the lowest validation loss. DenseNet201,
MobileNet, and InceptionV3 also deliver strong results, each demonstrating
an accuracy above 0.99 and a validation loss below 0.04. Cross-validation
confirms that ResNet152V2, DenseNet201, and MobileNet maintain high
and consistent performance across different folds, showcasing their stability
and reliability. This approach provides a promising alternative to manual
methods, offering a more efficient and precise means for determining palm
oil fruit ripeness, which could significantly benefit the industry by
streamlining quality control processes.
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1. INTRODUCTION

The palm oil sector holds a significant role in Indonesia’s economy. Since the early 20th century,
palm oil has emerged as one of the leading commodities in Indonesia’s agricultural sector [1], [2]. The
industry is experiencing significant growth due to the increasing global demand for palm oil, which serves as
a raw material in various sectors such as food, cosmetics, and biofuels [3]. Traditionally, palm oil fruit
identification has been conducted manually by either directly observing the fruit in the field or examining
photographs. However, this manual process is often subject to human error and requires considerable time
and effort, especially when conducted on a large scale. Deep learning offers a promising alternative by
enabling fast and accurate identification of palm oil fruit, which can be integrated into image-based

monitoring systems [4]-[9].

Transfer learning is a widely adopted strategy in the development of deep learning models. It offers
several advantages for palm oil fruit identification, including: i) the ability to leverage knowledge gained
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from large datasets to solve new problems, thereby reducing the time and resources needed to train a model
from scratch [10]; ii) enhanced performance in image recognition tasks by using pre-trained models that are
already adept at recognizing complex features [11]; iii) adaptability to smaller or specific datasets through
fine-tuning, allowing the model to adjust existing feature representations to better fit new data [12]; and iv)
mitigation of overfitting, particularly when the available dataset is limited, as pre-trained models generally
possess robust generalization capabilities [13]. Pre-trained models have usually been trained on very large
datasets. Therefore, they have good generalization capabilities. In various applications, transfer learning has
proven effective in image recognition tasks. For instance, the VGG19 and DenseNet models have been
employed in the health sector for breast cancer detection, addressing the challenge of imbalanceddata [14],
[15]. Similarly, the ResNet model has been utilized for real-time underwater object detection [16], the
MobileNet model for weld defect detection [17], the Inception model for pulmonary disease detection [18],
and the Xception model for malware classification [19]. These examples underscore the utility of transfer
learning models in producing efficient, accurate, and adaptable solutions for specific image recognition tasks,
including palm oil fruit identification.

Numerous studies have been conducted on the classification of palm oil fruit ripeness, each contributing
to the advancement of this field through the application of various techniques and methodologies. For instance,
Septiarini et al. [20], focuses on the segmentation of palm oil fruits using a contour-based approach, integrated
with the canny algorithm and morphological operations. This method successfully achieved an average accuracy
of 90.13%, demonstrating the effectiveness of contour-based segmentation for this task. However, despite the
promising results, the accuracy could be further enhanced by incorporating more advanced deep-learning models
that can automatically learn complex features from the images. Septiarini et al. [21], proposed a method that
combines color and texture features for feature selection and classification, utilizing principal component analysis
(PCA) for dimensionality reduction and an artificial neural network (ANN) for classification. The method
achieved an impressive accuracy of 98.3%. While this method is effective, it primarily relies on handcrafted
features, which may not capture the full complexity of the fruit’s ripeness characteristics. With the advent of deep
learning, transfer learning models such as VGGNet, ResNet, and Inception could potentially offer better feature
extraction capabilities, leading to improved classification performance.

Alfatni et al. [22], also explored the use of color features combined with ANNSs for ripeness
identification, achieving an accuracy rate of approximately 94%. This approach underscores the importance
of color as a key feature in ripeness classification. However, it also highlights the need for robust algorithms
that can handle the variability in lighting conditions and fruit appearances, which can significantly impact the
accuracy of the model. Transfer learning models, which are pre-trained on large datasets, could offer a
solution by providing more generalized features that are less sensitive to such variations. Alfatni et al. [23],
introduces a real-time classification system using CCD camera sensors and various image processing
techniques. This study’s use of multiple feature extraction methods, including Gabor waves and grey level
co-occurrence matrix (GLCM), in conjunction with supervised classifiers like support vector machines
(SVM), K-nearest neighbor (KNN), and ANN, demonstrates a comprehensive approach to ripeness
classification. Although ANN outperformed other classifiers, the study indicates that optimizing the model’s
architecture and hyperparameters could further improve accuracy and processing speed, especially when
applied to real-time systems. Here, transfer learning models could play a pivotal role by offering pre-trained
networks that require less computational power while maintaining high accuracy.

Other research conducted by Mansour et al. [24], object detection algorithms such as MobileNetV2
SSD, EfficientDet, and YOLOvV5 were employed to classify the ripeness of palm oil fruits. YOLOv5m, in
particular, showed promising results with a high average precision of 0.842. This highlights the effectiveness of
advanced object detection models in handling complex classification tasks. However, the study also suggests
that further fine-tuning of these models, including data augmentation techniques and hyperparameter
optimization, could lead to even better performance. Furthermore, Shiddiq et al. [25], combined hyperspectral
imaging with ANN to predict palm oil fruit ripeness, achieving a highest accuracy of 90%. While hyperspectral
imaging provides rich information about the fruit’s chemical composition, the integration with machine learning
models like ANN opens up new possibilities for improving classification accuracy. Nevertheless, the challenge
lies in the high dimensionality of hyperspectral data, which could be mitigated by employing dimensionality
reduction techniques or transfer learning models that are capable of handling such complex data.

From the previous studies, it is evident that there is still significant potential to enhance the accuracy
of palm oil fruit ripeness identification. While various algorithms and methods have been explored, including
image processing, neural networks, and object detection, the application of transfer learning models
represents a promising direction for future research. These models, which are pre-trained on large-scale
datasets, have the ability to generalize better across different datasets, potentially leading to improved
classification accuracy. Moreover, the use of appropriate data augmentation techniques and the fine-tuning of
hyperparameters can further optimize the performance of these models, making them more robust and
accurate for real-world applications. In conclusion, although substantial progress has been made in the
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classification of palm oil fruit ripeness, the integration of advanced transfer learning models with optimized
data processing techniques holds the promise of achieving even higher accuracy and reliability, paving the
way for more efficient and automated palm oil harvesting processes.

Extensive experiments have demonstrated the superior accuracy and robustness of transfer learning-
based models such as VGGNet, ResNet, MobileNet, DenseNet, Inception, and Xception. This research
contributes to the field by applying these advanced transfer learning techniques to the specific task of palm oil
fruit ripeness classification, showcasing their potential to improve the efficiency and accuracy of this critical
agricultural process. By leveraging state-of-the-art models and fine-tuning them for the unique characteristics of
palm oil fruit, our study provides a valuable framework for future research and practical applications in the
industry. Additionally, our approach highlights the potential for scaling up automated fruit classification systems,
which could significantly reduce manual labor and enhance overall productivity in palm oil plantations.

2. METHOD

This study aims to classify images of palm oil fruit into three categories: raw, ripe, and rotten, with a
focus on achieving high accuracy. Accurate classification of the ripeness of palm oil fruit is crucial for
optimizing the harvesting process and maintaining product quality. The research method is illustrated in the
flowchart presented in Figure 1.

Palm Oil Fruit Input Image

Data Preprocessing
h 4 l
Training Data Validation Data Testing Data
¥
VGG16 Model Training |4—| Hyperparameter Tuning
VGG19
Optimal
Mpcdel? No—7/ Hyperparameter Value
Yes
MobileNet
Qil Palm Fruit Maturity /
> Detection Model =
Decton Rl

| Model Evaluation {CM) and Cross Validation

Evaluation Result

Figure 1. Research method

2.1. Materials

The dataset was collected from community plantations in Durian Remuk village, Muara Beliti
district, Musi Rawas regency, South Sumatra, Indonesia. This area spans approximately 394 hectares, with
the majority of the population working as palm oil farmers. Images were captured using a 128-megapixel
mobile phone camera in JPG format. Samples of each class are illustrated in Figure 2. The dataset consists of
1,500 images, equally distributed across the three categories of palm oil fruit: raw (Figure 2(a)), rotten
(Figure 2(b)), and ripe (Figure 2(c)).

2.2. Pre-processing

The raw data, comprising 450 training images and 50 testing images for each class, were organized
into two folders, train and test. Validation data consisted of 20% of the training set (1,080 training, 270
validation, and 150 testing images). To facilitate the training process, all images were resized to 640x640
pixels and saved in PNG format. Initially, background removal applications were employed to isolate the
foreground by removing the background of the images.
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Figure 2. Palm oil fruit dataset: (a) raw palm oil fruit, (b) rotten palm oil fruit, and (c) ripe palm oil fruit

2.3. Feature extraction (convolutional neural network-based architecture)

This section presents an overview of convolutional neural networks (CNNs) and emphasizes their
use in this study through transfer learning. CNNs represent a type of ANN architecture that excels at
processing and interpreting image data [26], [27]. Inspired by the way the human brain processes visual
input [28], CNNs consist of two primary layers. The first layer is dedicated to feature extraction and feature
reduction, and includes three main components: the input layer, the convolution layer, and the pooling layer.
Together, these subparts form a feed-forward network, as shown in (1):

6(X) = 07 (.. 0,(6:(X, 6, 6D,...6@) @)

0, Z, and @ are variables used in this context. The convolution layer analyzes input images to extract
important features and generate a feature map (fn). The kernel is an essential part of the convolution layer and
plays a key role in generating the feature map. After the feature map is created, it is forwarded to the next
layer, as illustrated in (2):

L l - L
xP =0 0P X'+ P )

where, we have the convolution operator denoted as *, and the it feature map denoted as Xj(’_l). In order to
process each object, a non-linear function (ReLU) is applied. This can be represented as shown in (3):

Zabe = mCaX(O' Xabc) (3)

The activated value for the ¢ component of the feature map Xanc can be located in the convolution
layer’s output. The final subcomponent of the first layer, known as the pooling layer, is responsible for
achieving spatial invariance. This is generally accomplished by down-sampling the feature map (fn), where
adjacent values are combined into a single unit, reducing the input data’s dimensionality. Max-pooling is a
widely used technique for this purpose. In the network’s second layer, the fully connected layer, values from
the feature map are fed as inputs. The output of this layer becomes the input for the Softmax layer, which
performs classification. The Softmax function is expressed in (4):

y (Y) = o @)

N X
Z]'=1e l

Using this approach, the CNN can successfully classify input data. Additionally, numerous studies in the
literature have examined CNN performance in detail [29], [30].

2.3.1. VGGNet

CNN architecture introduced in 2014, achieved second place in the ILSVRC 2014 competition [31].
The architecture consists of 16 convolutional layers, three fully connected layers, and five max-pooling
layers. Although it is computationally demanding due to its high parameter count, VGGNet has shown
exceptional performance in image classification tasks.

2.3.2. ResNet

Developed by Microsoft Research in 2015, is known for its ability to train extremely deep networks
effectively [32], [33]. This is achieved through the use of residual connections, which serve as shortcuts to
bypass certain layers in the network. These connections help mitigate the vanishing gradient problem,
enabling the successful training of much deeper models and enhancing overall network performance.
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2.3.3. MobileNet

Designed by Google in 2017, MobileNet is a CNN architecture specifically optimized for mobile
devices and resource-constrained environments [34]. It achieves this efficiency by employing depthwise
separable convolutions, which significantly reduce the number of parameters and computational
requirements. This design enables MobileNet to deliver high performance while maintaining a lightweight
structure suitable for real-time applications.

2.3.4. DenseNet

Introduced in 2017 by researchers from Cornell University, DenseNet is a neural network
architecture that connects each layer to every other layer within a block [35]. This dense connectivity ensures
efficient information flow throughout the network, minimizing redundancy and enhancing gradient
propagation. As a result, DenseNet enables the network to learn richer and more diverse features, improving
performance in various tasks.

2.3.5. Inception

Szegedy et al. [36], Inception is a CNN architecture discovered in 2014 by a research team at
Google. Inception is renowned for its utilization of Inception modules. These modules encompass the parallel
application of convolutional filters with varying sizes on the input layer, followed by the combination of the
obtained results. This approach allows the network to efficiently extract features from multiple spatial scales
in an image. Inception is a highly successful architecture that has been widely utilized in various computer
vision tasks, including object detection, image classification, and image segmentation.

2.3.6. Xception

Xception is a CNN architecture developed Chollet [37], a data scientist at Google, and introduced in
2017. Xception, short for “Extreme Inception,” is an enhanced version of the Inception module concept
initially introduced in the GoogLeNet architecture. Xception carries the idea of separating spatial convolution
and channel convolution into two distinct operations. This approach aims to improve network efficiency and
performance by reducing the number of required parameters. By separating spatial and channel convolution,
Xception allows the network to learn spatial and channel representations independently. Xception has
demonstrated high proficiency in a range of computer vision tasks, including image classification and object
detection. Furthermore, it has managed to maintain a high level of efficiency throughout.

2.4. Data augmentation

The diversity and quantity of training data are enhanced using data augmentation, a technique that
generates modified versions of existing images [38]. This approach reduces overfitting and enhances the
model’s ability to generalize [39]. Table 1 shows the configuration of data augmentation used in this study.

Table 1. Data augmentation

Data augmentation  Configuration Description

Rescale 1/255 Normalize the pixel values of images from the range [0, 255] to the range [0, 1]
Zoom range 0.1 The images can be zoomed in by up to 10% or zoomed out by up to 10%
Rotation range 0.1 The rotation angle can be any value between -0.1 and 0.1 radians

Width shift range 0.1 The horizontal shift ranges between -0.1 and 0.1 times the width of the image
Height shift range 0.1 The vertical shift ranges between -0.1 and 0.1 times the width of the image

2.5. Hyperparameters
In deep learning describe parameters that are not directly learned by the model during the training

process but must be determined before the training process begins [40].

— Learning rate: determines how many steps are taken in a given direction to update the model weights
during training.

— Batch size: the batch size refers to the number of samples used in each training iteration. It directly
impacts the frequency of model weight updates and the speed of the training process.

— Epochs: the number of complete iterations or rounds through the entire training data set used during the
training process.

— Optimizer: the algorithm used for adjusting model weights is based on the gradient of the loss function.
Some examples of optimizers include Adam, stochastic gradient descent (SGD), and RMSprop.
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2.6. Performance evaluation

To assess the classification performance, a confusion matrix has been obtained. The confusion
matrix is an important performance evaluation tool in classification that allows us to visualize the model
performance in more detail [41]. The confusion matrix provides information on how the predicted results of
the classification model align with the actual values of the observed data in Figure 3. Components of the
confusion matrix:
— TP: the model correctly predicts the number of positive samples.
— TN: the model accurately predicted the number of negative samples.
— FP: the model incorrectly predicted the number of samples as positive (false alarm).
— FN: the number of samples that the model predicted incorrectly as negative (Miss).

Predicted

Positive Negative

Positive True Positive (TP) | False Negative (FN)

Actual

Negative False Positive (FP) | True Negative (TN)

Figure 3. Confusion matrix

From these components, we can calculate several important classification evaluation metrics:
— The accuracy of the model’s predictions, which is calculated using (5), is represented as a percentage of
correctly predicted samples.

_ (TP+TN)
Acc = (TP+TN+FP+FN) ®)
— Precision is calculated as (6) and represents the percentage of positive samples accurately predicted by the
model.
TP

Pre = (TP+FP) ©)

— Recall, also referred to as sensitivity or true positive rate, represents the percentage of positive samples
that the model accurately predicts. It can be calculated using (7):

TP
(TP+FN) (7

Recall =

— Specificity, also known as the true negative rate, refers to the percentage of negative samples that are
accurately predicted by the model. It is calculated using (8):

TN
(TN+FP) (8)

Specificity =
— F1 Score, it is calculated as the harmonic mean of precision and recall, and can be represented by (9):

2x(Precision * Recall)

F1 Score =

©)

(Precision + Recall)

3. RESULTS AND DISCUSSION
3.1. Experiment set-up

The experiments were conducted using the Python programming language, with libraries such as
OpenCV, Scikit-Learn, TensorFlow, and Keras. The experiments were run on a PC with the following
specifications: Intel Core i7 9th Gen processor, 16 GB DDR4 RAM, and an NVIDIA GeForce GTX 1660 Ti
GPU. The input images were in RGB format with a size of 224x224 pixels, and the training process was set
for 50 epochs. The ImageDataGenerator was utilized to augment the training and validation data through
techniques like rescaling (normalization), zooming, rotating, and shifting both horizontally and vertically.
The Adam optimizer was used with a learning rate of 0.00005. The batch size was set to 32. Callbacks like
EarlyStopping and ReduceLROnPlateau were employed to prevent overfitting and adjust the learning rate
during training. The hyperparameter configurations are summarized in Table 2.
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Table 2. Hyperparameter configuration

Hyperparameter Configuration Description

Batch size 32 The model processes 32 samples per training iteration

Max Epoch 50 The model is trained for 50 iterations over the dataset

Loss function Categorical cross-entropy  Used for multi-class classification tasks

Dropout rate 0.1 10% of the neurons are randomly deactivated to prevent overfitting
Optimizer Adam An optimization algorithm used for training

Learning rate 0.00005 Controls the step size during the optimization process

Seven transfer learning models were employed in this study: VGG16, VGG19, MobileNet,
DenseNet201, ResNet152V2, InceptionV3, and Xception. The goal was to determine which model performs
best in classifying the ripeness of palm oil fruits. The input images were processed by the transfer learning
models, which used a GlobalAveragePooling2D layer to extract feature vectors. These vectors were then
passed through a dense layer with 128 units and ReLU activation, followed by a dropout layer to mitigate
overfitting, and finally, a dense output layer with Softmax activation for multiclass classification. The base
models were set to untrainable (trainable=False) to retain the learned weights. The architecture of the
proposed model is illustrated in Figure 4.

VGG ResNet
Iv}l» I.{'o‘l %ol»il-'t ‘lo l'» l
o ol ot T 1. T
'@ MobileNet DenseNet igEookng XOpou: i,':,b
& = H'I‘ 'l’ "Vl (x\<&<“(» d EIRL AR 2 ?/v
f‘, Incep(ion» ) : Xception Fully S {
Input R R Ny “.u N D“'b[ NN Connected —"ﬂ
I m»’»‘»o’ ll'[l‘
fImages \ /I
Bl DL
B! 3
a |
Feature Extraction Classification

Figure 4. Proposed model experiment

3.2. Result

Figures 5 and 6 show the loss and accuracy graphs for each transfer learning model. The loss graphs
indicate how well the models minimized their loss values during training. A decrease in loss over multiple
epochs suggests effective learning, while an increase may indicate overfitting. Conversely, the accuracy
graphs show the models’ ability to make correct predictions. An increase in accuracy across epochs reflects
the models’ improved prediction capabilities. However, a plateau or decrease in accuracy might suggest that
the models have reached their performance limits or are overfitting.

VGG16 VGG19 ResNet152v2 Xeeption
Model Loss Model Loss Model Loss Model Loss

DenseNet201 MobileNet IncepctionV3
Model Loss Model Loss Model Loss

s E ] s Y 15 S » o H 1 M
esoch epoet epoch

Figure 5. Loss function for each transfer learning model
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Figure 6. Accuracy for each transfer learning model

The confusion matrices in Figure 7 reveal the classification accuracy for each class across the models.
VGG16 and VGG19 performed well in classifying “rotten” and “ripe” classes but struggled slightly with the “raw”
class. ResNet152V2, DenseNet201, and MobileNet achieved perfect classification across all classes, while
InceptionV3 and Xception demonstrated strong performance with minimal errors, particularly in the “raw” class.
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Figure 7. Confusion matrix for each transfer learning model

Table 3 shows a comparison of model performance on validation and test data. The ResNet152V2,
DenseNet201, MobileNet, and Xception models perform exceptionally well in both validation and testing
phases, with accuracies approaching or reaching 1.00. The VGG16, VGG19, and InceptionVV3 models also
demonstrate good performance, although not as high as the aforementioned models. Notably, the InceptionV3
model shows a significant discrepancy in loss rates between validation and test data, despite some models
achieving perfect accuracy on test data (ResNet152V2, DenseNet201, MobileNet, and Xception). ResNet152V2
exhibits a very low loss value (0.0135) and the highest accuracy (over 99%) on validation data. Other models
also perform well, with relatively low loss values and accuracy exceeding 0.95. In terms of recall, precision, and
F1 score, most models achieve high values, with some like ResNet152V2, DenseNet201, MobileNet, and
InceptionV3 reaching perfect scores. This indicates that these models have a strong capability to classify
accurately and consistently. While ResNet152V2 stands out as the best-performing model in terms of loss and
accuracy, other models such as DenseNet201, MobileNet, and InceptionV/3 also show very good performance in
precision, recall, and F1 score. Models that achieve perfect accuracy (1.00) on test data demonstrate excellent
generalization, suggesting that they effectively identify patterns beyond the training data. Additionally, model
efficiency and complexity are crucial considerations, especially for real-time applications or environments with
limited resources, such as mobile devices. Models like MobileNet, with fewer parameters and lower
complexity, may offer better efficiency and resource utilization.
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Table 3. Comparison of each transfer learning model

Model Validation Testina Precision  Recall F-1 Score
Loss Acc Loss Acc
VGG16 0.1967 0.9814 0.2112 0.9533 0.95 0.95 0.95
VGG19 0.2413 0.9518 0.2720 0.9399 0.94 0.94 0.94
ResNet152Vv2  0.0316 0.9888 0.0135 1.0000 1.00 1.00 1.00
DenseNet201 ~ 0.0167 0.9962 0.0179 1.0000 1.00 1.00 1.00
MobileNet 0.0160 0.9962 0.0221 1.0000 1.00 1.00 1.00
InceptionV3 0.0392 0.9851 0.0474 0.9866 0.99 0.99 0.99
Xception 0.0204 0.9925 0.0487 0.9800 0.98 0.98 0.98

The models ResNet152V2, DenseNet201, MobileNet, and Xception demonstrated superior
performance with high accuracy and low loss values in both validation and test data. ResNet152V2 stood out
with the highest accuracy and lowest loss, making it the best model in this study. However, to avoid
overfitting, it is important to carry out further validation. This evaluation can be done by cross-validation [42].

The cross-validation results in Table 4 show that ResNet152V2, DenseNet201, and MobileNet are
consistent, achieving high accuracy and low loss across multiple folds. All models reached perfect accuracy
(1.0) on training data, indicating no overfitting. On validation data, ResNet152V2 consistently achieved high
performance with low loss and high accuracy. DenseNet201 also performed well, showing similar low loss
and high accuracy. MobileNet had good results but showed some variation in loss and accuracy. Generally,
models with less variation between folds and lower loss values tend to predict new data better. ResNet152V2
and DenseNet201 demonstrated notable consistency and performance across folds.

Table 4. Evaluation models with cross-validation

Training Validation
Model Fold Loss Accuracy Loss Accuracy
ResNet152V2 1 0.000997 1.000.000 0.014198  0.99537
2 0.001352 1.000.000 0.035341 0.986111
3 0.00168  1.000.000 0.006712  0.99537
4 0.000835 1.000.000 0.076519  0.986111
5 0.003803 0.998843  0.011923  0.99537
DenseNet 1 0.001741 1.000.000 0.005908  0.99537
2 0.001147 1.000.000 0.014081  0.990741
3 0.000999 1.000.000 0.011456  0.99537
4 0.002948 1.000.000 0.025724  0.990741
5 0.00042  1.000.000 0.000492 1.000.000
MobileNet 1 0.001381 1.000.000 0.001107  1.000.000
2 0.001988 0.998843  0.00354  1.000.000
3 0.001423 1.000.000 0.01809  0.990741
4 0.002221 1.000.000 0.022691  0.990741
5 0.001852  1.000.000 0.004324  1.000.000

3.3. Discussion

Based on the previous studies that have been discussed, it is clear that while significant progress has
been made, there are still opportunities to improve the accuracy of identifying palm fruit ripeness. The use of
appropriate transfer learning models, coupled with effective data augmentation techniques and optimal
hyperparameters, can potentially lead to better results. In this context, our research significantly outperformed
previous studies by leveraging advanced transfer learning models and carefully optimized hyperparameters. The
application of CNN-based architectures such as VGGNet, ResNet, MobileNet, DenseNet, Inception, and
Xception has enabled us to achieve superior classification accuracy. The combination of these powerful models
with our dataset of images, sourced directly from community farmers’ plantations in South Sumatra, Indonesia,
has resulted in a more accurate and robust identification system for palm oil fruit ripeness. Our findings
underscore the importance of model selection and optimization in improving the performance of automated
classification systems, setting a new benchmark in the field of palm oil fruit ripeness identification.

This study successfully utilized deep learning-based transfer learning models to classify palm oil fruit
ripeness. ResNet152V2 was the most accurate model on test data, with perfect accuracy (1.0000) and the lowest
validation loss (0.0135). DenseNet201, MobileNet, and InceptionV3 also showed strong performance with
accuracy above 0.99 and validation loss below 0.04. The cross-validation results further highlighted
ResNet152V2’s consistent performance across folds, solidifying its status as the best-performing model.
DenseNet201 and MaobileNet also demonstrated consistent and reliable results, making them suitable alternatives.
While the results demonstrate high accuracy and strong generalization across different models, there are
limitations that may impact the findings. First, the dataset used, although representative, may not capture the full
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variability of palm oil fruit conditions in different regions and under varying environmental factors. Additionally,
while cross-validation was used to assess model stability, further research with larger and more diverse datasets,
as well as real-world testing in operational settings, is necessary to confirm the robustness and practicality of
these models. Finally, the study did not explore the impact of different data augmentation techniques or
hyperparameter tuning in depth, which could potentially enhance the models’ performance further.

4. CONCLUSION

This research demonstrates that deep learning models based on transfer learning, particularly
ResNet152V2, DenseNet201, and MobileNet, offer substantial benefits in the classification of palm oil fruit
ripeness. Among these, ResNet152V2 exhibited the highest accuracy and the lowest validation loss during
initial evaluations, as well as consistent and stable performance across cross-validation trials. DenseNet201 and
MobileNet also showed robust and reliable performance, making them strong candidates for this classification
task. These findings highlight the potential of transfer learning models to revolutionize the process of palm oil
fruit ripeness identification, providing a more accurate and reliable alternative to traditional methods. The
implementation of such models in practical applications could greatly enhance the efficiency of palm oil
harvesting, contributing to better yield management and quality control. Looking ahead, further research could
explore the impact of employing alternative data augmentation techniques and conduct more extensive data
collection efforts. A broader dataset, encompassing a wider range of growing conditions, maturity stages, and
environmental factors, would allow for the development of models with even greater generalization capabilities.
By doing so, the models could better handle the inherent variability found in palm oil fruit and achieve more
accurate classifications in real-world scenarios. Moreover, future studies could investigate the integration of
these models into automated systems for real-time ripeness detection in palm oil plantations. Such systems
could significantly reduce the labor required for manual classification and improve decision-making processes
in the palm oil industry, ultimately leading to higher productivity and sustainability.
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