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 This research aimed to develop a control system for a self-balancing robot 

(SBR) based on the mathematical model of an inverted pendulum on a two-

wheeled cart. The linear quadratic regulator (LQR) control was implemented 

to maintain the SBR’s balance under normal conditions. A linearization 

approach was used to convert the dynamic model into a linear form, 

enabling the application of LQR. Testing was conducted through simulations 

and a physical SBR prototype equipped with an MPU6050 sensor and 

NEMA 17 motor. The test results demonstrated the effectiveness of the LQR 

control in maintaining the SBR’s balance and its responsiveness to 

disturbances. Although there are differences between the simulations and 

physical implementation, the system successfully maintained the SBR’s 

balance. In conclusion, the use of the inverted pendulum mathematical 

model and the implementation of LQR control successfully produced a 

stable and effective control system for SBR balance. By testing various 

values of the LQR parameters, optimal robot control parameters can be 

obtained. 
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1. INTRODUCTION 

In recent years, developments of robots have grown exponentially, where robots can operate 

autonomously, semi-autonomously, or full autonomusly. In autonomous systems, many advancements have 

been made in robots with various functions. Autonomous robot performance relies on sensors for guidance in 

every movement, allowing the robot to operate without human control. One example of autonomous robots is 

the self-balancing robot (SBR). The concept of the SBR is similar to inverted pendulum technology, where 

the wheel’s acceleration is based on the angle of pivot point. The SBR uses only two-wheels, and robot must 

maintain an upright position at 90 degrees. SBR implementations include personal transportation robot [1], 

humanoid robot posture-balance control [2], [3], and line follower robot [4]. 

Research on SBR is divided into several areas, namely system modeling, angle control, and the 

electronic components used. In system modelling, the SBR's system of mathematical equations is designed in 

the form of a state space [5], [6]. In the field of robotics, electronic components play a crucial role in 

implementing control systems, as they determine the accuracy and precision of experiments. For the 

electronics in an SBR, a NEMA 17 stepper motor has been used as the actuator [7], an Arduino 

microcontroller [8], a myrio device [9], and sensors like gyroscopes and accelerometer [10], [11]. 

Additionally, the robotic operation system (ROS) has been utilized for simulation purposes [12]. For control 

methods, several approachers have been implemented in SBRs, including fuzzy logic control (FLC)  

https://creativecommons.org/licenses/by-sa/4.0/
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[13], [14], proportional integral derivative (PID) control [15], [16], a combination of PID and FLC  

[17]-[20], pole-placement [21], machine learning [22], and linear quadratic regulator (LQR) [23], [24]. The 

advantage of LQR control is that it can handle multi input multi output (MIMO) and complex system, on the 

contrary PID control only single input single output (SISO) for simple system. An SBR can be classified as a 

MIMO system, where multiple inputs (such as sensor data from accelerometers, gyroscopes, and possibly 

other sensors) are used to control multiple outputs (such as motor speeds or positions) to maintain balance 

and stability [25]. Research on the implementation of LQR control in SBRs is typically conducted through 

simulations, using software such as MATLAB [26] or LABVIEW [27]. However, only a few studies have 

conducted direct physical implementations. 

Compared to other research, the primary objective of this study is to design and implement an 

effective and stable control system for an SBR, using the mathematical model of an inverted pendulum on a 

two-wheeled cart and using the LQR method for control. A NEMA 17 stepper motor is used as the actuator, 

an Arduino Uno as the microcontroller, and an inertial measurement unit (IMU) MPU6050 which includes 

both a gyroscope and an accelerometer, serves as the sensor. To address the inherent noise in the gyroscope 

readings, a Kalman filter is implemented to reduce this noise. The Kalman filter is an algorithm that 

estimates the internal state of a dynamic system based on noisy measurements. However, this paper does not 

discuss the Kalman filter in detail, focusing instead on the application of the LQR. The advantage to use a 

stepper motor for the SBR, rather than a DC motor, is based on its superior accuracy. DC motors require an 

additional encoder to obtain precise velocity information, whereas stepper motors provide greater accuracy 

due to their precise control of movement through step pulses. 

This paper is organized as follows: the first section introduces the research aim of the SBR. 

Section 2 outlines the dynamic model of the inverted pendulum and An explanation of the LQR controller. 

Section 3 presents the proposed system, including hardware implementation of the SBR. Section 4 discusses 

the open-loop and closed-loop simulations, as well as the experimental results. Finally, section 5 addresses 

the advantages and limitations of the proposed controller and presents the conclusions. 

 

2. METHOD  

2.1.  Inverted pendulum dynamic model 

The SBR is an example of an inverted pendulum system. The inverted pendulum model with wheels 

under the cart, as shown in Figure 1, serves as the basis for deriving the mathematical equations for the SBR. 

In this study, the inverted pendulum under consideration consists of mechanical components and subsystems 

to control inputs to the system. This SBR has two degrees of freedom: the horizontal motion of the cart and 

the rotation of the pendulum rod. In the schematic in Figure 1, the SBR needs to balance itself in an upright 

position and maintain its position above. Here, 𝑚𝑝 represents the mass of the pendulum rod, 𝐹𝑖𝑛 is the 

external input force, 𝑓𝑥  is the friction force, 𝐿 is half the length of the pendulum rod, 𝜃 is the angle between 

the vertical axis and the pendulum rod, and g is the acceleration due to Earth's gravity. 

 

 

 
 

Figure 1. Inverted pendulum system 

 

 

The equations that can be derived for the cart in Figure 1 along the X-axis using Newton's second 

law involve both linear and rotational forces. 

 

𝐹𝑖𝑛 = 𝑓𝑥̇ + 𝑁𝑥 + 𝑚𝑐𝑥̈ (1) 

 

−𝑁𝑦𝐿 sin 𝜃 − 𝑁𝑥𝐿 cos 𝜃 = 𝐼𝑝𝜃̈  (2) 
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𝐹𝑖𝑛 is the external input force, 𝑓𝑥̇ represents the frictional force, 𝑁𝑥 denotes the normal force at the 

joint between the cart and the pendulum rod along the x-axis or horizontal direction, 𝑚𝑐 is the mass of the 

cart, 𝑥 is the linear acceleration, 𝑁𝑦 is the force acting in the y-axis or vertical direction, L is the length of the 

pendulum rod, 𝜃 is the angular displacement, and 𝜃̇ represents the angular acceleration. 

By combining the two (1) and (2), we derive the mathematical model for 𝑥̈ (3) and 𝜃̈ (4) as: 

 

𝑥̈ = (
(𝐼𝑝+𝑚𝑝𝐿2)

(𝐼𝑝+𝑚𝑝𝐿2)(𝑚𝑐+𝑚𝑝)−𝑚𝑝
2𝐿2𝑐𝑜𝑠2𝜃

) (𝐹𝑖𝑛 − 𝑓𝑥̇{−
𝑚𝑝

2𝐿2𝑔sin𝜃𝑐𝑜𝑠𝜃

𝐼𝑝+𝑚𝑝𝐿2 + 𝑚𝑝𝐿𝜃̇2sin𝜃) (3) 

 

𝜃̈ = [
1

(𝐼𝑝+𝑚𝑝𝐿2)(𝑚𝑐+𝑚𝑝)−𝑚𝑝
2𝐿2cos2𝜃

] [−𝑚𝑝𝐿cos𝜃𝐹𝑖𝑛 + 𝑚𝑝𝐿cos𝜃𝑓𝑥̇ − 𝑚𝑝
2𝐿2sin𝜃cos𝜃𝜃̇2 − 𝑚𝑝𝑔𝐿sin𝜃(𝑚𝑐 + 𝑚𝑝)] (4) 

 

The following state-space representation (5) is obtained [5]: 

 

[

𝜃̇
𝜃̈
𝑥̇
𝑥̈

] =

[
 
 
 
 
 
0 1 0 0

0 −
(𝐼𝑝+𝑚𝑝𝐿2)𝑓

(𝐼𝑝+𝑚𝑝𝐿2)(𝑚𝑐+𝑚𝑝)−𝑚𝑝
2𝐿2

𝑚𝑝
2𝑔𝐿2

(𝐼𝑝+𝑚𝑝𝐿2)(𝑚𝑐+𝑚𝑝)−𝑚𝑝
2𝐿2 0

0 0 0 1

0
𝑚𝑝𝐿𝑓

(𝐼𝑝+𝑚𝑝𝐿2)(𝑚𝑐+𝑚𝑝)−𝑚𝑝
2𝐿2 −

(𝑚𝑝𝑔𝐿)(𝑚𝑐+𝑚𝑝)

(𝐼𝑝+𝑚𝑝𝐿2)(𝑚𝑐+𝑚𝑝)−𝑚𝑝
2𝐿2 0

]
 
 
 
 
 

[

𝜃
𝜃̇
𝑥
𝑥̇

]  

+

[
 
 
 
 
 

0
𝐼𝑝+𝑚𝑝𝐿2

(𝐼𝑝+𝑚𝑝𝐿2)(𝑚𝑐+𝑚𝑝)−𝑚𝑝
2𝐿2

0

−
𝑚𝑝𝐿

(𝐼𝑝+𝑚𝑝𝐿2)(𝑚𝑐+𝑚𝑝)−𝑚𝑝
2𝐿2]

 
 
 
 
 

𝐹𝑖𝑛(𝑡) (5) 

[
𝜃
𝑥
]  = [

1 0 0 0
0 0 1 0

] [

𝜃
𝜃̇
𝑥
𝑥̇

] + [
0
0
] 𝑢  

 

2.2.  The linear quadratic regulator controller 

The LQR method can be used to design optimal controllers for a linear system. The LQR control 

signal is essentially obtained by minimizing a specific system performance index. In the LQR method, the 

performance index is characterized by two matrices, Q and R. Matrices Q and R are defined as symmetric 

positive definite matrices. Matrix Q serves for compensating the state variables of the system, while matrix R 

serves for compensating the control signals of the system. Review of the general model of a linear system (6) 

and (7): 

 

𝑥̇ = A𝑥 + B𝑢 (6) 

 

𝑦 = C𝑥 (7) 

 

where 𝐴 is the system state matrix, 𝐵 is the system input matrix, 𝑦 is the system output vector, 𝐶 is the 

system output matrix, and 𝑢 is the control signal vector of the system. In the LQR method, the control signal 

𝑢 is determined as the signal that minimizes the following quadratic performance index (8): 

 

𝐽 =  ∫ (𝑞𝑇𝑄𝑞 + 𝑢𝑇𝑅𝑢) 𝑑𝑡
∞

𝑥
 (8) 

 

To obtain an optimal controller, one must solve the Algebraic Riccati (9): 

 

𝐴𝑇𝑃 + 𝑃𝐴 + 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0 (9) 

 

where 𝑃 is a symmetric positive definite matrix known as the LQR state matrix. Once the matrix 𝑃 is found, 

the control signal or LQR controller can be computed as (10): 

 

𝑢 =  −𝐾𝑥 = −(𝑅−1𝐵𝑇𝑃)𝑥 (10) 

 

The LQR function in MATLAB can be used to obtain the value of K for the LQR control signal. The values 

of Q and R can be chosen using the Bryson rule, with Q and R being diagonal matrices with: 
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𝑄
(𝑘,𝑘)

=
1

(𝑞𝑘
2)𝑚𝑎𝑥

 (11) 

 

𝑅 =
1

(𝑢𝑚𝑎𝑥
2 )

 (12) 

 

where umax is the maximum allowable control signal given to the system, and (qk)max is the maximum 

constraint of the system's state variables. Bryson's rule is commonly used for determining the initial values of 

matrices Q and R in trial-and-error iterations with the aim of obtaining the desired response in a closed-loop 

system. The Bryson rule helps in setting the initial values for Q and R by considering the desired system 

behavior, control effort, and constraints. It's a heuristic method used to tune the LQR controller's 

performance. Adjust those values based on the specific requirements of the system and the desired closed-

loop behavior. 

 

 

3. IMPLEMENTATION 

In Figure 2, the design of the SBR is complemented by dimensions presented using an isometric 

view. The mechanical part of the SBR consists of two levels, The first level accommodates electrical 

components such as a battery holder and three rechargeable 18650 batteries. The second holds four electronic 

components, namely Arduino Uno R3 microcontroller, two DRV8825 stepper motor drivers, and an IMU 

sensor MPU-6050. The designed SBR chassis has dimensions of 180×70×3 mm. 
 
 

  
 

Figure 2. SBR design model diagram 
 

 

Figure 3 shows the SBR electrical circuit schematic according to the SBR electrical component 

specifications. This circuit includes the Arduino Uno, which has an input from the IMU sensor to measure 

the SBR's angular changes and angular acceleration. Two stepper motors can be controlled through a single 

output. The stepper motors are connected to DRV8825 stepper motor drivers via four pins, including STEP 

and DIR pins that are connected to the Arduino Uno. The Arduino Uno is powered through the USB port 

connected to a computer, while the two DRV8825 stepper drivers are powered by three 18650 batteries 

arranged in series, providing a 12 V voltage. Because the stepper motor input is a pulse signal, then to adjust 

the speed of the motor is to change the frequency on the PWM output signal on the Arduino. 
 

 

 
 

Figure 3. SBR electrical circuit design 
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The IMU sensor uses the I2C communication protocol connected to the Arduino Uno via pins A4 

and A5. The MPU-6050, an inertial sensor, combines an accelerometer and a gyroscope in a single package. 

Each sensor has its strengths and weaknesses in measuring angles and orientation, but by combining their 

data, better results can be achieved than by using either sensor alone. The accelerometer and gyroscope data 

are implemented using a Kalman filter, which leverages the strengths of both sensors while compensating for 

their individual limitations. The step output results are generated from the control signal derived from (10). 

This results in a pulse frequency that matches the motor speed measured in steps per second. Based on this 

data, it can be concluded that the SBR maintains balance by moving forward and backward with minimal 

pulse frequency adjustments. 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Simulation of the open-loop control system 

The state-space equations obtained from the mathematical model are simulated in MATLAB using 

real-world parameters as shown in Table 1. The simulation is carried out by setting the initial conditions to 

zero: the cart is at position zero, the pendulum angle is zero, and both linear and angular velocities are also 

set to zero. The simulation models the robot in an upright position on a flat surface. The simulation results 

are then plotted as shown in Figure 4. 
 
 

Table 1. SBR parameter table 
Parameter Variable Value Parameter 

Mass cart mc 1.078 Kg 
Mass pendulum mp 0.169 Kg 

Inertia SBR I 0.0017 Kg/m2 

Half pendulum L 0.04 m 

 
 

 
 

Figure 4. Open-loop system simulation results 
 

 

In this simulation, an external input force of 1 N is applied to the cart. The position of the cart 

continues to increase over time, with the positive x-axis indicating the cart moving to the right as depicted in 

the schematic of Figure 4. The cart's velocity is shown in the graph, initially exhibiting oscillations after the 

input force is applied. This is due to the influence of the pendulum rod continuously oscillating. Initially, the 

angle of the pendulum rod is 1.57 radians or 90 degrees. The graph of the cart's velocity displays ongoing 

oscillations, indicating that the pendulum rod is continuously rotating. These results demonstrate that an 

open-loop system generates unstable behavior, as the oscillations do not subside within the system. 

 

4.2.  Simulation of the closed-loop control system 

Before simulating the closed-loop system model, the open-loop system model is first tested to 

determine whether the system is controllable and observable. This is done by calculating the controllability 
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and observability matrices, with the assistance of MATLAB. The controllability and observability matrices 

are obtained using: 
 

𝐶𝑘 = [

0 0.6174 0.1906 −3.9737
0.6174 0.1906 −3.9737 0.0182

0 −1.4292 0.4412 36.6675
−1.4292 0.4412 36.6675 −14.1168

] (13) 

 

𝑂𝑘 = [

1 0 0 0
0 1 0 0
0 0.3807 2.8215 0
0 0.0953 0.871 2.8215

] (14) 

 

The controllability and observability matrices have a full ranks, which are four. The calculated 

determinants using MATLAB are 287.6 for the controllability matrix and 7.96 for the observability matrix. 

From this, it can be concluded that the system is controllable. 

Next, the design of the LQR controller is carried out for the system in closed-loop mode. The initial 

step in designing an LQR controller is to determine the matrices Q and R. Matrix Q plays a role in 

compensating for the system's state variables, while R compensates for the control signal of the system. The 

selection of Q and R values can follow the Bryson rule, typically using diagonal matrices as the initial values 

for Q and R. These values are then adjusted through trial and error to achieve the desired response from the 

closed-loop system. Matrices Q and R reflect the weights of the system's states and inputs. 
 

𝑄 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] , 𝑄1 = [

1 0 0 0
0 1 0 0
0 0 50 0
0 0 0 50

], 𝑄2 = [

1 0 0 0
0 1 0 0
0 0 100 0
0 0 0 100

] , 𝑄3 = [

1 0 0 0
0 1 0 0
0 0 200 0
0 0 0 200

]  

 

𝑅 = 1 
 

Initially, the matrix Q is taken as a diagonal identity matrix, and the MATLAB command “LQR” is 

used to obtain the value of K=[3.1623, 2.0655, -10.9006, -2.5584], resulting in the system response as 

follows in Figure 5. It is observed that the closed-loop system is stable compared to the open-loop system. 

Even though the closed-loop system response is stable with the obtained gain values of K, it is not guaranteed 

that these are optimal values. To find the optimal gain values modify the components of matrices Q and R 

adjust the values of Q33 and Q44 to 50, 100, and 200, where Q33 reflects 𝜃 and Q44 reflects 𝜃̇. 

The MATLAB command “LQR” was used to obtain the values; K1=[22.3607, 26.8683, -95.2838,  

-15.4266], K2=[31.6228 38.6350 -69.4515 6.6786], and K3=[44.7214, 54.3694, -97.8304, 10.4938]. Then 

the closed-loop system response is simulated as shown in Figure 6. In Figure 5, different variations of gain 

K1 result in different responses. It is observed that values K2 and K3 lead to a faster settling time of about 

0.8 seconds compared to K, and also result in smaller angular pendulum shifts. This comparison concludes 

that increasing the values of matrix Q allows the robot to move more stably and remain upright. 
 
 

  
  

Figure 5. Comparison of closed-loop system simulation results 

 

 

4.3.  Experimental results 

In experimental, the designed robot has been successfully upright and stable condition. To prove 

that the control that has been designed can work well, the robot is given external interference. The graph in 

Figure 6(a) displays the SBR's tilt angle before and during an external disturbance. 
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Initially, the SBR is in a stable balanced position with a low or nearly zero tilt angle. However, 

when an external disturbance is applied, there is a sharp increase in the SBR's tilt angle. This indicates that 

the SBR responds to the disturbance by increasing its tilt angle as an effort to regain balance. 

The graph in Figure 6(b) shows the number of steps to control the stepper motor when an external 

disturbance is applied to the SBR. This response includes motor movement controlled by the control system 

to bring the SBR back to a balanced position. It can be observed that after detecting the external disturbance, 

the SBR provides a quick and effective response by moving the motor adaptively. The comparison between 

actual data obtained from the self-balancing SBR and simulation data in Figures 5 and 6 reveals the 

effectiveness and accuracy of the simulation model. Despite the differences in angle values between the two 

datasets, the SBR still maintains its self-balance in both conditions, as evident from the data in Figure 7. 
 

 

 
(a) 

 

 
(b) 

 

Figure 6. The graph of; (a) SBR angle and (b) step output with external disturbance 
 

 

However, there is a significant difference between the optimized gain value K obtained in the 

MATLAB simulation and the K1 gain value required in the physical implementation using Arduino. This 

difference may stem from mechanical, electrical factors, environmental disturbances, and hardware 

limitations. In this case, a more in-depth analysis of the mechanical and electrical model in the physical 

implementation could help identify the factors influencing the difference in K gain values and optimize them 

to achieve the desired balance in the self-balancing SBR. 
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Figure 7. Graph of SBR angle and angular velocity in simulation 

 

 

5. CONCLUSION 

An LQR-based control system has been designed and implemented to optimally maintain the SBR’s 

balance formulated in mathematical model of the inverted pendulum system on a two-wheeled cart derived 

through linearization and converted into a state-space representation. The use of LQR resulted in stable and 

optimal responses under normal operating conditions. By fine-tuning the gain values (K) in the LQR control, 

the robot effectively maintained its balance and responded accurately to setpoints. The LQR control system 

demonstrated impressive performance in both simulation and physical prototype testing. Simulations showed 

the robot’s ability to maintain balance under various conditions, while physical testing confirmed the robot’s 

capability to balance itself and respond accurately to external disturbances. In the future, SBR development 

efforts can focus on determining LQR parameters, comparing with other controlling performance, explore 

their abilities in various environments and situations, in addition, using electronic components that have good 

accuracy and specifications for the best performance. 
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