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This study presents an optimized implementation of the gaussian filter in the
Canny edge detection algorithm, focusing on reducing computational
complexity while balancing power, timing, and resource utilization.
Traditional implementations rely on the common subexpression elimination
(CSE) algorithm for multiplierless constant multiplication, which results in
high logic operations and resource consumption. To address this, we explore
the constant array vector multiplication (CAVM) technique with two graph-
based algorithms (exact GB and approximate GB). These algorithms offer a
novel graph-structured approach to constant multiplication, differing from
existing methods by modeling multiple paths to achieve optimal adder reuse.
The architectures were implemented using Xilinx system generator (XSG)
and evaluated in Vivado 2018.1. Experimental results reveal that both exact
GB and approximate GB reduce logic operations and improve timing
performance compared to CSE_csd. Among them, approximate GB achieves
the fastest computation and lowest LUT utilization, making it the most
hardware-efficient design. However, it exhibits the highest power
consumption, whereas exact GB offers the best trade-off between speed and
power efficiency. This optimization framework shows potential not only in
image processing but also in embedded vision systems and low-power
digital signal processing (DSP) applications. These findings demonstrate that
GB Algorithms can effectively optimize gaussian filter design for real-time
image processing applications.
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1. INTRODUCTION

Multiple constant multiplications (MCMs) play a crucial role in various digital signal processing
(DSP) applications, such as digital filter implementations, linear DSP transforms, and error-correction
coding. The challenge in MCM-based designs lies in optimizing hardware area, delay, and power
consumption, particularly when working with known constants. Conventional multiplier-based designs can
be resource-intensive, making optimization essential. To avoid hardware-intensive multipliers, designers
often rely on additions, subtractions, and shift operations to implement constant multiplications. While this
forms the basis of traditional optimization methods such as common subexpression elimination (CSE), more
recent approaches like graph-based (GB) algorithms offer a structured way to further minimize arithmetic

complexity [1]-[4].
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One key advantage of shift operations is that they do not require additional hardware, as shifts can
be realized using simple wire connections. Consequently, the primary optimization challenge in MCM design
is to determine the minimum number of adders and subtractors required to implement constant
multiplications efficiently. Several algorithms have been proposed in the literature to minimize the number of
add/sub operations through maximizing partial product sharing [5]-[11]. These optimization approaches can
be broadly classified into two categories: i) CSE algorithms, which identify and reuse repeated
subexpressions to minimize redundant computations and ii) GB methods, which represent multiplication as a
directed acyclic graph and optimize computations by reducing the number of operations.

Researchers have developed innovative MCM optimization techniques leveraging these algorithms.
For instance, Roy and Chandra [12] introduced triangular common subexpression elimination (TCSE), which
combines horizontal and vertical CSE horizontal common subexpression elimination (HCSE) and vertical
common subexpression elimination (VCSE) to minimize logic operators. Similarly, Bose et al. [13] proposed
the matrix grouped CSE Algorithm, reducing computational complexity in finite impulse response (FIR)
filters. Odugu et al. [14] optimized two-dimensional circular symmetric FIR filters using a modified Park—
McClellan transformation method, achieving improved area, power, and speed performance through CSE-
based coefficient encoding. Furthermore, Mert et al. [15] proposed a high-level synthesis method for
implementing MCM operations using DSP blocks in Xilinx field programmable gate arrays (FPGAS),
achieving a 35.8% reduction in DSP block usage for HEVC 2D DCT implementation. These approaches,
while beneficial, do not exploit advanced MCM optimization techniques such as GB methods, leaving
significant potential for improvement in terms of hardware efficiency and computational cost. Although these
methods have been successfully applied to FIR filters, their effectiveness for Gaussian filters remains largely
unexplored. Unlike FIR filters, Gaussian filters involve symmetric coefficients and are widely used in image
smoothing and pre-processing. Yet little work has focused on minimizing their hardware cost using dedicated
MCM optimization strategies. Existing methods for Gaussian filtering [16]-[20] focus primarily on adder
optimization rather than optimizing the entire computational structure, which limits the potential for reducing
hardware complexity and power consumption. This creates a gap in literature where efficient multiplierless
architectures for Gaussian filtering remain unexplored. Our work builds on the method described in [21], an
enhanced multiplierless constant array vector multiplication (CAVM) algorithm that combines exact and
approximate strategies to minimize adders and delay under error constraints.

The novelty of this work lies in applying GB MCM algorithms to Gaussian filters—an area largely
unexplored—and benchmarking them against the traditional CSE_csd approach in terms of logic depth,
speed, power, and resource efficiency. Unlike previous methods, this work is the first to apply GB MCM
optimization specifically to Gaussian filters, highlighting its effectiveness in reducing computational
overhead while enhancing efficiency. The proposed approach minimizes the use of adders and subtractors
while ensuring a well-structured and resource-efficient hardware design, making it highly suitable for real-
time image processing applications.

2. METHOD AND IMPLEMENTATION

This section presents the proposed design approach for optimizing the Gaussian filter without
multipliers and its integration into the Canny edge detection algorithm. The design flow is illustrated in
Figure 1.
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Figure 1. Design method
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2.1. Gaussian filter architecture development

The first stage involves developing algorithms and constructing models using the Xilinx system
generator (XSG) block set library in MATLAB/Simulink. The Gaussian filter is designed using adder and
shift-based methods instead of multipliers, significantly reducing computational complexity. The filter
architectures are implemented within the Canny edge detection algorithm using Xilinx block set components,
incorporating pre-processing and post-processing blocks [22]-[25] as shown in Figure 2. The models are
simulated in the MATLAB/Simulink environment with appropriate parameters, and results are viewed using
a video viewer. These models are saved as .sIx files. XSG enables automatic hardware description language
(HDL) code generation, producing user constraint files (UCF), test benches, and test vectors for design
verification. The generated HDL netlist is synthesized in Vivado 2018.2 to estimate hardware resource
utilization, timing, and power consumption.
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Figure 2. Hardware implementation of image processing in XSG

2.2. Constant multiplication optimization techniques
Three Gaussian filter architectures were developed using three different MCM algorithms, applied
to a 3x3 Gaussian kernel Figure 3 [5], [21].
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Figure 3. Gaussian kernel for 3x3 matrix

The Gaussian filter is commonly used for image smoothing, reducing noise before edge detection. It
employs a 2D Gaussian kernel in both x and y directions, mathematically as (1).
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Where o? represents the variance, a key parameter affecting the filter characteristics.

Since convolution with a 3x3 Gaussian kernel requires over 7.52 million multiplications and
6.29 million additions for a 512x512 colour image, hardware-based optimization is crucial. Instead of
multipliers, adder-tree structures are employed to enhance computational performance while reducing area
and power consumption.

2.3. Gaussian filter implementation using common subexpression elimination-canonical signed digit
technique

One optimization method uses canonical signed digit (CSD) representation combined with CSE.
The CSD format represents numbers using {-1, 0, 1}, reducing the number of addition operations compared
to binary representation [5].
For example:
Binary value of 21: 10101 — CSE_csd representation: x<<4+x<<2+x
Binary value of 31: 11111 —100001—CSE _csd representation: x<<5-1
Binary value of 48: 110000 —1010000—CSE _csd representation: x<<6-x<<4
The optimized CSE_csd Gaussian filter architecture is depicted in Figure 4.
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Figure 4. Gaussian image filter architecture using CSE_csd method (CSE_csd Gaussian filter)

2.4. Gaussian filter implementation using graph-based algorithms
A GB approach is used for multiplierless realization of 9 Gaussian coefficients, treating the 3x3

kernel as a 1x9 constant array:
Y=[2131 213148 31213121]

=21A1+31A,+21A3+31A4+48As+31As+21A7+31As+21Ag

=21(A1+A3+A7+A9)+31(A2+A4+A6+A3)+48A5
where A1-A9 are inputs, grouped as:
a=(A1+A3+A7+A9)
b=(A2+A4+A6+A8)
c=A5
Hence
Y=21a+31b+48c
The resulting GB Gaussian filter architectures are shown in Figures 5(a) and (b) (see in Appendix),
representing exact GB and Approx GB algorithms [16], [21].

2.5. Integration with Canny edge detection algorithm
The Canny edge detection algorithm Figure 6 consists of four main stages:
— Image smoothing-reducing noise (Gaussian filtering)
— Gradient calculation—using Sobel operators to compute edge intensity
— Non-maximum suppression—eliminating weak edges
— Hysteresis thresholding—finalizing edge detection
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Figure 6. Block diagram for Canny edge detection algorithm

In our implementation, Gaussian filter blocks replace the traditional smoothing block, reducing
computational cost while maintaining edge detection accuracy. The remaining Canny edge detection blocks
are designed in XSG using Simulink.
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2.6. Field programmable gate array-based implementation and performance analysis

To evaluate the efficiency of our designs, the optimized Gaussian filters integrated in Canny edge
detection architectures were converted to Verilog code and implemented on an FPGA using Vivado 2018.2.
The following metrics were analysed: i) hardware resource utilization—LUTs, FFs, DSP slices, and BRAMs,
ii) timing analysis, and iii) power consumption.

3. RESULTS AND DISCUSSION
3.1. Logic operations and depth analysis

The efficiency of the Gaussian filter architectures was evaluated in terms of logic operations
(adders/subtractors) and logic depth (add-shift tree levels). Figure 7 compares the three architectures:
CSE_csd Gaussian Filter required the most logic operations (21) with a depth of 6. Exact GB Gaussian Filter
reduced logic operations to 11 but had a depth of 7. Approx GB Gaussian filter achieved the lowest depth (5)
with 12 operations, demonstrating that GB methods reduce logic complexity, with Approx GB Gaussian
Filter offering the least depth.
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Figure 7. Comparison chart

3.2. Resource utilization analysis

Table 1 summarizes resource utilization. The CSE_csd Gaussian filtered Canny (CSE_csd GFC)
architecture occupied the most LUTs (1487, 2.8%), while Approx GBGFC architecture had the least (898,
1.69%). Flip-flop (FF) usage was highest in Approx GBGFC architecture (1286, 1.21%) and lowest in
CSE_csd (1166, 1.10%). BRAM usage was constant (12.86%) across all architectures, with minimal
variation in 1/0 and BUFG utilization. Approx GBGFC architecture achieved the best hardware efficiency,
significantly reducing LUT consumption.

Table 1. Resource utilization of the three architectures
Resource  Available CSE csd GFC  Utility %  Exact GBGFC  Utility %  Approx GBGFC  Utility %

LUT 53200 1487 2.80 1022 1.925 898 1.69
LUTRAM 17400 12 0.07 - - - -

FF 106400 1166 1.10 1280 1.20 1286 121
BRAM 140 18 12.86 18 12.86 18 12.86
10 200 50 25.00 49 24.50 50 25.00
BUFG 32 1 3.13 1 3.13 1 3.13

3.3. Timing analysis

Table 2 presents timing analysis. The CSE_csd GFC architecture had the lowest worst negative
slack (WNS) (68 ps), indicating a weaker setup margin. Exact GBGFC architecture (335 ps) and Approx
GBGFC (403 ps) performed better. Worst hold slack (WHS) values were similar across architectures, with
Exact GBGFC at 49 ps and Approx GBGFC slightly better (79 ps) than CSE_csd GFC (78 ps). Worst pulse
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width slack (WPWS) was highest in CSE_csd GFC (7.645 ns), while Exact GBGFC and Approx GBGFC
(4.500 ns) demonstrated better clock pulse stability. The Approx GBGFC offered the fastest computation,
making it ideal for high-speed applications.

Table 2. Timing analysis of the three architectures
Architectures WNS (ps)  WHS (ps) WPWS (ns)

CSE_csd GFC 68 78 7.645
Exact GBGFC 335 49 4.5
Approx GBGFC 403 79 45

3.4. Power analysis

Table 3 details power analysis. The CSE_csd GFC consumed the least total power (209 mW),
followed by Exact GBGFC (210 mW), and Approx GBGFC the most (211 mW). Dynamic power was
highest for Approx GBGFC (104 mW) and lowest for CSE_csd GFC (102 mW), while static power was
constant (107 mW) across all architectures. While Approx GBGFC provided the fastest computation, Exact
GBGFC delivered a balanced trade-off between power and speed.

Table 3. Power comparison of the three architectures
Power parameters CSE_csd GFC architecture  Exact GBGFC architecture  Approx GBGFC architecture

Total on-chip power 209 mwW 210 mW 211 mwW
Dynamic power 102 mW 103 mwW 104 mwW
Static power 107 mwW 107 mW 107 mW
Clocks power 7mwW 8 mW 7mwW
Signals power 3mw 3Imw 4 mw

Logic power 3mw 3Imw 3Imw
BRAM power 89 mwW 89 mW 89 mW

1/0 power <1 mW (UW range) <1 mW (UW range) <1 mW (UW range)

3.5. Overall trade-off analysis

Table 4 compares all parameters. Approx GBGFC excelled in speed and hardware efficiency but
had the highest power consumption. Exact GBGFC provided a balance between speed and power. CSE_csd
GFC had the highest resource usage and lowest speed but was the most power-efficient. Thus, Exact GBGFC
is ideal for applications balancing speed and power, while Approx GBGFC is preferable when speed and area
are critical.

Table 4. Comprehensive analysis of the three architectures
CSE_csd GFC Exact GBGFC Approx GBGFC

Parameter architecture architecture architecture Best choice
Timing (ps/ns) Highest delay Moderate Lowest delay (fastest) Approx GBGFC
(slowest) architecture

Total power (MW) Lowest Moderate Highest Exact GBGFC
architecture

Dynamic power (mW)  Lowest Moderate Highest Exact GBGFC
architecture

Static power (mW) Same across all ~ Same across all Same across all -

LUT utilization Highest Moderate Lowest Approx GBGFC
architecture

FF utilization Lowest Moderate Highest Approx GBGFC
architecture

BRAM utilization Same across all ~ Same across all Same across all -

10 utilization Similar Similar Similar -

Overall efficiency Less efficient Balanced (better speed Most efficient in speed but ~ Exact GBGFC

and moderate power) consumes more power architecture best tradeoff

4. CONCLUSION

This study focused on optimizing the Gaussian filter in the Canny edge detection algorithm by
evaluating three different architectures: CSE_csd, Exact GB, and Approx GB. The common subexpression
elimination (CSE_csd) method, though designed for multiplierless constant multiplication, required more
logic operations and consumed more resources, making it less ideal for resource-constrained applications. To
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overcome these challenges, we employed the CAVM technique using Exact GB and Approx GB algorithms.
Our analysis demonstrated that Exact GBGFC and Approx GBGFC architectures significantly reduced
computational complexity and improved hardware efficiency compared to the CSE_csd GFC approach.
Among them, Approx GB Gaussian Filter achieved the lowest logic depth and fastest computation, making it
highly efficient in terms of timing and resource utilization. However, this came at the cost of increased power
consumption. In contrast, Exact GBGFC provided a well-balanced trade-off between power efficiency and
performance, making it a better option for power-sensitive applications. Overall, our findings confirm that
GB algorithms (GBAs) offer an effective way to optimize Gaussian filters for real-time image processing
applications. While the Approx GBGFC architecture is well-suited for high-speed and resource-efficient
implementations, Exact GBGFC offers a practical balance between power and performance. However, this
work is limited in scope to a single FPGA platform and does not yet account for dynamic power fluctuations
or scalability to higher-resolution filters. As a potential extension, incorporating approximate adders within
add-shift trees could further enhance efficiency by taking advantage of error tolerance in real-time image
processing. Future work could include validating these architectures across different FPGA platforms and
embedding them within real-time hardware systems for live video or medical imaging pipelines.

ACKNOWLEDGMENTS

The authors acknowledge the support provided by GITAM Deemed to be University in the form of
computing facilities and tools used in this research. This work was conducted without a specific research
grant or contract.

FUNDING INFORMATION
This research was carried out without external research grant or contract support.

AUTHOR CONTRIBUTIONS STATEMENT
This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author
contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo 1 R D O E Vi Su P Fu
Lowkya Chandaka v v v v v v v v v

Madhavi Dunna v v v v v v v v v

C : Conceptualization I : Investigation Vi : Visualization

M : Methodology R : Resources Su : Supervision

So : Software D : Data Curation P : Project administration

Va : Validation O : writing - Original Draft Fu : Funding acquisition

Fo : Formal analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT
The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

DATA AVAILABILITY
The authors confirm that the data supporting the findings of this study are available within the
article and its supplementary materials.

REFERENCES

[1] R. Garcia and A. Volkova, “Toward the Multiple Constant Multiplication at Minimal Hardware Cost,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 70, no. 5, pp. 1976-1988, 2023, doi: 10.1109/TCSI.2023.3241859.

[21 C.R. Kumar, J, Raghavendra, D. Kulkarni, E. Y. Alhawsawi, and M. A. Majid, “High-Performance and Energy-Efficient FIR
Filter Architecture Using Parallel Prefix Adder-Based Triangular Common Subexpression Elimination Algorithm for 1oT Enabled
Wireless Sensor Network,” in 2023 3rd Asian Conference on Innovation in Technology (ASIANCON), IEEE, Aug. 2023, pp. 1-8,
doi: 10.1109/ASIANCON58793.2023.10270103.

Bulletin of Electr Eng & Inf, Vol. 14, No. 5, October 2025: 3590-3599



Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 3597

[3]

[4]

[5]
[6]

[71
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

T. Habermann, J. Kuhle, M. Kumm, and A. Volkova, “Hardware-Aware Quantization for Multiplierless Neural Network
Controllers,” in APCCAS 2022 - 2022 IEEE Asia Pacific Conference on Circuits and Systems, IEEE, Nov. 2022, pp. 541-545,
doi: 10.1109/APCCAS55924.2022.10090271.

M. Kumm, A. Volkova, and S. 1. Filip, “Design of Optimal Multiplierless FIR Filters with Minimal Number of Adders,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 2, pp. 658-671, 2023, doi:
10.1109/tcad.2022.3179221.

N. Fiege, M. Kumm, and P. Zipf, “Bit-Level Optimized Constant Multiplication Using Boolean Satisfiability,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 71, no. 1, pp. 249-261, 2024, doi: 10.1109/TCSI.2023.3327814.

R. Garcia, A. Volkova, M. Kumm, A. Goldsztejn, and J. Kuhle, “Hardware-Aware Design of Multiplierless Second-Order IR
Filters With Minimum Adders,” |EEE Transactions on Signal Processing, vol. 70, pp. 1673-1686, 2022, doi:
10.1109/TSP.2022.3161158.

G. K. Kumar et al., “Area-, Power-, and Delay-Optimized 2D FIR Filter Architecture for Image Processing Applications,”
Circuits, Systems, and Signal Processing, vol. 42, no. 2, pp. 780-800, 2023, doi: 10.1007/s00034-022-02232-y.

N. Sajwan, I. Sharma, A. Kumar, and L. K. Balyan, “Performance of Multiplierless FIR Filter Based on Directed Minimal
Spanning Tree: A Comparative Study,” Circuits, Systems, and Signal Processing, vol. 39, no. 11, pp. 5776-5800, 2020, doi:
10.1007/s00034-020-01433-7.

R. Garcia, A. Volkova, and M. Kumm, “Truncated Multiple Constant Multiplication with Minimal Number of Full Adders,” in
Proceedings - IEEE International Symposium on Circuits and Systems, May. 2022, pp. 263-267, doi:
10.1109/ISCAS48785.2022.9937441.

C. Kalamani, S. Lekashri, A. N. Duraivel, and T. S. R. Raj, “An efficient reconfigurable FIR filter design with coefficient
optimization using a modified bacterial foraging optimization algorithm,” Automatika, vol. 65, no. 1, pp. 290-303, 2024, doi:
10.1080/00051144.2023.2296792.

P. Kumar, P. C. Shrivastava, M. Tiwari, and G. R. Mishra, “High-Throughput, Area-Efficient Architecture of 2-D Block FIR
Filter Using Distributed Arithmetic Algorithm,” Circuits, Systems, and Signal Processing, vol. 38, no. 3, pp. 1099-1113, 2019,
doi: 10.1007/s00034-018-0897-2.

S. Roy and A. Chandra, “A Triangular Common Subexpression Elimination Algorithm with Reduced Logic Operators in FIR
Filter,” IEEE Transactions on Circuits and Systems Il: Express Briefs, vol. 67, no. 12, pp. 3527-3531, 2020, doi:
10.1109/TCSI1.2020.2992325.

S. Bose, A. De, and 1. Chakrabarti, “Area-Delay-Power Efficient VLSI Architecture of FIR Filter for Processing Seismic Signal,”
IEEE Transactions on Circuits and Systems |IlI: Express Briefs, vol. 68, no. 11, pp. 3451-3455, 2021, doi:
10.1109/TCSI1.2021.3081257.

V. K. Odugu, C. V. Narasimhulu, and K. S. Prasad, “Design and Implementation of Low Complexity Circularly Symmetric 2D
FIR Filter Architectures,” Multidimensional Systems and Signal Processing, vol. 31, no. 4, pp. 1385-1410, 2020, doi:
10.1007/511045-020-00714-3.

A. C. Mert, H. Azgin, E. Kalali, and 1. Hamzaoglu, “Efficient Multiple Constant Multiplication Using DSP Blocks in FPGA,” in
Proceedings - 2018 International Conference on Field-Programmable Logic and Applications, FPL 2018, IEEE, Aug. 2018, pp.
331-334, doi: 10.1109/FPL.2018.00063.

L. Aksoy, D. B. Roy, M. Imran, P. Karl, and S. Pagliarini, “Multiplierless Design of Very Large Constant Multiplications in
Cryptography,” IEEE Transactions on Circuits and Systems Il: Express Briefs, vol. 69, no. 11, pp. 4503-4507, 2022, doi:
10.1109/TCSI1.2022.3191662.

L. B. Soares, M. M. A. D. Rosa, C. M. Diniz, E. A. C. D. Costa, and S. Bampi, “Design Methodology To Explore Hybrid
Approximate Adders for Energy-Efficient Image and Video Processing Accelerators,” |IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 66, no. 6, pp. 2137-2150, 2019, doi: 10.1109/TCSI.2019.2892588.

J. D. Oliveira, L. Soares, E. Costa, and S. Bampi, “Exploiting Approximate Adder Circuits for Power-Efficient Gaussian and
Gradient Filters for Canny Edge Detector Algorithm,” in LASCAS 2016 - 7th IEEE Latin American Symposium on Circuits and
Systems, R9 IEEE CASS Flagship Conference, IEEE, Feb. 2016, pp. 379-382, doi: 10.1109/LASCAS.2016.7451089.

Y. Kang, J. Kim, and S. Kang, “Novel Approximate Synthesis Flow for Energy-Efficient FIR Filter,” in Proceedings of the 34th
IEEE International Conference on Computer Design, ICCD, IEEE, Oct. 2016, pp. 96-102, doi: 10.1109/ICCD.2016.7753266.

F. Ahmadi, M. R. Semati, H. Daryanavard, and A. Minacifar, “Energy-efficient approximate full adders for error-tolerant
applications,” Computers and Electrical Engineering, vol. 110, p. 108877, 2023, doi: 10.1016/j.compeleceng.2023.108877.

L. Aksoy, P. Flores, and J. Monteiro, “A Novel Method for The Approximation of Multiplierless Constant Matrix Vector
Multiplication,” Eurasip Journal on Embedded Systems, vol. 2016, no. 1, pp. 1-11, 2016, doi: 10.1186/5s13639-016-0033-y.

M. Mekhfioui, “Real Time Hardware Co-Simulation for Blind Image Separation Algorithm Using ZYNG 7000 & Xilinx System
Generator,” International Journal of Emerging Trends in Engineering Research, vol. 8, no. 2, pp. 365-371, 2020, doi:
10.30534/ijeter/2020/21822020.

A. Benahmed, M. Mekhfioui, and Z. Guennoun, “FPGA based Hardware Co-Simulation Implementation for Real-Time Image
Blind Separation using ICA Algorithms,” International Journal of Emerging Technology and Advanced Engineering, vol. 12, no.
10, pp. 75-81, 2022, doi: 10.46338/ijetae1022_09.

M. Bilal, W. L. Harasani, and L. Yang, “Rapid Prototyping of Image Contrast Enhancement Hardware Accelerator on FPGAs
Using High-Level Synthesis Tools,” Jordan Journal of Electrical Engineering, vol. 9, no. 3, pp. 322-337, 2023, doi:
10.5455/jjee.204-1673105856.

B. M. Krishna, G. R. Chowdary, C. Santhosh, S. K. A. Kalam, and K. P. K. L. Naidu, “Implementation of Xilinx system
generator-based image processing algorithms through FPGA,” in AIP Conference Proceedings, 2024, p. 020011, doi:
10.1063/5.0159026.

Optimizing gaussian filter implementation for canny edge detection using ... (Lowkya Chandaka)



3598 O3 ISSN: 2302-9285

APPENDIX

GO 9 G (D ¢R¢

-1 -1

shifta m
=< =<
@ = m £
AddSub Z-‘I:-’ ddSub‘I Zf | AddSubZ AddSubS
m o

AddSub4 mz‘?n|

m
2] =1 m =
Addsubs | 75 | Addsubs | 7
™ o

-1
Shift2
v <<

. |
-1 -1
z z O] 2 |
Shift . 4 Shift1 AddSub8 o
h 4
@ =)
; :‘ AddSubg zf |
@_go ©
2
o

L 4

L)
AddSub10 Z-‘:
m

AddSub7

v

@

AddSub11 Zf
Ll

b [

Adda | T# Adda | T#
Ll Ll
\ﬁ Adds | T4
AddT | EE
Ll
Shift3 K <<

(b)

Figure 5. Gaussian architectures based on GB algorithms; (a) Approx GB Gaussian filter and (b) exact GB
Gaussian filter
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