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Brain tumor is an abnormal cell growth that contains malignant and benign
cells emerging from numerous cell types within brain. Magnetic resonance
imaging (MRI) is utilized for brain tumor classification which provides high-
resolution images. However, tumors exhibit different characteristics like
shape, location, and size which make it challenging to accurately distinguish
among different tumor types and accurately classify them. In this research,
spatial transformer network and non-local attention mechanism (STN-NAM)
is proposed in ResNet50 to accurately classify tumors. STN transforms
spatial information while NAM identifies relationships among normal and
lesion areas, which together accurately classify tumors. Initially, images are
obtained from Figshare, Brats 2019, and Brats 2020 datasets. These images
are pre-processed using a normalized median filter (NMF) to reduce salt and
pepper noise. Then, normalization is performed to resize original image to a
standard size which assists uniformity in image dimension. U-Net is
employed to segment tumor regions and STN-NAM is performed to
accurately classify tumors. In comparison to the existing techniques namely,
multi-level attention network (MANet), mathematical model with 3D
attention U-Net, and convolutional neural network (CNN), the STN-NAM
achieves superior accuracy of 98.06%, 99.05%, and 98.66% in Figshare,
Brats 2019, and Brats 2020 datasets, respectively.
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1. INTRODUCTION

Recently, brain tumors have become one of the most aggressive diseases which results in a very
short life span if not detected at an advanced stage [1]. It is split into two common types: primary and
secondary tumors. The primary tumors are typically non-cancerous and formed from the cells of human
brain. The secondary tumors spread to the brain along the blood flow from other body parts [2]. Brain tumors
are categorized into gliomas, pituitary, and meningiomas. Glioma is established in brain tissues, rather than
blood vessels and nerve cells [3], [4]. Meningioma grows on the surface of membrane which covers the brain
and surrounds the central nervous system, and pituitary form within the skull [5], [6]. Arising primarily in the
spinal cord or brain, gliomas are classified into two grades, containing high-grade gliomas (HGG) and low-
grade glioma (LGG). HGG is regarded as more penetrative and destructive and is connected with a life
expectancy of nearly two years after diagnosis [7]. Brain tumors are determined by using numerous tests that
contain computer tomography (CT) scans, biopsies, magnetic resonance imaging (MRI), and positron
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emission tomography (PET). Among all tests, MRI is the most common for tumor classification [8], [9]. MRI
is primarily utilized to detect and classify cancer in the human body and provides visually relevant
information. Also, it has a capability to capture various parameters, contrast quality performance on soft
issues, and its capability to image scans in various directions [10]. The segmentation and classification of
brain tumors by employing MRI is an essential part of medical treatment [11]. This process provides data
associated with its anatomical structure for planning treatment. The segmentation of tumors is helpful for
brain modeling and for establishing brain atlases [12], [13]. Brain MRIs are determined by radiologists to
diagnose brain tumors and the radiologists training consumes a numerous time and has high economic costs.
Also, the less of number of radiologists, lack of time, lack of radiologists experience, and fatigue are the
negative field factors. Furthermore, it has observed that amount of radiologists analysis is required for the
disease detection recently. Deep learning (DL) techniques acquire greater performance with satisfactory
reliability in the diagnosis of brain tumors as they generate substantial results in several classification issues,
depending on the imaging approaches [14]. Conventional machine learning (ML) approaches contain a hand-
crafted feature extraction technique, out of which the features are extracted from training images before the
process of learning starts. This approach requires expert help with extensive knowledge to recognize the
significant features. As a result, while working with huge datasets, the classification accuracy of ML-based
approaches is limited and prone to errors. Furthermore, DL approaches are proven to be extremely efficient
in a narrow range of applications in medical imaging [15]. However, tumors exhibit different characteristics
like shape, location, and size, making it difficult to accurately distinguish among different tumor types and
classify them. Shaik and Cherukuri [16] suggested a multi-level attention network (MANet) for the
classification of brain tumors. The MANet employed pre-trained Xception for extracting the representation of
deep semantic features from MRI images. These spatial representations were fed into two consecutive
attention modules. The initial attention model learned spatial attention and tumor-specific features. Then, the
second attention model enabled the learning of cross-channel attention among spatial features, and assisted in
focusing on the feature maps with tumor portions. The MANet was superior not only with respect to
performance but also in several parameters. However, MANet suffered from reduced effectiveness due to its
heavy dependence on diversity and quality of training data.

Rahman and Islam [17] implemented a parallel deep convolutional neural network (PDCNN) with
data augmentation for brain tumor detection and classification. The input images were resized and grayscale
transformation which assisted in minimizing the complexity was performed. The PDCNN extracted both
local and global features from two parallel phases, and was performed with over-firring issues by employing
a batch normalization and dropout regularizer. The parallel pathways were generated by combining two
simultaneous DCNN having two window sizes which further aided the model to effectively learn local and
global features. Nonetheless, PDCNN was incapable of handling complex data because of its vanishing
gradient issues. Ladkat et al. [18] presented a mathematical model with 3D attention U-Net for the
segmentation of brain tumors. Every slice of 3D image was increased by the presented approach which was
then transmitted via 3D attention U-Net to generate a result of the segmented tumor. Feature extraction was
employed as a primary criterion and the presented approach provided accurate segmentation of tumor pixels
from 3D brain images. The presented approach maximized human lifespan and decreased the death rate with
high accuracy and lower complication rates. Nevertheless, the presented approach struggled to capture
diverse tumor characteristics due to its attention mechanism which does not possess the capacity to
adequately subtle variations in tumor features. Rao and Karunakara [19] introduced a kernel-based support
vector machine and social ski driver (K-SVM-SSD) for brain tumor detection and classification. Initially,
blur removal was performed by utilizing normalized median filter (NMF) to smoothen the image and
enhance its quality. A binomial thresholding was employed to segment the tumor regions. Then, the grey-
level co-occurrence matrix (GLCM) and spatial grey-level dependence matrix (SGLDM) were employed to
extract the features. The harris hawks optimization was utilized to select the features and finally, KSVM-SSD
was performed to classify the brain tumors. The K-SVM-SSD accurately detected and classified the images
of brain tumors with precise segmentation and low computation complexity. Nevertheless, K-SVM-SSD
suffered from managing high-dimensional data due to the curse of dimensionality. Chattopadhyay and
Maitra [20] developed a CNN to detect brain tumors from MRI images. The MRI images with different
locations, tumor sizes, image intensities, and shapes were considered for training the CNN effectively. Then,
SVM classifier and other activation functions like sigmoid, SoftMax, and RMSProp were utilized to cross-
check the developed CNN technique. The developed technique learnt difficult features automatically from
multi-modal MRI images. Yet, CNN the struggled with detecting brain tumors from MRI while managing
small or subtle tumors, due to limited spatial resolution. In the overall analysis, it is evident that the existing
approaches have limitations of being incapable of handling complex data, inaccurate classification due to
various characteristics like location and size, and invariance issues due to default matrix sampling technique.
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To solve these problems, the spatial transformer network and non-local attention mechanism (STN-NAM) is
proposed in ResNet50, so as to accurately classify tumors by managing complex data and invariance issues.

The primary contributions of this research are as: i) U-Net is performed to segment tumor regions by
capturing both local and global contexts in brain tumors. It effectively preserves spatial data via a network
that assists in complex tumor boundaries and structures, which enables accurate segmentation; ii) ResNet50
is improved by using STN which increases the capability to extract features by enhancing the network’s
spatial invariances in brain tumors; and iii) NAM increases the model’s robustness for distinguishing among
different tumors, providing accurate classification results. The rest of the paper is structured as follows:
section 2 discusses the proposed method. Section 3 explains the STN-NAM in ResNet50, while section 4
determines the results of the proposed method, and section 5 indicates the conclusion.

2. METHOD

In this research, STN-NAM is proposed in ResNet50 to classify the tumors. Initially, the image is
acquired from three benchmark datasets: Figshare, Brats 2019, and Brats 2020 to determine the proposed
technique. NMF is employed to reduce noise, enhance the image quality, and then resize to a standard size
using normalization. U-Net is used to segment the brain tumor regions and finally, STN-NAM is performed
for brain tumor classification. Figure 1 determines the block diagram for the proposed technique.

Datasets Pre-processing S entation Classification
TFodrr Tmis (NMF, eg(:f_Net} (STN-NAM in
2019, 2020 Normalization) ResNet30)

Figure 1. Block diagram for the proposed approach

2.1. Datasets

The proposed technique is analyzed on three benchmark datasets: Figshare [21], Brats 2019 [22],
and Brats 2020 [23]. Table 1 indicates the three datasets’ descriptions. These obtained images are fed as input
to the pre-processing stage for removing the noise.

Table 1. Dataset description
Dataset Patients  Total scans  Meningiomas  Glioma tumors  Pituitary tumors  LGG  HGG

Figshare 233 3064 708 1426 930 - -
Brats 2019 355 1340 - - - 76 259
Brats 2020 369 1476 - - - 110 259

2.2. Pre-processing

After obtaining the image, the pre-processing stage using NMF is performed to remove the salt and
pepper noise, and to enhance the image quality. Further, the Gaussian filter also removes the noise and
enhances the image but also creates blurred edges due to the smoothening effect of the filter. By utilizing
NMF, the corrupted pixel of an image is replaced with a median value which is formulated in (1):

mv*™V = median[IV|i € W] @)

where, W denotes the window size employed to analyze the median value. Image sequence after the iteration
(n—1) is represented by Ii("'l) and mv indicates the median value. After removing the noise, the image
resizing is established utilizing normalization [24] technique that originates in the image being resized to
256x256 which is the standard size, as expressed in (2):

D_;. . S
IN(l,]) — (1 IMmI)(ImtiJ; J\‘I Imm ,N) + Imin N (2)
max min
where, IP represents the denoised image and I,,q., Imin indicates the max and min intensities. Iy (i, j) denotes
the new resized image, and Iyqx n, Imin v determines the new max and min intensities. At last, the resized
image is acquired after the normalization procedure, employed to segment the affected tumor region.
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2.3. Segmentation

After pre-processing, the U-Net is used to effectively segment various regions in the brain tumors.
U-Net effectively captures both global and local contexts in brain tumors. U-Net preserves spatial data via
the network which captures the complex tumor boundaries and structure, as compared to Segnet as it depends
on the pooling layers which lead to the loss of spatial data. U-Net integrates contraction (encoder) and
expanding paths (decoder) with skip connections which provide fine-grained information from various scales
that make accurate delineation of tumor boundaries, even in heterogenous and complex tumor structures. The
U-Net’s [25] encoder path captures the context of the input image; this path is simply a pipeline of pooling
and convolutional layers. Decoder path employs transposed convolutions which enable accurate localization.
It has only a stack of max-pooling and convolution layers and there is no fully connected (FC) feedforward
layer in U-Net. Various stacked convolutional layers allow network to learn more accurate features from
compressed images. The input images are compressed to fit into a representation of latent space.

The U-Net segmentation performance is analyzed by monitoring its pixel error, rand, and warping.
It has nested pathway series of dense skip that minimizes the gap among pathways and feature maps. The U-
Net architecture is achieved by employing TensorFlow, where it has four convolutional blocks. Every
network’s convolutional block has two convolutional layers with 3%3 kernel size and zero padding at every
layer to manage object dimension shrinkage after applying filters. After each layer, the filter size per
convolutional block is varied, wherein the size of the filter increases in the 16™ step. Every convolutional
block layer is activated by rectified linear unit (ReLU), whereas among these layers, a batch normalization
phase is employed. At the encoder network layer, a 2x2 max-pooling layer is utilized after a call function to
include a convolutional block for reducing an input image’s spatial dimensions. Additionally, max-pooling is
employed at the decoder layer and its application is to up-sample the feature map by utilizing indices of
memorized max-pooling. Figure 2 shows the U-Net architecture. U-Net is proven to be greatly efficient for
the segmentation of brain tumors which facilitates accurate delineation of tumor boundaries via its capability
to maintain spatial information and combine at various scales. These segmented images are fed into STN-
NAM in ResNet50 to classify the brain tumors.
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Figure 2. U-Net architecture

3. STN-NAM IN RESNET50

The segmented region portion is fed into ResNet50 with the help of STN-NAM to classify the brain
tumors effectively. ResNet-50 has a deeper architecture that allows it to capture complex features, solve
vanishing gradient issues, and manage large-scale image classification tasks with accurate classification
results in brain tumor images. It is a type of CNN model that establishes the residual learning concept,
thereby reducing the vanishing gradient issue. However, ResNet50 suffers from invariance to affine image
transformation which is caused by the matrix sampling technique. When an input image transforms rotation
and translation, the model’s output is varied, also affecting the capability to generalize among various
orientations or sizes which leads to invariance. The ResNet50 does not satisfactorily extract the feature
space’s long-distance correlation because of limited receptive field of convolutional layers. To solve this
issue, an STN-NAM is developed in ResNet50 to classify the brain tumors. The developed approach employs
MRI slice input in a huge amount of subjects to train the network, where the image features are learned
automatically, preventing manual extraction, and then the image is categorized depending on these features
for acquiring accurate classification outcomes. Figure 3 represents the architecture of STN-NAM.
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Figure 3. Diagram for STN-NAM in ResNet50

STN is established among input layer and ResNet50 that transforms spatial data in MRI images of
tumor patients into other space and keeps the key information which reduces the model’s spatial invariance.
STN allows the model to generate geometric transformations on input images that align them to a standard
scale or orientation. This ensures that the features of tumor are consistently indicated across images which
increase the model’s capability to classify tumors despite variations in orientation and positions. NAM is
presented among 4" and 5% stages of ResNet50 that identifies the relationship among normal areas and lesion
areas in the feature space. NAM enables the model to capture long-range dependencies within an input
image, which allows it to focus on appropriate image regions for tumor classification. By processing to
significant spatial and contextual data, the model determines a subtle tumor feature and distinguishes them
from nearby healthy tissues. It generates a more accurate classification of complex tumor structures. A local
network is utilized in transformation regression parameter 6 and their size is based on the type of
transformation utilized. According to predicted transformation parameters, a grid generator is employed to
construct the sampling grid. After transformation and sampling, it is a result of point groups in an input
image. It is considered that the coordinate of every pixel of input and output image is (x7,y?) and (xf, tf). A
function of space transformation T is a 2D affine transformation function. An associated relationship among
(xf,y8) and (xf, tf) is expressed in (3):

t
x.
xf) 611 612 0Oy
=T.(G)=A t | = 3
(yl-s 0 (G 0 t1‘ 021 035 0Oy ®)

& ~.

where, s indicates the input feature image’s coordinate point, T denotes the output feature image’s coordinate
point and Ay represents the local network’s output. The sampler in STN employs a feature map’s input and
sampling grid as input to generate an output. Moreover, n and m transverse each coordinate of the original
graph U, and U, ,determines pixel values in the original graph U. Then, x/,y{ indicate the coordinates of
associating point in U graph to be determined at i** point on V, as expressed in (4).

Vi = Xn 2m Unmmax(0,1 — |xls —m|) max (0,1 — |yls —n|) 4)

The combination of STN module among input and ResNet50 enables a network to learn
automatically how to transfer feature maps, therefore assisting in minimizing the overall cost of network
training. The output value is located in the network that represents how to transfer every item of the training
data. The NAM is embedded as an element in ResNet50 which learns new weights in transfer learning, hence
the pre-trained weights are not necessary due to new modules in brain tumors. The combination of STN
increases the capability to extract features by enhancing the network’s spatial invariances in brain tumors.
The NAM increases the model’s robustness for distinguishing among different tumors which provides
accurate classification results. Table 2 displays the notation description for the equation.
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Table 2. Notation description

Symbols Description
w Window size
mv Median value
1P Denoising image
Imax Imin Max and min intensities
InG,j) New resized image
Imax N+ Imin n  New max and min intensities
x{,y5 Coordinate of each input image pixel
xb tf Coordinate of each output image pixel
S Input feature image’s coordinate point
T Output feature image’s coordinate point
Ay Local network’s output
Upm Pixel values in original graph U

4. RESULTS

The proposed STN-NAM is simulated using MATLAB R2020b with 16 GB RAM, Windows 10
operating system, Intel i5 processor, and 6 GB graphics processing unit (GPU). The performance metrics of
accuracy, recall, precision, F1-score, dice score coefficient (DSC), intersection over union (loU), and mean
loU (MloU) are evaluated by using (5) to (11). Accuracy defines the number of correct predictions divided
by an overall number of predictions. Recall determines the number of all true predictions (both negative and
positive) by a total number of predictions. Precision evaluates the number of true positives divided by a
number of true positives and false positives. F1-score is the combination of both precision and recall. TP
indicates true positive, FN represents false negative, TN denotes true negative, and FP determines false
positive.

TP+TN

ACCuraCy = TP+TN+FP+FN (5)
Recall = —= (6)
TP+FN
Precision = —— @)
TP+FP
F1—Score = —222 %100 (8)
2XTP+FP+FN
2XTP
bsc = (TP+FP)+(TP+FN) ©)
IoU=—02 (10)
TP+FP+FN
=L yk TP
Miou = k+1“=0 EN+FP+TP (11)

4.1. Performance analysis

The performance analysis of STN-NAM is presented in Tables 3 to 8. Table 3 displays the
segmentation results on the Figshare dataset. The existing techniques like DeepLab, Segnet, and V-Net are
compared with U-Net technique. The obtained results show that the U-Net achieves a high DSC of 0.9075
due to encoder-decoder pathways with skip connections which provide an accurate localization of structures
while preserving spatial data.

Table 3. Segmentation performance using Figshare dataset
Metrics  DeeplLab  Segnet  V-Net  U-Net
DSC 0.8205 0.8344 0.8475 0.9075
loU 0.8264  0.8475 0.8567 0.9168
MloU 0.8347  0.8520 0.8905 0.9355

Table 4 indicates the classification analysis on Figshare dataset. The performance of recurrent neural
network (RNN), deep neural network (DNN), CNN, and ResNet 50 are compared with proposed STN-NAM
in the ResNet50 technique. When compared with these existing techniques, the proposed technique achieves
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a high accuracy of 98.15% in Figshare dataset. Due to existing techniques having limitations in capturing
complex spatial relationships and long-range dependencies in the images of brain tumors, achieving lower
performance. The proposed STN-NAM effectively captures spatial variations and extracts appropriate
features which increase the accuracy of classification performances.

Table 4. Classification analysis using Figshare dataset
Metrics (%) RNN  DNN CNN  ResNet50 STN-NAM in ResNet50

Accuracy 86.50 87.36 90.66 94.89 98.15
Recall 84.26 86.44 88.14 91.38 97.48
Precision 87.05 88.47 89.06 89.95 97.50
F1-score 85.23 84.35 87.96 89.30 98.06

Table 5 determines the segmentation analysis for Brats 2019 dataset. The performances of DeeplLab,
Segnet, and V-Net are compared with the U-Net architecture. The U-net achieves a high DSC of 0.9247 as
compared to the existing techniques due to encoder-decoder pathways with skip connections which provides
accurate localization of structures.

Table 5. Segmentation analysis using Brats 2019 dataset
Metrics  DeeplLab  Segnet  V-Net  U-Net
DSC 0.8247  0.8311 0.8437 0.9247
loU 0.8397 0.8364 0.8533 0.9285
MloU 0.8421  0.8475 0.8667  0.9404

Table 6 represents the classification performance on Brats 2019 dataset. The performance of RNN,
DNN, CNN, and ResNet50 are compared with proposed STN-NAM in ResNet50. When compared to these
existing approaches, the proposed technique achieves a high accuracy of 99.24% due to it effectively
capturing spatial variations and extracts relevant features with a combination of STN and non-local attention,
which has accurate classification performances. Table 7 indicates the segmentation performance on Brats
2020 datasets. The performance of DeeplLab, Segnet, and V-net are compared with the U-Net technique
which achieves a high DSC of 0.9458 compared to existing techniques due to encoder-decoder pathways
with skip connections which provides accurate localization of structures.

Table 6. Classification analysis by employing Brats 2019
Metrics (%) RNN _ DNN CNN  ResNet50 STN-NAM in ResNet50

Accuracy 8454 83.67 8353 88.58 99.24
Recall 8324 8456 86.67 87.02 98.67
Precision 84.12 85.14 83.58 85.36 99.15
F1-score 82.06 8557 88.01 87.48 99.05

Table 7. Segmentation performance of Brats 2020 dataset
Metrics  DeeplLab  Segnet  V-Net  U-Net
DSC 0.8487  0.8347 0.8514 0.9458
loU 0.8567  0.8399 0.8658 0.9574
MloU 0.8677  0.8458 0.8699  0.9605

Table 8 represents the classification analysis on Brats 2020 datasets. The performance of RNN,
DNN, CNN, and ResNet50 are compared with the proposed technique. The proposed technique achieves a
high accuracy of 99.89% as opposed to RNN, DNN, CNN, and ResNet50 techniques as the proposed
approach effectively captures spatial variations and extracts relevant features with a combination of STN and
non-local attention, which has accurate classification performances.

Table 8. Classification evaluation utilizing Brats 2020
Metrics (%) RNN__ DNN CNN  ResNet50 STN-NAM in ResNet50

Accuracy 85.35 86.52 88.96 93.58 99.89
Recall 8420 85.06 87.58 90.25 99.04
Precision 86.28 86.98 87.24 89.55 99.25
F1-score 85.67 85.04 88.72 89.34 98.66
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4.2. Comparative analysis

Table 9 indicates the comparative analysis with existing techniques. The existing techniques like
MANet [16], PDCNN [17], mathematical model with 3D attention U-Net [18], K-SVM-SSD [19], and
CNN [20] are compared with STN-NAM in ResNet50 on different datasets. In relation to these existing
techniques, the proposed approach achieves high accuracy of 98.15%, 99.24%, and 99.89% in Figshare,
Brats 2019, and Brats 2020 datasets due to the ResNet50 effectively capturing spatial variations and
extracting appropriate features with the help of STN and non-local attention, which achieves accurate
classification performances.

Table 9. Comparative analysis with existing methods

Methods Datasets ~ Accuracy (%)  Precision (%) Recall (%) F1-score (%)
MANEet [16] 96.51 N/A N/A N/A
PDCNN [17] 97.60 97.00 97.00 97.00
Proposed method Figshare 98.15 97.50 97.48 98.06
DNN-3D attention U-Net [18] 98.90 99 98 98.50
Proposed method Brats 2019 99.24 99.15 98.67 99.05
KSVM-SSD [19] 99.15 99 98.53 98.4
CNN [20] 99.74 N/A N/A N/A
Proposed method Brats 2020 99.89 99.25 99.04 98.66

4.3. Discussion

The advantages of the proposed STN-NAM in ResNet50 and the disadvantages of existing
techniques are discussed here. The existing techniques have limitations as follows: MANet [16] suffers from
reduced effectiveness due to its heavy dependence on diversity and quality of training data. PDCNN [17]
does not handle complex data because of its vanishing gradient issues. The mathematical approach with 3D
attention U-Net [18] struggles to capture diverse tumor characteristics due to its attention mechanism which
does not possess the capacity to adequately subtle variations in tumor features. CNN [20] struggles with
detecting brain tumors from MRI while managing small or subtle tumors due to limited spatial resolution.
The proposed technique overcomes these existing limitations. The ResNet50 captures complex features or
patterns in brain tumors. The combination of STN increases the capability for extracting network features by
enhancing the network’s spatial invariances in brain tumors. NAM increases the model’s robustness for
distinguishing among different tumors which provide accurate classification results. By performing these
operations, the STN-NAM in ResNet50 achieves a high accuracy of 98.15%, 99.24%, and 99.89% in
Figshare, Brats 2019, and Brats 2020 datasets, respectively.

5. CONCLUSION

In this research, the STN-NAM is proposed in ResNet50 to classify the brain tumors accurately. The
ResNet50 is constructed with the help of STN and NAM techniques; in that, STN transforms spatial data in
MRI images of tumor patients into other space and keeps key information that reduces the model’s spatial
invariance. NAM identifies the relationship among normal and lesion areas in the feature space which
provides accurate classification of brain tumor. Mish activation function is utilized for replacing ReLU in
traditional ResNet-50 to address local information loss issues by effectively extracting the feature’s space
long-distance correlation in brain tumors. Through this process, the proposed approach achieves a high
accuracy of 98.15%, 99.24%, and 99.89% on three datasets as opposed to MANet, U-Net, and CNN. In the
future, the another improved DL methods like long short term memory (LSTM), RNN, or gated recurrent
unit (GRU) will be used to capture temporal relationships to improve the classification outcomes.
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