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 This study presents an optimized implementation of the gaussian filter in the 

Canny edge detection algorithm, focusing on reducing computational 

complexity while balancing power, timing, and resource utilization. 

Traditional implementations rely on the common subexpression elimination 

(CSE) algorithm for multiplierless constant multiplication, which results in 

high logic operations and resource consumption. To address this, we explore 

the constant array vector multiplication (CAVM) technique with two graph-

based algorithms (exact GB and approximate GB). These algorithms offer a 

novel graph-structured approach to constant multiplication, differing from 

existing methods by modeling multiple paths to achieve optimal adder reuse. 

The architectures were implemented using Xilinx system generator (XSG) 

and evaluated in Vivado 2018.1. Experimental results reveal that both exact 

GB and approximate GB reduce logic operations and improve timing 

performance compared to CSE_csd. Among them, approximate GB achieves 

the fastest computation and lowest LUT utilization, making it the most 

hardware-efficient design. However, it exhibits the highest power 

consumption, whereas exact GB offers the best trade-off between speed and 

power efficiency. This optimization framework shows potential not only in 

image processing but also in embedded vision systems and low-power 

digital signal processing (DSP) applications. These findings demonstrate that 

GB Algorithms can effectively optimize gaussian filter design for real-time 

image processing applications. 
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1. INTRODUCTION 

Multiple constant multiplications (MCMs) play a crucial role in various digital signal processing 

(DSP) applications, such as digital filter implementations, linear DSP transforms, and error-correction 

coding. The challenge in MCM-based designs lies in optimizing hardware area, delay, and power 

consumption, particularly when working with known constants. Conventional multiplier-based designs can 

be resource-intensive, making optimization essential. To avoid hardware-intensive multipliers, designers 

often rely on additions, subtractions, and shift operations to implement constant multiplications. While this 

forms the basis of traditional optimization methods such as common subexpression elimination (CSE), more 

recent approaches like graph-based (GB) algorithms offer a structured way to further minimize arithmetic 

complexity [1]-[4]. 

https://creativecommons.org/licenses/by-sa/4.0/
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One key advantage of shift operations is that they do not require additional hardware, as shifts can 

be realized using simple wire connections. Consequently, the primary optimization challenge in MCM design 

is to determine the minimum number of adders and subtractors required to implement constant 

multiplications efficiently. Several algorithms have been proposed in the literature to minimize the number of 

add/sub operations through maximizing partial product sharing [5]-[11]. These optimization approaches can 

be broadly classified into two categories: i) CSE algorithms, which identify and reuse repeated 

subexpressions to minimize redundant computations and ii) GB methods, which represent multiplication as a 

directed acyclic graph and optimize computations by reducing the number of operations. 

Researchers have developed innovative MCM optimization techniques leveraging these algorithms. 

For instance, Roy and Chandra [12] introduced triangular common subexpression elimination (TCSE), which 

combines horizontal and vertical CSE horizontal common subexpression elimination (HCSE) and vertical 

common subexpression elimination (VCSE) to minimize logic operators. Similarly, Bose et al. [13] proposed 

the matrix grouped CSE Algorithm, reducing computational complexity in finite impulse response (FIR) 

filters. Odugu et al. [14] optimized two-dimensional circular symmetric FIR filters using a modified Park–

McClellan transformation method, achieving improved area, power, and speed performance through CSE-

based coefficient encoding. Furthermore, Mert et al. [15] proposed a high-level synthesis method for 

implementing MCM operations using DSP blocks in Xilinx field programmable gate arrays (FPGAs), 

achieving a 35.8% reduction in DSP block usage for HEVC 2D DCT implementation. These approaches, 

while beneficial, do not exploit advanced MCM optimization techniques such as GB methods, leaving 

significant potential for improvement in terms of hardware efficiency and computational cost. Although these 

methods have been successfully applied to FIR filters, their effectiveness for Gaussian filters remains largely 

unexplored. Unlike FIR filters, Gaussian filters involve symmetric coefficients and are widely used in image 

smoothing and pre-processing. Yet little work has focused on minimizing their hardware cost using dedicated 

MCM optimization strategies. Existing methods for Gaussian filtering [16]-[20] focus primarily on adder 

optimization rather than optimizing the entire computational structure, which limits the potential for reducing 

hardware complexity and power consumption. This creates a gap in literature where efficient multiplierless 

architectures for Gaussian filtering remain unexplored. Our work builds on the method described in [21], an 

enhanced multiplierless constant array vector multiplication (CAVM) algorithm that combines exact and 

approximate strategies to minimize adders and delay under error constraints. 

The novelty of this work lies in applying GB MCM algorithms to Gaussian filters—an area largely 

unexplored—and benchmarking them against the traditional CSE_csd approach in terms of logic depth, 

speed, power, and resource efficiency. Unlike previous methods, this work is the first to apply GB MCM 

optimization specifically to Gaussian filters, highlighting its effectiveness in reducing computational 

overhead while enhancing efficiency. The proposed approach minimizes the use of adders and subtractors 

while ensuring a well-structured and resource-efficient hardware design, making it highly suitable for real-

time image processing applications. 

 

 

2. METHOD AND IMPLEMENTATION 

This section presents the proposed design approach for optimizing the Gaussian filter without 

multipliers and its integration into the Canny edge detection algorithm. The design flow is illustrated in 

Figure 1. 
 

 

 
 

Figure 1. Design method 
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2.1.  Gaussian filter architecture development 

The first stage involves developing algorithms and constructing models using the Xilinx system 

generator (XSG) block set library in MATLAB/Simulink. The Gaussian filter is designed using adder and 

shift-based methods instead of multipliers, significantly reducing computational complexity. The filter 

architectures are implemented within the Canny edge detection algorithm using Xilinx block set components, 

incorporating pre-processing and post-processing blocks [22]-[25] as shown in Figure 2. The models are 

simulated in the MATLAB/Simulink environment with appropriate parameters, and results are viewed using 

a video viewer. These models are saved as .slx files. XSG enables automatic hardware description language 

(HDL) code generation, producing user constraint files (UCF), test benches, and test vectors for design 

verification. The generated HDL netlist is synthesized in Vivado 2018.2 to estimate hardware resource 

utilization, timing, and power consumption. 
 

 

 
 

Figure 2. Hardware implementation of image processing in XSG 

 

 

2.2.  Constant multiplication optimization techniques 

Three Gaussian filter architectures were developed using three different MCM algorithms, applied 

to a 3×3 Gaussian kernel Figure 3 [5], [21]. 
 

 

 
 

Figure 3. Gaussian kernel for 3×3 matrix 
 

 

The Gaussian filter is commonly used for image smoothing, reducing noise before edge detection. It 

employs a 2D Gaussian kernel in both x and y directions, mathematically as (1). 

 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒−

𝑥2+𝑦2

2𝜎2  (1) 

 

where σ² represents the variance, a key parameter affecting the filter characteristics. 

Since convolution with a 3×3 Gaussian kernel requires over 7.52 million multiplications and  

6.29 million additions for a 512×512 colour image, hardware-based optimization is crucial. Instead of 

multipliers, adder-tree structures are employed to enhance computational performance while reducing area 

and power consumption. 

 

2.3.  Gaussian filter implementation using common subexpression elimination-canonical signed digit 

technique 

One optimization method uses canonical signed digit (CSD) representation combined with CSE. 

The CSD format represents numbers using {-1, 0, 1}, reducing the number of addition operations compared 

to binary representation [5]. 

For example: 

Binary value of 21: 10101 → CSE_csd representation: x<<4+x<<2+x 

Binary value of 31: 11111 →10000ḹ→CSE_csd representation: x<<5-1 

Binary value of 48: 110000 →10ḹ0000→CSE_csd representation: x<<6-x<<4 

The optimized CSE_csd Gaussian filter architecture is depicted in Figure 4. 
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Figure 4. Gaussian image filter architecture using CSE_csd method (CSE_csd Gaussian filter) 

 

 

2.4.  Gaussian filter implementation using graph-based algorithms 

A GB approach is used for multiplierless realization of 9 Gaussian coefficients, treating the 3×3 

kernel as a 1×9 constant array: 

Y=[21 31 21 31 48 31 21 31 21] 

   =21A1+31A2+21A3+31A4+48A5+31A6+21A7+31A8+21A9 

   =21(A1+A3+A7+A9)+31(A2+A4+A6+A8)+48A5 

where A1–A9 are inputs, grouped as: 

a=(A1+A3+A7+A9) 

b=(A2+A4+A6+A8) 

c=A5 

Hence 

Y=21a+31b+48c 

The resulting GB Gaussian filter architectures are shown in Figures 5(a) and (b) (see in Appendix), 

representing exact GB and Approx GB algorithms [16], [21]. 

 

2.5.  Integration with Canny edge detection algorithm 

The Canny edge detection algorithm Figure 6 consists of four main stages: 

− Image smoothing–reducing noise (Gaussian filtering) 

− Gradient calculation–using Sobel operators to compute edge intensity 

− Non-maximum suppression–eliminating weak edges 

− Hysteresis thresholding–finalizing edge detection 

 

 

 

 

Figure 6. Block diagram for Canny edge detection algorithm 

 

 

In our implementation, Gaussian filter blocks replace the traditional smoothing block, reducing 

computational cost while maintaining edge detection accuracy. The remaining Canny edge detection blocks 

are designed in XSG using Simulink. 
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2.6.  Field programmable gate array-based implementation and performance analysis 

To evaluate the efficiency of our designs, the optimized Gaussian filters integrated in Canny edge 

detection architectures were converted to Verilog code and implemented on an FPGA using Vivado 2018.2. 

The following metrics were analysed: i) hardware resource utilization–LUTs, FFs, DSP slices, and BRAMs, 

ii) timing analysis, and iii) power consumption. 

 

 

3. RESULTS AND DISCUSSION  

3.1.  Logic operations and depth analysis 

The efficiency of the Gaussian filter architectures was evaluated in terms of logic operations 

(adders/subtractors) and logic depth (add-shift tree levels). Figure 7 compares the three architectures: 

CSE_csd Gaussian Filter required the most logic operations (21) with a depth of 6. Exact GB Gaussian Filter 

reduced logic operations to 11 but had a depth of 7. Approx GB Gaussian filter achieved the lowest depth (5) 

with 12 operations, demonstrating that GB methods reduce logic complexity, with Approx GB Gaussian 

Filter offering the least depth. 

 

 

 
 

Figure 7. Comparison chart 

 

 

3.2.  Resource utilization analysis 

Table 1 summarizes resource utilization. The CSE_csd Gaussian filtered Canny (CSE_csd GFC) 

architecture occupied the most LUTs (1487, 2.8%), while Approx GBGFC architecture had the least (898, 

1.69%). Flip-flop (FF) usage was highest in Approx GBGFC architecture (1286, 1.21%) and lowest in 

CSE_csd (1166, 1.10%). BRAM usage was constant (12.86%) across all architectures, with minimal 

variation in I/O and BUFG utilization. Approx GBGFC architecture achieved the best hardware efficiency, 

significantly reducing LUT consumption. 

 

 

Table 1. Resource utilization of the three architectures 
Resource Available CSE_csd GFC Utility % Exact GBGFC Utility % Approx GBGFC Utility % 

LUT 53200 1487 2.80 1022 1.925 898 1.69 

LUTRAM 17400 12 0.07 - - - - 
FF 106400 1166 1.10 1280 1.20 1286 1.21 

BRAM 140 18 12.86 18 12.86 18 12.86 

IO 200 50 25.00 49 24.50 50 25.00 
BUFG 32 1 3.13 1 3.13 1 3.13 

 

 

3.3.  Timing analysis 

Table 2 presents timing analysis. The CSE_csd GFC architecture had the lowest worst negative 

slack (WNS) (68 ps), indicating a weaker setup margin. Exact GBGFC architecture (335 ps) and Approx 

GBGFC (403 ps) performed better. Worst hold slack (WHS) values were similar across architectures, with 

Exact GBGFC at 49 ps and Approx GBGFC slightly better (79 ps) than CSE_csd GFC (78 ps). Worst pulse 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Optimizing gaussian filter implementation for canny edge detection using … (Lowkya Chandaka) 

3595 

width slack (WPWS) was highest in CSE_csd GFC (7.645 ns), while Exact GBGFC and Approx GBGFC 

(4.500 ns) demonstrated better clock pulse stability. The Approx GBGFC offered the fastest computation, 

making it ideal for high-speed applications. 

 

 

Table 2. Timing analysis of the three architectures 
Architectures WNS (ps) WHS (ps) WPWS (ns) 

CSE_csd GFC 68 78 7.645 
Exact GBGFC 335 49 4.5 

Approx GBGFC 403 79 4.5 

 

 

3.4.  Power analysis 

Table 3 details power analysis. The CSE_csd GFC consumed the least total power (209 mW), 

followed by Exact GBGFC (210 mW), and Approx GBGFC the most (211 mW). Dynamic power was 

highest for Approx GBGFC (104 mW) and lowest for CSE_csd GFC (102 mW), while static power was 

constant (107 mW) across all architectures. While Approx GBGFC provided the fastest computation, Exact 

GBGFC delivered a balanced trade-off between power and speed. 

 

 

Table 3. Power comparison of the three architectures 
Power parameters CSE_csd GFC architecture Exact GBGFC architecture Approx GBGFC architecture 

Total on-chip power 209 mW 210 mW 211 mW 

Dynamic power 102 mW 103 mW 104 mW 
Static power 107 mW 107 mW 107 mW 

Clocks power 7 mW 8 mW 7 mW 

Signals power 3 mW 3 mW 4 mW 
Logic power 3 mW 3 mW 3 mW 

BRAM power 89 mW 89 mW 89 mW 

I/O power <1 mW (µW range) <1 mW (µW range) <1 mW (µW range) 

 

 

3.5.  Overall trade-off analysis 

Table 4 compares all parameters. Approx GBGFC excelled in speed and hardware efficiency but 

had the highest power consumption. Exact GBGFC provided a balance between speed and power. CSE_csd 

GFC had the highest resource usage and lowest speed but was the most power-efficient. Thus, Exact GBGFC 

is ideal for applications balancing speed and power, while Approx GBGFC is preferable when speed and area 

are critical. 

 

 

Table 4. Comprehensive analysis of the three architectures 

Parameter 
CSE_csd GFC 

architecture 
Exact GBGFC 

architecture 
Approx GBGFC 

architecture 
Best choice 

Timing (ps/ns) Highest delay 

(slowest) 

Moderate Lowest delay (fastest) Approx GBGFC 

architecture 
Total power (mW) Lowest Moderate Highest Exact GBGFC 

architecture 

Dynamic power (mW) Lowest Moderate Highest Exact GBGFC 
architecture 

Static power (mW) Same across all Same across all Same across all - 

LUT utilization Highest Moderate Lowest Approx GBGFC 
architecture 

FF utilization Lowest Moderate Highest Approx GBGFC 

architecture 
BRAM utilization Same across all Same across all Same across all - 

IO utilization Similar Similar Similar - 

Overall efficiency Less efficient Balanced (better speed 
and moderate power) 

Most efficient in speed but 
consumes more power 

Exact GBGFC 
architecture best tradeoff 

 

 

4. CONCLUSION 

This study focused on optimizing the Gaussian filter in the Canny edge detection algorithm by 

evaluating three different architectures: CSE_csd, Exact GB, and Approx GB. The common subexpression 

elimination (CSE_csd) method, though designed for multiplierless constant multiplication, required more 

logic operations and consumed more resources, making it less ideal for resource-constrained applications. To 
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overcome these challenges, we employed the CAVM technique using Exact GB and Approx GB algorithms. 

Our analysis demonstrated that Exact GBGFC and Approx GBGFC architectures significantly reduced 

computational complexity and improved hardware efficiency compared to the CSE_csd GFC approach. 

Among them, Approx GB Gaussian Filter achieved the lowest logic depth and fastest computation, making it 

highly efficient in terms of timing and resource utilization. However, this came at the cost of increased power 

consumption. In contrast, Exact GBGFC provided a well-balanced trade-off between power efficiency and 

performance, making it a better option for power-sensitive applications. Overall, our findings confirm that 

GB algorithms (GBAs) offer an effective way to optimize Gaussian filters for real-time image processing 

applications. While the Approx GBGFC architecture is well-suited for high-speed and resource-efficient 

implementations, Exact GBGFC offers a practical balance between power and performance. However, this 

work is limited in scope to a single FPGA platform and does not yet account for dynamic power fluctuations 

or scalability to higher-resolution filters. As a potential extension, incorporating approximate adders within 

add-shift trees could further enhance efficiency by taking advantage of error tolerance in real-time image 

processing. Future work could include validating these architectures across different FPGA platforms and 

embedding them within real-time hardware systems for live video or medical imaging pipelines. 
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APPENDIX 

 

 
(a) 

 

 
(b) 

    

Figure 5. Gaussian architectures based on GB algorithms; (a) Approx GB Gaussian filter and (b) exact GB 

Gaussian filter 
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