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 The palm oil industry is a significant component of Indonesia’s economy, 

driven by increasing global demand across various industries. Manual 

identification of palm oil fruit ripeness is often subjective and labor-

intensive, creating a need for a faster and more accurate solution. This study 

proposes the use of deep learning models based on transfer learning to 

enhance the classification of palm oil fruit ripeness. Our research evaluates 

several models, finding that ResNet152V2 achieves the highest performance 

with superior accuracy and the lowest validation loss. DenseNet201, 

MobileNet, and InceptionV3 also deliver strong results, each demonstrating 

an accuracy above 0.99 and a validation loss below 0.04. Cross-validation 

confirms that ResNet152V2, DenseNet201, and MobileNet maintain high 

and consistent performance across different folds, showcasing their stability 

and reliability. This approach provides a promising alternative to manual 

methods, offering a more efficient and precise means for determining palm 

oil fruit ripeness, which could significantly benefit the industry by 

streamlining quality control processes. 
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1. INTRODUCTION 

The palm oil sector holds a significant role in Indonesia’s economy. Since the early 20th century, 

palm oil has emerged as one of the leading commodities in Indonesia’s agricultural sector [1], [2]. The 

industry is experiencing significant growth due to the increasing global demand for palm oil, which serves as 

a raw material in various sectors such as food, cosmetics, and biofuels [3]. Traditionally, palm oil fruit 

identification has been conducted manually by either directly observing the fruit in the field or examining 

photographs. However, this manual process is often subject to human error and requires considerable time 

and effort, especially when conducted on a large scale. Deep learning offers a promising alternative by 

enabling fast and accurate identification of palm oil fruit, which can be integrated into image-based 

monitoring systems [4]–[9]. 

Transfer learning is a widely adopted strategy in the development of deep learning models. It offers 

several advantages for palm oil fruit identification, including: i) the ability to leverage knowledge gained 
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from large datasets to solve new problems, thereby reducing the time and resources needed to train a model 

from scratch [10]; ii) enhanced performance in image recognition tasks by using pre-trained models that are 

already adept at recognizing complex features [11]; iii) adaptability to smaller or specific datasets through 

fine-tuning, allowing the model to adjust existing feature representations to better fit new data [12]; and iv) 

mitigation of overfitting, particularly when the available dataset is limited, as pre-trained models generally 

possess robust generalization capabilities [13]. Pre-trained models have usually been trained on very large 

datasets. Therefore, they have good generalization capabilities. In various applications, transfer learning has 

proven effective in image recognition tasks. For instance, the VGG19 and DenseNet models have been 

employed in the health sector for breast cancer detection, addressing the challenge of imbalanceddata [14], 

[15]. Similarly, the ResNet model has been utilized for real-time underwater object detection [16], the 

MobileNet model for weld defect detection [17], the Inception model for pulmonary disease detection [18], 

and the Xception model for malware classification [19]. These examples underscore the utility of transfer 

learning models in producing efficient, accurate, and adaptable solutions for specific image recognition tasks, 

including palm oil fruit identification. 

Numerous studies have been conducted on the classification of palm oil fruit ripeness, each contributing 

to the advancement of this field through the application of various techniques and methodologies. For instance, 

Septiarini et al. [20], focuses on the segmentation of palm oil fruits using a contour-based approach, integrated 

with the canny algorithm and morphological operations. This method successfully achieved an average accuracy 

of 90.13%, demonstrating the effectiveness of contour-based segmentation for this task. However, despite the 

promising results, the accuracy could be further enhanced by incorporating more advanced deep-learning models 

that can automatically learn complex features from the images. Septiarini et al. [21], proposed a method that 

combines color and texture features for feature selection and classification, utilizing principal component analysis 

(PCA) for dimensionality reduction and an artificial neural network (ANN) for classification. The method 

achieved an impressive accuracy of 98.3%. While this method is effective, it primarily relies on handcrafted 

features, which may not capture the full complexity of the fruit’s ripeness characteristics. With the advent of deep 

learning, transfer learning models such as VGGNet, ResNet, and Inception could potentially offer better feature 

extraction capabilities, leading to improved classification performance.  

Alfatni et al. [22], also explored the use of color features combined with ANNs for ripeness 

identification, achieving an accuracy rate of approximately 94%. This approach underscores the importance 

of color as a key feature in ripeness classification. However, it also highlights the need for robust algorithms 

that can handle the variability in lighting conditions and fruit appearances, which can significantly impact the 

accuracy of the model. Transfer learning models, which are pre-trained on large datasets, could offer a 

solution by providing more generalized features that are less sensitive to such variations. Alfatni et al. [23], 

introduces a real-time classification system using CCD camera sensors and various image processing 

techniques. This study’s use of multiple feature extraction methods, including Gabor waves and grey level 

co-occurrence matrix (GLCM), in conjunction with supervised classifiers like support vector machines 

(SVM), K-nearest neighbor (KNN), and ANN, demonstrates a comprehensive approach to ripeness 

classification. Although ANN outperformed other classifiers, the study indicates that optimizing the model’s 

architecture and hyperparameters could further improve accuracy and processing speed, especially when 

applied to real-time systems. Here, transfer learning models could play a pivotal role by offering pre-trained 

networks that require less computational power while maintaining high accuracy. 

Other research conducted by Mansour et al. [24], object detection algorithms such as MobileNetV2 

SSD, EfficientDet, and YOLOv5 were employed to classify the ripeness of palm oil fruits. YOLOv5m, in 

particular, showed promising results with a high average precision of 0.842. This highlights the effectiveness of 

advanced object detection models in handling complex classification tasks. However, the study also suggests 

that further fine-tuning of these models, including data augmentation techniques and hyperparameter 

optimization, could lead to even better performance. Furthermore, Shiddiq et al. [25], combined hyperspectral 

imaging with ANN to predict palm oil fruit ripeness, achieving a highest accuracy of 90%. While hyperspectral 

imaging provides rich information about the fruit’s chemical composition, the integration with machine learning 

models like ANN opens up new possibilities for improving classification accuracy. Nevertheless, the challenge 

lies in the high dimensionality of hyperspectral data, which could be mitigated by employing dimensionality 

reduction techniques or transfer learning models that are capable of handling such complex data. 

From the previous studies, it is evident that there is still significant potential to enhance the accuracy 

of palm oil fruit ripeness identification. While various algorithms and methods have been explored, including 

image processing, neural networks, and object detection, the application of transfer learning models 

represents a promising direction for future research. These models, which are pre-trained on large-scale 

datasets, have the ability to generalize better across different datasets, potentially leading to improved 

classification accuracy. Moreover, the use of appropriate data augmentation techniques and the fine-tuning of 

hyperparameters can further optimize the performance of these models, making them more robust and 

accurate for real-world applications. In conclusion, although substantial progress has been made in the 
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classification of palm oil fruit ripeness, the integration of advanced transfer learning models with optimized 

data processing techniques holds the promise of achieving even higher accuracy and reliability, paving the 

way for more efficient and automated palm oil harvesting processes. 

Extensive experiments have demonstrated the superior accuracy and robustness of transfer learning-

based models such as VGGNet, ResNet, MobileNet, DenseNet, Inception, and Xception. This research 

contributes to the field by applying these advanced transfer learning techniques to the specific task of palm oil 

fruit ripeness classification, showcasing their potential to improve the efficiency and accuracy of this critical 

agricultural process. By leveraging state-of-the-art models and fine-tuning them for the unique characteristics of 

palm oil fruit, our study provides a valuable framework for future research and practical applications in the 

industry. Additionally, our approach highlights the potential for scaling up automated fruit classification systems, 

which could significantly reduce manual labor and enhance overall productivity in palm oil plantations. 

 

 

2. METHOD 

This study aims to classify images of palm oil fruit into three categories: raw, ripe, and rotten, with a 

focus on achieving high accuracy. Accurate classification of the ripeness of palm oil fruit is crucial for 

optimizing the harvesting process and maintaining product quality. The research method is illustrated in the 

flowchart presented in Figure 1. 
 
 

  
 

Figure 1. Research method 

 

 

2.1.  Materials 

The dataset was collected from community plantations in Durian Remuk village, Muara Beliti 

district, Musi Rawas regency, South Sumatra, Indonesia. This area spans approximately 394 hectares, with 

the majority of the population working as palm oil farmers. Images were captured using a 128-megapixel 

mobile phone camera in JPG format. Samples of each class are illustrated in Figure 2. The dataset consists of 

1,500 images, equally distributed across the three categories of palm oil fruit: raw (Figure 2(a)), rotten 

(Figure 2(b)), and ripe (Figure 2(c)). 

 

2.2.  Pre-processing 

The raw data, comprising 450 training images and 50 testing images for each class, were organized 

into two folders, train and test. Validation data consisted of 20% of the training set (1,080 training, 270 

validation, and 150 testing images). To facilitate the training process, all images were resized to 640×640 

pixels and saved in PNG format. Initially, background removal applications were employed to isolate the 

foreground by removing the background of the images. 
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(a) (b) (c) 

   

Figure 2. Palm oil fruit dataset: (a) raw palm oil fruit, (b) rotten palm oil fruit, and (c) ripe palm oil fruit 

 

 

2.3.  Feature extraction (convolutional neural network-based architecture) 

This section presents an overview of convolutional neural networks (CNNs) and emphasizes their 

use in this study through transfer learning. CNNs represent a type of ANN architecture that excels at 

processing and interpreting image data [26], [27]. Inspired by the way the human brain processes visual 

input [28], CNNs consist of two primary layers. The first layer is dedicated to feature extraction and feature 

reduction, and includes three main components: the input layer, the convolution layer, and the pooling layer. 

Together, these subparts form a feed-forward network, as shown in (1): 
 

𝜃(𝑋) =  𝜃𝑍 ( … . 𝜃2(𝜃1(𝑋, 𝛿(1), 𝛿(2), . . . 𝛿(𝑍)) (1) 
 

δ, Z, and θ are variables used in this context. The convolution layer analyzes input images to extract 

important features and generate a feature map (fm). The kernel is an essential part of the convolution layer and 

plays a key role in generating the feature map. After the feature map is created, it is forwarded to the next 

layer, as illustrated in (2): 
 

𝑋𝑡
(𝑙)

=  𝜃 (∑ 𝜔𝑗𝑖
(𝑙)

∗ 𝑋𝑗
(𝑙−1)

+ 𝑏𝑖
(𝑙)𝑀

𝑖=1  (2) 
 

where, we have the convolution operator denoted as *, and the ith feature map denoted as 𝑋𝑗
(𝑙−1)

. In order to 

process each object, a non-linear function (ReLU) is applied. This can be represented as shown in (3): 
 

𝑧𝑎𝑏𝑐 =  max
𝑐

(0, 𝑥𝑎𝑏𝑐) (3) 

 

The activated value for the cth component of the feature map xabc can be located in the convolution 

layer’s output. The final subcomponent of the first layer, known as the pooling layer, is responsible for 

achieving spatial invariance. This is generally accomplished by down-sampling the feature map (fm), where 

adjacent values are combined into a single unit, reducing the input data’s dimensionality. Max-pooling is a 

widely used technique for this purpose. In the network’s second layer, the fully connected layer, values from 

the feature map are fed as inputs. The output of this layer becomes the input for the Softmax layer, which 

performs classification. The Softmax function is expressed in (4): 
 

𝛾 (𝑌) =  
𝑒𝑥𝑖

∑ 𝑒𝑥𝑖𝑁
𝑗=1

 (4) 

 

Using this approach, the CNN can successfully classify input data. Additionally, numerous studies in the 

literature have examined CNN performance in detail [29], [30]. 

 

2.3.1. VGGNet 

CNN architecture introduced in 2014, achieved second place in the ILSVRC 2014 competition [31]. 

The architecture consists of 16 convolutional layers, three fully connected layers, and five max-pooling 

layers. Although it is computationally demanding due to its high parameter count, VGGNet has shown 

exceptional performance in image classification tasks. 

 

2.3.2. ResNet 

Developed by Microsoft Research in 2015, is known for its ability to train extremely deep networks 

effectively [32], [33]. This is achieved through the use of residual connections, which serve as shortcuts to 

bypass certain layers in the network. These connections help mitigate the vanishing gradient problem, 

enabling the successful training of much deeper models and enhancing overall network performance. 
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2.3.3. MobileNet 

Designed by Google in 2017, MobileNet is a CNN architecture specifically optimized for mobile 

devices and resource-constrained environments [34]. It achieves this efficiency by employing depthwise 

separable convolutions, which significantly reduce the number of parameters and computational 

requirements. This design enables MobileNet to deliver high performance while maintaining a lightweight 

structure suitable for real-time applications. 

 

2.3.4. DenseNet 

Introduced in 2017 by researchers from Cornell University, DenseNet is a neural network 

architecture that connects each layer to every other layer within a block [35]. This dense connectivity ensures 

efficient information flow throughout the network, minimizing redundancy and enhancing gradient 

propagation. As a result, DenseNet enables the network to learn richer and more diverse features, improving 

performance in various tasks. 

 

2.3.5. Inception 

Szegedy et al. [36], Inception is a CNN architecture discovered in 2014 by a research team at 

Google. Inception is renowned for its utilization of Inception modules. These modules encompass the parallel 

application of convolutional filters with varying sizes on the input layer, followed by the combination of the 

obtained results. This approach allows the network to efficiently extract features from multiple spatial scales 

in an image. Inception is a highly successful architecture that has been widely utilized in various computer 

vision tasks, including object detection, image classification, and image segmentation. 

 

2.3.6. Xception 

Xception is a CNN architecture developed Chollet [37], a data scientist at Google, and introduced in 

2017. Xception, short for “Extreme Inception,” is an enhanced version of the Inception module concept 

initially introduced in the GoogLeNet architecture. Xception carries the idea of separating spatial convolution 

and channel convolution into two distinct operations. This approach aims to improve network efficiency and 

performance by reducing the number of required parameters. By separating spatial and channel convolution, 

Xception allows the network to learn spatial and channel representations independently. Xception has 

demonstrated high proficiency in a range of computer vision tasks, including image classification and object 

detection. Furthermore, it has managed to maintain a high level of efficiency throughout. 

 

2.4.  Data augmentation 

The diversity and quantity of training data are enhanced using data augmentation, a technique that 

generates modified versions of existing images [38]. This approach reduces overfitting and enhances the 

model’s ability to generalize [39]. Table 1 shows the configuration of data augmentation used in this study. 

 

 

Table 1. Data augmentation 
Data augmentation Configuration Description 

Rescale 1/255 Normalize the pixel values of images from the range [0, 255] to the range [0, 1] 

Zoom range 0.1 The images can be zoomed in by up to 10% or zoomed out by up to 10% 
Rotation range 0.1 The rotation angle can be any value between -0.1 and 0.1 radians 

Width shift range 0.1 The horizontal shift ranges between -0.1 and 0.1 times the width of the image 

Height shift range 0.1 The vertical shift ranges between -0.1 and 0.1 times the width of the image 

 

 

2.5.  Hyperparameters 

In deep learning describe parameters that are not directly learned by the model during the training 

process but must be determined before the training process begins [40]. 

− Learning rate: determines how many steps are taken in a given direction to update the model weights 

during training. 

− Batch size: the batch size refers to the number of samples used in each training iteration. It directly 

impacts the frequency of model weight updates and the speed of the training process. 

− Epochs: the number of complete iterations or rounds through the entire training data set used during the 

training process. 

− Optimizer: the algorithm used for adjusting model weights is based on the gradient of the loss function. 

Some examples of optimizers include Adam, stochastic gradient descent (SGD), and RMSprop. 
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2.6.  Performance evaluation 

To assess the classification performance, a confusion matrix has been obtained. The confusion 

matrix is an important performance evaluation tool in classification that allows us to visualize the model 

performance in more detail [41]. The confusion matrix provides information on how the predicted results of 

the classification model align with the actual values of the observed data in Figure 3. Components of the 

confusion matrix: 

− TP: the model correctly predicts the number of positive samples. 

− TN: the model accurately predicted the number of negative samples. 

− FP: the model incorrectly predicted the number of samples as positive (false alarm). 

− FN: the number of samples that the model predicted incorrectly as negative (Miss). 
 

 

 
 

Figure 3. Confusion matrix 
 
 

From these components, we can calculate several important classification evaluation metrics: 

− The accuracy of the model’s predictions, which is calculated using (5), is represented as a percentage of 

correctly predicted samples. 
 

𝐴𝑐𝑐 =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 (5) 

 

− Precision is calculated as (6) and represents the percentage of positive samples accurately predicted by the 

model. 
 

𝑃𝑟𝑒 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (6) 

 

− Recall, also referred to as sensitivity or true positive rate, represents the percentage of positive samples 

that the model accurately predicts. It can be calculated using (7): 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (7) 

 

− Specificity, also known as the true negative rate, refers to the percentage of negative samples that are 

accurately predicted by the model. It is calculated using (8): 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
 (8) 

 

− F1 Score, it is calculated as the harmonic mean of precision and recall, and can be represented by (9): 
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2∗(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (9) 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Experiment set-up 

The experiments were conducted using the Python programming language, with libraries such as 

OpenCV, Scikit-Learn, TensorFlow, and Keras. The experiments were run on a PC with the following 

specifications: Intel Core i7 9th Gen processor, 16 GB DDR4 RAM, and an NVIDIA GeForce GTX 1660 Ti 

GPU. The input images were in RGB format with a size of 224×224 pixels, and the training process was set 

for 50 epochs. The ImageDataGenerator was utilized to augment the training and validation data through 

techniques like rescaling (normalization), zooming, rotating, and shifting both horizontally and vertically. 

The Adam optimizer was used with a learning rate of 0.00005. The batch size was set to 32. Callbacks like 

EarlyStopping and ReduceLROnPlateau were employed to prevent overfitting and adjust the learning rate 

during training. The hyperparameter configurations are summarized in Table 2. 
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Table 2. Hyperparameter configuration 
Hyperparameter Configuration Description 

Batch size 32 The model processes 32 samples per training iteration 
Max Epoch 50 The model is trained for 50 iterations over the dataset 

Loss function Categorical cross-entropy Used for multi-class classification tasks 

Dropout rate 0.1 10% of the neurons are randomly deactivated to prevent overfitting 
Optimizer Adam An optimization algorithm used for training 

Learning rate 0.00005 Controls the step size during the optimization process 

 

 

Seven transfer learning models were employed in this study: VGG16, VGG19, MobileNet, 

DenseNet201, ResNet152V2, InceptionV3, and Xception. The goal was to determine which model performs 

best in classifying the ripeness of palm oil fruits. The input images were processed by the transfer learning 

models, which used a GlobalAveragePooling2D layer to extract feature vectors. These vectors were then 

passed through a dense layer with 128 units and ReLU activation, followed by a dropout layer to mitigate 

overfitting, and finally, a dense output layer with Softmax activation for multiclass classification. The base 

models were set to untrainable (trainable=False) to retain the learned weights. The architecture of the 

proposed model is illustrated in Figure 4. 
 

 

  
 

Figure 4. Proposed model experiment 

 

 

3.2.  Result 

Figures 5 and 6 show the loss and accuracy graphs for each transfer learning model. The loss graphs 

indicate how well the models minimized their loss values during training. A decrease in loss over multiple 

epochs suggests effective learning, while an increase may indicate overfitting. Conversely, the accuracy 

graphs show the models’ ability to make correct predictions. An increase in accuracy across epochs reflects 

the models’ improved prediction capabilities. However, a plateau or decrease in accuracy might suggest that 

the models have reached their performance limits or are overfitting. 
 

 

 
  

Figure 5. Loss function for each transfer learning model 
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Figure 6. Accuracy for each transfer learning model 
 
 

The confusion matrices in Figure 7 reveal the classification accuracy for each class across the models. 

VGG16 and VGG19 performed well in classifying “rotten” and “ripe” classes but struggled slightly with the “raw” 

class. ResNet152V2, DenseNet201, and MobileNet achieved perfect classification across all classes, while 

InceptionV3 and Xception demonstrated strong performance with minimal errors, particularly in the “raw” class. 
 

 

  
 

Figure 7. Confusion matrix for each transfer learning model 
 

 

Table 3 shows a comparison of model performance on validation and test data. The ResNet152V2, 

DenseNet201, MobileNet, and Xception models perform exceptionally well in both validation and testing 

phases, with accuracies approaching or reaching 1.00. The VGG16, VGG19, and InceptionV3 models also 

demonstrate good performance, although not as high as the aforementioned models. Notably, the InceptionV3 

model shows a significant discrepancy in loss rates between validation and test data, despite some models 

achieving perfect accuracy on test data (ResNet152V2, DenseNet201, MobileNet, and Xception). ResNet152V2 

exhibits a very low loss value (0.0135) and the highest accuracy (over 99%) on validation data. Other models 

also perform well, with relatively low loss values and accuracy exceeding 0.95. In terms of recall, precision, and 

F1 score, most models achieve high values, with some like ResNet152V2, DenseNet201, MobileNet, and 

InceptionV3 reaching perfect scores. This indicates that these models have a strong capability to classify 

accurately and consistently. While ResNet152V2 stands out as the best-performing model in terms of loss and 

accuracy, other models such as DenseNet201, MobileNet, and InceptionV3 also show very good performance in 

precision, recall, and F1 score. Models that achieve perfect accuracy (1.00) on test data demonstrate excellent 

generalization, suggesting that they effectively identify patterns beyond the training data. Additionally, model 

efficiency and complexity are crucial considerations, especially for real-time applications or environments with 

limited resources, such as mobile devices. Models like MobileNet, with fewer parameters and lower 

complexity, may offer better efficiency and resource utilization. 
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Table 3. Comparison of each transfer learning model 

Model Validation Testing Precision Recall F-1 Score 
Loss Acc Loss Acc 

VGG16 0.1967 0.9814 0.2112 0.9533 0.95 0.95 0.95 
VGG19 0.2413 0.9518 0.2720 0.9399 0.94 0.94 0.94 
ResNet152V2 0.0316 0.9888 0.0135 1.0000 1.00 1.00 1.00 
DenseNet201 0.0167 0.9962 0.0179 1.0000 1.00 1.00 1.00 
MobileNet 0.0160 0.9962 0.0221 1.0000 1.00 1.00 1.00 
InceptionV3 0.0392 0.9851 0.0474 0.9866 0.99 0.99 0.99 
Xception 0.0204 0.9925 0.0487 0.9800 0.98 0.98 0.98 

 

 

The models ResNet152V2, DenseNet201, MobileNet, and Xception demonstrated superior 

performance with high accuracy and low loss values in both validation and test data. ResNet152V2 stood out 

with the highest accuracy and lowest loss, making it the best model in this study. However, to avoid 

overfitting, it is important to carry out further validation. This evaluation can be done by cross-validation [42]. 

The cross-validation results in Table 4 show that ResNet152V2, DenseNet201, and MobileNet are 

consistent, achieving high accuracy and low loss across multiple folds. All models reached perfect accuracy 

(1.0) on training data, indicating no overfitting. On validation data, ResNet152V2 consistently achieved high 

performance with low loss and high accuracy. DenseNet201 also performed well, showing similar low loss 

and high accuracy. MobileNet had good results but showed some variation in loss and accuracy. Generally, 

models with less variation between folds and lower loss values tend to predict new data better. ResNet152V2 

and DenseNet201 demonstrated notable consistency and performance across folds. 
 

 

Table 4. Evaluation models with cross-validation 

Model Fold 
Training Validation 

Loss Accuracy Loss Accuracy 

ResNet152V2 1 0.000997 1.000.000 0.014198 0.99537 

2 0.001352 1.000.000 0.035341 0.986111 
3 0.00168 1.000.000 0.006712 0.99537 

4 0.000835 1.000.000 0.076519 0.986111 
5 0.003803 0.998843 0.011923 0.99537 

DenseNet 1 0.001741 1.000.000 0.005908 0.99537 

2 0.001147 1.000.000 0.014081 0.990741 
3 0.000999 1.000.000 0.011456 0.99537 

4 0.002948 1.000.000 0.025724 0.990741 

5 0.00042 1.000.000 0.000492 1.000.000 
MobileNet 1 0.001381 1.000.000 0.001107 1.000.000 

2 0.001988 0.998843 0.00354 1.000.000 

3 0.001423 1.000.000 0.01809 0.990741 
4 0.002221 1.000.000 0.022691 0.990741 

5 0.001852 1.000.000 0.004324 1.000.000 

 

 

3.3.  Discussion 

Based on the previous studies that have been discussed, it is clear that while significant progress has 

been made, there are still opportunities to improve the accuracy of identifying palm fruit ripeness. The use of 

appropriate transfer learning models, coupled with effective data augmentation techniques and optimal 

hyperparameters, can potentially lead to better results. In this context, our research significantly outperformed 

previous studies by leveraging advanced transfer learning models and carefully optimized hyperparameters. The 

application of CNN-based architectures such as VGGNet, ResNet, MobileNet, DenseNet, Inception, and 

Xception has enabled us to achieve superior classification accuracy. The combination of these powerful models 

with our dataset of images, sourced directly from community farmers’ plantations in South Sumatra, Indonesia, 

has resulted in a more accurate and robust identification system for palm oil fruit ripeness. Our findings 

underscore the importance of model selection and optimization in improving the performance of automated 

classification systems, setting a new benchmark in the field of palm oil fruit ripeness identification. 

This study successfully utilized deep learning-based transfer learning models to classify palm oil fruit 

ripeness. ResNet152V2 was the most accurate model on test data, with perfect accuracy (1.0000) and the lowest 

validation loss (0.0135). DenseNet201, MobileNet, and InceptionV3 also showed strong performance with 

accuracy above 0.99 and validation loss below 0.04. The cross-validation results further highlighted 

ResNet152V2’s consistent performance across folds, solidifying its status as the best-performing model. 

DenseNet201 and MobileNet also demonstrated consistent and reliable results, making them suitable alternatives. 

While the results demonstrate high accuracy and strong generalization across different models, there are 

limitations that may impact the findings. First, the dataset used, although representative, may not capture the full 
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variability of palm oil fruit conditions in different regions and under varying environmental factors. Additionally, 

while cross-validation was used to assess model stability, further research with larger and more diverse datasets, 

as well as real-world testing in operational settings, is necessary to confirm the robustness and practicality of 

these models. Finally, the study did not explore the impact of different data augmentation techniques or 

hyperparameter tuning in depth, which could potentially enhance the models’ performance further. 

 

 

4. CONCLUSION 

This research demonstrates that deep learning models based on transfer learning, particularly 

ResNet152V2, DenseNet201, and MobileNet, offer substantial benefits in the classification of palm oil fruit 

ripeness. Among these, ResNet152V2 exhibited the highest accuracy and the lowest validation loss during 

initial evaluations, as well as consistent and stable performance across cross-validation trials. DenseNet201 and 

MobileNet also showed robust and reliable performance, making them strong candidates for this classification 

task. These findings highlight the potential of transfer learning models to revolutionize the process of palm oil 

fruit ripeness identification, providing a more accurate and reliable alternative to traditional methods. The 

implementation of such models in practical applications could greatly enhance the efficiency of palm oil 

harvesting, contributing to better yield management and quality control. Looking ahead, further research could 

explore the impact of employing alternative data augmentation techniques and conduct more extensive data 

collection efforts. A broader dataset, encompassing a wider range of growing conditions, maturity stages, and 

environmental factors, would allow for the development of models with even greater generalization capabilities. 

By doing so, the models could better handle the inherent variability found in palm oil fruit and achieve more 

accurate classifications in real-world scenarios. Moreover, future studies could investigate the integration of 

these models into automated systems for real-time ripeness detection in palm oil plantations. Such systems 

could significantly reduce the labor required for manual classification and improve decision-making processes 

in the palm oil industry, ultimately leading to higher productivity and sustainability. 
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