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 Brain tumor is an abnormal cell growth that contains malignant and benign 

cells emerging from numerous cell types within brain. Magnetic resonance 

imaging (MRI) is utilized for brain tumor classification which provides high-

resolution images. However, tumors exhibit different characteristics like 

shape, location, and size which make it challenging to accurately distinguish 

among different tumor types and accurately classify them. In this research, 

spatial transformer network and non-local attention mechanism (STN-NAM) 

is proposed in ResNet50 to accurately classify tumors. STN transforms 

spatial information while NAM identifies relationships among normal and 

lesion areas, which together accurately classify tumors. Initially, images are 

obtained from Figshare, Brats 2019, and Brats 2020 datasets. These images 

are pre-processed using a normalized median filter (NMF) to reduce salt and 

pepper noise. Then, normalization is performed to resize original image to a 

standard size which assists uniformity in image dimension. U-Net is 

employed to segment tumor regions and STN-NAM is performed to 

accurately classify tumors. In comparison to the existing techniques namely, 

multi-level attention network (MANet), mathematical model with 3D 

attention U-Net, and convolutional neural network (CNN), the STN-NAM 

achieves superior accuracy of 98.06%, 99.05%, and 98.66% in Figshare, 

Brats 2019, and Brats 2020 datasets, respectively. 
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1. INTRODUCTION 

Recently, brain tumors have become one of the most aggressive diseases which results in a very 

short life span if not detected at an advanced stage [1]. It is split into two common types: primary and 

secondary tumors. The primary tumors are typically non-cancerous and formed from the cells of human 

brain. The secondary tumors spread to the brain along the blood flow from other body parts [2]. Brain tumors 

are categorized into gliomas, pituitary, and meningiomas. Glioma is established in brain tissues, rather than 

blood vessels and nerve cells [3], [4]. Meningioma grows on the surface of membrane which covers the brain 

and surrounds the central nervous system, and pituitary form within the skull [5], [6]. Arising primarily in the 

spinal cord or brain, gliomas are classified into two grades, containing high-grade gliomas (HGG) and low-

grade glioma (LGG). HGG is regarded as more penetrative and destructive and is connected with a life 

expectancy of nearly two years after diagnosis [7]. Brain tumors are determined by using numerous tests that 

contain computer tomography (CT) scans, biopsies, magnetic resonance imaging (MRI), and positron 

https://creativecommons.org/licenses/by-sa/4.0/
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emission tomography (PET). Among all tests, MRI is the most common for tumor classification [8], [9]. MRI 

is primarily utilized to detect and classify cancer in the human body and provides visually relevant 

information. Also, it has a capability to capture various parameters, contrast quality performance on soft 

issues, and its capability to image scans in various directions [10]. The segmentation and classification of 

brain tumors by employing MRI is an essential part of medical treatment [11]. This process provides data 

associated with its anatomical structure for planning treatment. The segmentation of tumors is helpful for 

brain modeling and for establishing brain atlases [12], [13]. Brain MRIs are determined by radiologists to 

diagnose brain tumors and the radiologists training consumes a numerous time and has high economic costs. 

Also, the less of number of radiologists, lack of time, lack of radiologists experience, and fatigue are the 

negative field factors. Furthermore, it has observed that amount of radiologists analysis is required for the 

disease detection recently. Deep learning (DL) techniques acquire greater performance with satisfactory 

reliability in the diagnosis of brain tumors as they generate substantial results in several classification issues, 

depending on the imaging approaches [14]. Conventional machine learning (ML) approaches contain a hand-

crafted feature extraction technique, out of which the features are extracted from training images before the 

process of learning starts. This approach requires expert help with extensive knowledge to recognize the 

significant features. As a result, while working with huge datasets, the classification accuracy of ML-based 

approaches is limited and prone to errors. Furthermore, DL approaches are proven to be extremely efficient 

in a narrow range of applications in medical imaging [15]. However, tumors exhibit different characteristics 

like shape, location, and size, making it difficult to accurately distinguish among different tumor types and 

classify them. Shaik and Cherukuri [16] suggested a multi-level attention network (MANet) for the 

classification of brain tumors. The MANet employed pre-trained Xception for extracting the representation of 

deep semantic features from MRI images. These spatial representations were fed into two consecutive 

attention modules. The initial attention model learned spatial attention and tumor-specific features. Then, the 

second attention model enabled the learning of cross-channel attention among spatial features, and assisted in 

focusing on the feature maps with tumor portions. The MANet was superior not only with respect to 

performance but also in several parameters. However, MANet suffered from reduced effectiveness due to its 

heavy dependence on diversity and quality of training data. 

Rahman and Islam [17] implemented a parallel deep convolutional neural network (PDCNN) with 

data augmentation for brain tumor detection and classification. The input images were resized and grayscale 

transformation which assisted in minimizing the complexity was performed. The PDCNN extracted both 

local and global features from two parallel phases, and was performed with over-firring issues by employing 

a batch normalization and dropout regularizer. The parallel pathways were generated by combining two 

simultaneous DCNN having two window sizes which further aided the model to effectively learn local and 

global features. Nonetheless, PDCNN was incapable of handling complex data because of its vanishing 

gradient issues. Ladkat et al. [18] presented a mathematical model with 3D attention U-Net for the 

segmentation of brain tumors. Every slice of 3D image was increased by the presented approach which was 

then transmitted via 3D attention U-Net to generate a result of the segmented tumor. Feature extraction was 

employed as a primary criterion and the presented approach provided accurate segmentation of tumor pixels 

from 3D brain images. The presented approach maximized human lifespan and decreased the death rate with 

high accuracy and lower complication rates. Nevertheless, the presented approach struggled to capture 

diverse tumor characteristics due to its attention mechanism which does not possess the capacity to 

adequately subtle variations in tumor features. Rao and Karunakara [19] introduced a kernel-based support 

vector machine and social ski driver (K-SVM-SSD) for brain tumor detection and classification. Initially, 

blur removal was performed by utilizing normalized median filter (NMF) to smoothen the image and 

enhance its quality. A binomial thresholding was employed to segment the tumor regions. Then, the grey-

level co-occurrence matrix (GLCM) and spatial grey-level dependence matrix (SGLDM) were employed to 

extract the features. The harris hawks optimization was utilized to select the features and finally, KSVM-SSD 

was performed to classify the brain tumors. The K-SVM-SSD accurately detected and classified the images 

of brain tumors with precise segmentation and low computation complexity. Nevertheless, K-SVM-SSD 

suffered from managing high-dimensional data due to the curse of dimensionality. Chattopadhyay and  

Maitra [20] developed a CNN to detect brain tumors from MRI images. The MRI images with different 

locations, tumor sizes, image intensities, and shapes were considered for training the CNN effectively. Then, 

SVM classifier and other activation functions like sigmoid, SoftMax, and RMSProp were utilized to cross-

check the developed CNN technique. The developed technique learnt difficult features automatically from 

multi-modal MRI images. Yet, CNN the struggled with detecting brain tumors from MRI while managing 

small or subtle tumors, due to limited spatial resolution. In the overall analysis, it is evident that the existing 

approaches have limitations of being incapable of handling complex data, inaccurate classification due to 

various characteristics like location and size, and invariance issues due to default matrix sampling technique. 
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To solve these problems, the spatial transformer network and non-local attention mechanism (STN-NAM) is 

proposed in ResNet50, so as to accurately classify tumors by managing complex data and invariance issues. 

The primary contributions of this research are as: i) U-Net is performed to segment tumor regions by 

capturing both local and global contexts in brain tumors. It effectively preserves spatial data via a network 

that assists in complex tumor boundaries and structures, which enables accurate segmentation; ii) ResNet50 

is improved by using STN which increases the capability to extract features by enhancing the network’s 

spatial invariances in brain tumors; and iii) NAM increases the model’s robustness for distinguishing among 

different tumors, providing accurate classification results. The rest of the paper is structured as follows: 

section 2 discusses the proposed method. Section 3 explains the STN-NAM in ResNet50, while section 4 

determines the results of the proposed method, and section 5 indicates the conclusion. 

 

 

2. METHOD 

In this research, STN-NAM is proposed in ResNet50 to classify the tumors. Initially, the image is 

acquired from three benchmark datasets: Figshare, Brats 2019, and Brats 2020 to determine the proposed 

technique. NMF is employed to reduce noise, enhance the image quality, and then resize to a standard size 

using normalization. U-Net is used to segment the brain tumor regions and finally, STN-NAM is performed 

for brain tumor classification. Figure 1 determines the block diagram for the proposed technique. 

 

 

 
 

Figure 1. Block diagram for the proposed approach 

 

 

2.1.  Datasets 

The proposed technique is analyzed on three benchmark datasets: Figshare [21], Brats 2019 [22], 

and Brats 2020 [23]. Table 1 indicates the three datasets’ descriptions. These obtained images are fed as input 

to the pre-processing stage for removing the noise. 

 

 

Table 1. Dataset description 
Dataset Patients Total scans Meningiomas Glioma tumors Pituitary tumors LGG HGG 

Figshare 233 3064 708 1426 930 - - 
Brats 2019 355 1340 - - - 76 259 

Brats 2020 369 1476 - - - 110 259 

 

 

2.2.  Pre-processing 

After obtaining the image, the pre-processing stage using NMF is performed to remove the salt and 

pepper noise, and to enhance the image quality. Further, the Gaussian filter also removes the noise and 

enhances the image but also creates blurred edges due to the smoothening effect of the filter. By utilizing 

NMF, the corrupted pixel of an image is replaced with a median value which is formulated in (1): 

 

𝑚𝑣𝑖
(𝑛−1)

= 𝑚𝑒𝑑𝑖𝑎𝑛[𝐼𝑖
(𝑛−1)|𝑖 ∈ 𝑊] (1) 

 

where, 𝑊 denotes the window size employed to analyze the median value. Image sequence after the iteration 

(𝑛 − 1) is represented by 𝐼𝑖
(𝑛−1)

 and 𝑚𝑣 indicates the median value. After removing the noise, the image 

resizing is established utilizing normalization [24] technique that originates in the image being resized to 

256×256 which is the standard size, as expressed in (2): 

 

𝐼𝑁(𝑖, 𝑗) =
(𝐼𝐷−𝐼𝑀𝑖𝑛)(𝐼𝑚𝑎𝑥⁡ _𝑁−𝐼𝑚𝑖𝑛⁡ _𝑁)

𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛
+ 𝐼𝑚𝑖𝑛⁡ _𝑁 (2) 

 

where, 𝐼𝐷 represents the denoised image and 𝐼𝑚𝑎𝑥, 𝐼𝑚𝑖𝑛  indicates the max and min intensities. 𝐼𝑁(𝑖, 𝑗) denotes 

the new resized image, and 𝐼𝑚𝑎𝑥⁡ _𝑁, 𝐼𝑚𝑖𝑛⁡ _𝑁 determines the new max and min intensities. At last, the resized 

image is acquired after the normalization procedure, employed to segment the affected tumor region.  
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2.3.  Segmentation  

After pre-processing, the U-Net is used to effectively segment various regions in the brain tumors. 

U-Net effectively captures both global and local contexts in brain tumors. U-Net preserves spatial data via 

the network which captures the complex tumor boundaries and structure, as compared to Segnet as it depends 

on the pooling layers which lead to the loss of spatial data. U-Net integrates contraction (encoder) and 

expanding paths (decoder) with skip connections which provide fine-grained information from various scales 

that make accurate delineation of tumor boundaries, even in heterogenous and complex tumor structures. The 

U-Net’s [25] encoder path captures the context of the input image; this path is simply a pipeline of pooling 

and convolutional layers. Decoder path employs transposed convolutions which enable accurate localization. 

It has only a stack of max-pooling and convolution layers and there is no fully connected (FC) feedforward 

layer in U-Net. Various stacked convolutional layers allow network to learn more accurate features from 

compressed images. The input images are compressed to fit into a representation of latent space.  

The U-Net segmentation performance is analyzed by monitoring its pixel error, rand, and warping. 

It has nested pathway series of dense skip that minimizes the gap among pathways and feature maps. The U-

Net architecture is achieved by employing TensorFlow, where it has four convolutional blocks. Every 

network’s convolutional block has two convolutional layers with 3×3 kernel size and zero padding at every 

layer to manage object dimension shrinkage after applying filters. After each layer, the filter size per 

convolutional block is varied, wherein the size of the filter increases in the 16 th step. Every convolutional 

block layer is activated by rectified linear unit (ReLU), whereas among these layers, a batch normalization 

phase is employed. At the encoder network layer, a 2×2 max-pooling layer is utilized after a call function to 

include a convolutional block for reducing an input image’s spatial dimensions. Additionally, max-pooling is 

employed at the decoder layer and its application is to up-sample the feature map by utilizing indices of 

memorized max-pooling. Figure 2 shows the U-Net architecture. U-Net is proven to be greatly efficient for 

the segmentation of brain tumors which facilitates accurate delineation of tumor boundaries via its capability 

to maintain spatial information and combine at various scales. These segmented images are fed into STN-

NAM in ResNet50 to classify the brain tumors. 

 

 

 
 

Figure 2. U-Net architecture 

 

 

3. STN-NAM IN RESNET50 

The segmented region portion is fed into ResNet50 with the help of STN-NAM to classify the brain 

tumors effectively. ResNet-50 has a deeper architecture that allows it to capture complex features, solve 

vanishing gradient issues, and manage large-scale image classification tasks with accurate classification 

results in brain tumor images. It is a type of CNN model that establishes the residual learning concept, 

thereby reducing the vanishing gradient issue. However, ResNet50 suffers from invariance to affine image 

transformation which is caused by the matrix sampling technique. When an input image transforms rotation 

and translation, the model’s output is varied, also affecting the capability to generalize among various 

orientations or sizes which leads to invariance. The ResNet50 does not satisfactorily extract the feature 

space’s long-distance correlation because of limited receptive field of convolutional layers. To solve this 

issue, an STN-NAM is developed in ResNet50 to classify the brain tumors. The developed approach employs 

MRI slice input in a huge amount of subjects to train the network, where the image features are learned 

automatically, preventing manual extraction, and then the image is categorized depending on these features 

for acquiring accurate classification outcomes. Figure 3 represents the architecture of STN-NAM. 
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Figure 3. Diagram for STN-NAM in ResNet50 

 

 

STN is established among input layer and ResNet50 that transforms spatial data in MRI images of 

tumor patients into other space and keeps the key information which reduces the model’s spatial invariance. 

STN allows the model to generate geometric transformations on input images that align them to a standard 

scale or orientation. This ensures that the features of tumor are consistently indicated across images which 

increase the model’s capability to classify tumors despite variations in orientation and positions. NAM is 

presented among 4th and 5th stages of ResNet50 that identifies the relationship among normal areas and lesion 

areas in the feature space. NAM enables the model to capture long-range dependencies within an input 

image, which allows it to focus on appropriate image regions for tumor classification. By processing to 

significant spatial and contextual data, the model determines a subtle tumor feature and distinguishes them 

from nearby healthy tissues. It generates a more accurate classification of complex tumor structures. A local 

network is utilized in transformation regression parameter 𝜃 and their size is based on the type of 

transformation utilized. According to predicted transformation parameters, a grid generator is employed to 

construct the sampling grid. After transformation and sampling, it is a result of point groups in an input 

image. It is considered that the coordinate of every pixel of input and output image is (𝑥𝑖
𝑠, 𝑦𝑖

𝑠) and (𝑥𝑖
𝑡 , 𝑡𝑖

𝑡). A 

function of space transformation 𝑇𝜃  is a 2D affine transformation function. An associated relationship among 

(𝑥𝑖
𝑠, 𝑦𝑖

𝑠) and (𝑥𝑖
𝑡 , 𝑡𝑖

𝑡) is expressed in (3): 

 

(
𝑥𝑖
𝑠

𝑦𝑖
𝑠) = 𝑇𝜃(𝐺𝑖) = 𝐴𝜃 (

𝑥𝑖
𝑡

𝑡𝑖
𝑡

1

) = [
𝜃11 𝜃12 𝜃13
𝜃21 𝜃22 𝜃23

] (3) 

 

where, 𝑠 indicates the input feature image’s coordinate point, 𝑇 denotes the output feature image’s coordinate 

point and 𝐴𝜃 represents the local network’s output. The sampler in STN employs a feature map’s input and 

sampling grid as input to generate an output. Moreover, 𝑛 and 𝑚 transverse each coordinate of the original 

graph 𝑈, and 𝑈𝑛𝑚determines pixel values in the original graph 𝑈. Then, 𝑥𝑖
𝑠, 𝑦𝑖

𝑠 indicate the coordinates of 

associating point in 𝑈 graph to be determined at 𝑖𝑡ℎ point on 𝑉, as expressed in (4). 

 

𝑉𝑖 = ∑ ∑ 𝑈𝑛𝑚𝑚𝑎𝑥(0, 1 − |𝑥𝑖
𝑠 −𝑚|)𝑚𝑎𝑥⁡(0,1 − |𝑦𝑖

𝑠 − 𝑛|)𝑚𝑛  (4) 

 

The combination of STN module among input and ResNet50 enables a network to learn 

automatically how to transfer feature maps, therefore assisting in minimizing the overall cost of network 

training. The output value is located in the network that represents how to transfer every item of the training 

data. The NAM is embedded as an element in ResNet50 which learns new weights in transfer learning, hence 

the pre-trained weights are not necessary due to new modules in brain tumors. The combination of STN 

increases the capability to extract features by enhancing the network’s spatial invariances in brain tumors. 

The NAM increases the model’s robustness for distinguishing among different tumors which provides 

accurate classification results. Table 2 displays the notation description for the equation. 
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Table 2. Notation description 
Symbols Description 

W Window size 

mv Median value 

ID Denoising image 

Imax, Imin Max and min intensities 

IN(i, j) New resized image 

Imax⁡ _N, Imin⁡ _N New max and min intensities 

xi
s, yi

s Coordinate of each input image pixel  

xi
t, ti

t Coordinate of each output image pixel 

s Input feature image’s coordinate point 

T Output feature image’s coordinate point 

Aθ Local network’s output 

Unm Pixel values in original graph U 

 

 

4. RESULTS 

The proposed STN-NAM is simulated using MATLAB R2020b with 16 GB RAM, Windows 10 

operating system, Intel i5 processor, and 6 GB graphics processing unit (GPU). The performance metrics of 

accuracy, recall, precision, F1-score, dice score coefficient (DSC), intersection over union (IoU), and mean 

IoU (MIoU) are evaluated by using (5) to (11). Accuracy defines the number of correct predictions divided 

by an overall number of predictions. Recall determines the number of all true predictions (both negative and 

positive) by a total number of predictions. Precision evaluates the number of true positives divided by a 

number of true positives and false positives. F1-score is the combination of both precision and recall. TP 

indicates true positive, FN represents false negative, TN denotes true negative, and FP determines false 

positive. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (5) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = ⁡
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (7) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2×𝑇𝑃

2×𝑇𝑃+𝐹𝑃+𝐹𝑁
× 100 (8) 

 

𝐷𝑆𝐶 =
2×𝑇𝑃

(𝑇𝑃+𝐹𝑃)+(𝑇𝑃+𝐹𝑁)
 (9) 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (10) 

 

𝑀𝐼𝑂𝑈 =
1

𝑘+1
∑

𝑇𝑃

𝐹𝑁+𝐹𝑃+𝑇𝑃

𝑘
𝑖=0  (11) 

 

4.1.  Performance analysis 

The performance analysis of STN-NAM is presented in Tables 3 to 8. Table 3 displays the 

segmentation results on the Figshare dataset. The existing techniques like DeepLab, Segnet, and V-Net are 

compared with U-Net technique. The obtained results show that the U-Net achieves a high DSC of 0.9075 

due to encoder-decoder pathways with skip connections which provide an accurate localization of structures 

while preserving spatial data. 
 

 

Table 3. Segmentation performance using Figshare dataset 
Metrics DeepLab Segnet V-Net U-Net 

DSC 0.8205 0.8344 0.8475 0.9075 

IoU 0.8264 0.8475 0.8567 0.9168 
MIoU 0.8347 0.8520 0.8905 0.9355 

 

 

Table 4 indicates the classification analysis on Figshare dataset. The performance of recurrent neural 

network (RNN), deep neural network (DNN), CNN, and ResNet 50 are compared with proposed STN-NAM 

in the ResNet50 technique. When compared with these existing techniques, the proposed technique achieves 
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a high accuracy of 98.15% in Figshare dataset. Due to existing techniques having limitations in capturing 

complex spatial relationships and long-range dependencies in the images of brain tumors, achieving lower 

performance. The proposed STN-NAM effectively captures spatial variations and extracts appropriate 

features which increase the accuracy of classification performances. 

 

 

Table 4. Classification analysis using Figshare dataset 
Metrics (%) RNN DNN CNN ResNet50 STN-NAM in ResNet50 

Accuracy 86.50 87.36 90.66 94.89 98.15 
Recall 84.26 86.44 88.14 91.38 97.48 

Precision 87.05 88.47 89.06 89.95 97.50 

F1-score 85.23 84.35 87.96 89.30 98.06 

 

 

Table 5 determines the segmentation analysis for Brats 2019 dataset. The performances of DeepLab, 

Segnet, and V-Net are compared with the U-Net architecture. The U-net achieves a high DSC of 0.9247 as 

compared to the existing techniques due to encoder-decoder pathways with skip connections which provides 

accurate localization of structures. 

 

 

Table 5. Segmentation analysis using Brats 2019 dataset 
Metrics DeepLab Segnet V-Net U-Net 

DSC 0.8247 0.8311 0.8437 0.9247 
IoU 0.8397 0.8364 0.8533 0.9285 

MIoU 0.8421 0.8475 0.8667 0.9404 

 

 

Table 6 represents the classification performance on Brats 2019 dataset. The performance of RNN, 

DNN, CNN, and ResNet50 are compared with proposed STN-NAM in ResNet50. When compared to these 

existing approaches, the proposed technique achieves a high accuracy of 99.24% due to it effectively 

capturing spatial variations and extracts relevant features with a combination of STN and non-local attention, 

which has accurate classification performances. Table 7 indicates the segmentation performance on Brats 

2020 datasets. The performance of DeepLab, Segnet, and V-net are compared with the U-Net technique 

which achieves a high DSC of 0.9458 compared to existing techniques due to encoder-decoder pathways 

with skip connections which provides accurate localization of structures. 

 

 

Table 6. Classification analysis by employing Brats 2019 
Metrics (%) RNN DNN CNN ResNet50 STN-NAM in ResNet50 

Accuracy 84.54 83.67 83.53 88.58 99.24 
Recall 83.24 84.56 86.67 87.02 98.67 

Precision 84.12 85.14 83.58 85.36 99.15 

F1-score 82.06 85.57 88.01 87.48 99.05 

 

 

Table 7. Segmentation performance of Brats 2020 dataset 
Metrics DeepLab Segnet V-Net U-Net 

DSC 0.8487 0.8347 0.8514 0.9458 
IoU 0.8567 0.8399 0.8658 0.9574 

MIoU 0.8677 0.8458 0.8699 0.9605 

 

 

Table 8 represents the classification analysis on Brats 2020 datasets. The performance of RNN, 

DNN, CNN, and ResNet50 are compared with the proposed technique. The proposed technique achieves a 

high accuracy of 99.89% as opposed to RNN, DNN, CNN, and ResNet50 techniques as the proposed 

approach effectively captures spatial variations and extracts relevant features with a combination of STN and 

non-local attention, which has accurate classification performances. 
  
 

Table 8. Classification evaluation utilizing Brats 2020 
Metrics (%) RNN DNN CNN ResNet50 STN-NAM in ResNet50 

Accuracy 85.35 86.52 88.96 93.58 99.89 
Recall 84.20 85.06 87.58 90.25 99.04 

Precision 86.28 86.98 87.24 89.55 99.25 
F1-score 85.67 85.04 88.72 89.34 98.66 
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4.2.  Comparative analysis 

Table 9 indicates the comparative analysis with existing techniques. The existing techniques like 

MANet [16], PDCNN [17], mathematical model with 3D attention U-Net [18], K-SVM-SSD [19], and  

CNN [20] are compared with STN-NAM in ResNet50 on different datasets. In relation to these existing 

techniques, the proposed approach achieves high accuracy of 98.15%, 99.24%, and 99.89% in Figshare, 

Brats 2019, and Brats 2020 datasets due to the ResNet50 effectively capturing spatial variations and 

extracting appropriate features with the help of STN and non-local attention, which achieves accurate 

classification performances. 

 

 

Table 9. Comparative analysis with existing methods 
Methods Datasets Accuracy (%) Precision (%) Recall (%) F1-score (%) 

MANet [16]  

 
Figshare 

96.51 N/A N/A N/A 

PDCNN [17] 97.60 97.00 97.00 97.00 
Proposed method 98.15 97.50 97.48 98.06 

DNN-3D attention U-Net [18]  

Brats 2019 

98.90 99 98 98.50 

Proposed method 99.24 99.15 98.67 99.05 
KSVM-SSD [19]  

 

Brats 2020 

99.15 99 98.53 98.4 

CNN [20] 99.74 N/A N/A N/A 

Proposed method 99.89 99.25 99.04 98.66 

 

 

4.3.  Discussion 

The advantages of the proposed STN-NAM in ResNet50 and the disadvantages of existing 

techniques are discussed here. The existing techniques have limitations as follows: MANet [16] suffers from 

reduced effectiveness due to its heavy dependence on diversity and quality of training data. PDCNN [17] 

does not handle complex data because of its vanishing gradient issues. The mathematical approach with 3D 

attention U-Net [18] struggles to capture diverse tumor characteristics due to its attention mechanism which 

does not possess the capacity to adequately subtle variations in tumor features. CNN [20] struggles with 

detecting brain tumors from MRI while managing small or subtle tumors due to limited spatial resolution. 

The proposed technique overcomes these existing limitations. The ResNet50 captures complex features or 

patterns in brain tumors. The combination of STN increases the capability for extracting network features by 

enhancing the network’s spatial invariances in brain tumors. NAM increases the model’s robustness for 

distinguishing among different tumors which provide accurate classification results. By performing these 

operations, the STN-NAM in ResNet50 achieves a high accuracy of 98.15%, 99.24%, and 99.89% in 

Figshare, Brats 2019, and Brats 2020 datasets, respectively. 

  

 

5. CONCLUSION 

In this research, the STN-NAM is proposed in ResNet50 to classify the brain tumors accurately. The 

ResNet50 is constructed with the help of STN and NAM techniques; in that, STN transforms spatial data in 

MRI images of tumor patients into other space and keeps key information that reduces the model’s spatial 

invariance. NAM identifies the relationship among normal and lesion areas in the feature space which 

provides accurate classification of brain tumor. Mish activation function is utilized for replacing ReLU in 

traditional ResNet-50 to address local information loss issues by effectively extracting the feature’s space 

long-distance correlation in brain tumors. Through this process, the proposed approach achieves a high 

accuracy of 98.15%, 99.24%, and 99.89% on three datasets as opposed to MANet, U-Net, and CNN. In the 

future, the another improved DL methods like long short term memory (LSTM), RNN, or gated recurrent 

unit (GRU) will be used to capture temporal relationships to improve the classification outcomes. 
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