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 Colour sorting robots automate industries, but translating image data to robot 

movement is expensive and complicated. Vision sensors require a lot of 

processing power, which can slow down and strain the robot. Real-time 

colour sorting hardware and software integration complicates things. This 

work uses robotic operating system (ROS) to solve vision-guided colour 

sorting problems in Cartesian space. Ubuntu 20.04, ROS Noetic, a 

Raspberry Pi, a camera, and six servos. In Jupyter Lab, unified robotic 

description format (URDF) is used to build a virtual kinematic model, and 

Levenberg-Marquardt (LM) optimisation guides object manipulation. 

OpenCV image processing uses colour conversion, Canny edges, and 

midpoint estimation to detect coloured objects efficiently. The average servo 

movement error is 0.46 degrees, and the robot manipulator's final destination 

positioning error is 1.65 mm. The average object edge detection error is 0.33 

mm, and the red, green, blue (RGB) colour distance is 57.84. ROS-based 

robot manipulator achieves impressive Cartesian space colour sorting 

accuracy despite image processing challenges, enabling real-world 

deployment. 
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1. INTRODUCTION 

Malaysia is improving its industry via robotics and automation. But still behind Thailand and 

Vietnam [1]. The government promotes advanced consumer product production using robotics [2]. The 

flexible, multitasking robots aid in sorting chores [3], especially in recycling centres [4]. Traditional sorting 

robot manipulators have fixed item locations, joint angles, and sequencing [5]. Due to difficulty recognising 

and managing things, manipulators without vision are less productive [6]. Manipulators can also use machine 

vision to assess object position, colour, and size. Operations are more efficient, and worker costs are 

lower [7]-[9]. Robotic image processing demands instantaneous visual decision-making [10]. Thus, smooth 

functioning demands powerful hardware and efficient image-processing techniques [11]. OpenCV is essential 

to robotic image processing, offering picture filtering, feature extraction, object detection, tracking, and 

posture estimation [12]-[15]. It operates effortlessly on Windows, Linux, and MacOS for robot deployment at 

diverse locations. It runs complicated robots on resource-constrained embedded devices and powerful 

desktops [16], [17]. Colour is essential for image processing and object detection . Red, green, blue (RGB) 

colour spaces strongly impact object detection. A robotic arm using a PixyCMU camera sensor detected 
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coloured items with 80% accuracy [18] and dimensional shapes with 98.33% accuracy [19] despite lighting 

sensitivity. Image segmentation, object recognition, and retrieval use edge detection in computer vision [20], 

[21]. The Canny edge detector is best for accuracy, noise robustness, and efficiency [22]. 

Planning and controlling visual robot movement data requires precise algorithms [23]. Low 

dexterity makes robot manipulators grasp poorly [24]. Enhancing robot object capture perception is 

research [25]. Robots measure size and strength with stereoscopic, monovision, and 3D cameras [26]. To 

properly manoeuvre robotic manipulators, kinematic motion planning analyses joint movements and 

workspace limits [27]. In forward kinematics (FK), joint angles and link lengths define the end-effector 

position, while in inverse kinematics (IK), joint angles determine the desired pose [28]. Practical applications 

require FK and IK, but FK is easier to implement [29]. IK solves nonlinear equations using Newton-Raphson 

or optimisation [30]. IK scenarios benefit from the efficient Levenberg-Marquardt (LM) algorithm [31]. IK is 

computationally intensive. Therefore, robot complexity, precision, and real-time constraints are a concern. 

Sensors and servos hinder robot manipulator troubleshooting. Robotic operating system (ROS) GPU speeds 

up IK computations for optimisation and sophisticated kinematic models. ROS, computational optimisation, 

specific libraries, and processing capacity enable accurate robot operations. 

Previous research emphasises the benefits of machine vision and robotic arms for quick colour 

sorting but also highlights real-time image processing, colour space selection, edge detection, and robot-

environment interaction issues. RGB and Canny edge detection will be used to construct an OpenCV colour 

and edge detection method. Second, image object and destination positions can be converted to Cartesian 

coordinates for robot manipulator motion planning. Forward and enhanced IK are implemented on a ROS-

based robot manipulator using the LM algorithm to improve motion efficiency. 

 

 

2. KINEMATICS EQUATION 

2.1.  Kinematic model 

The traditional Denavit-Hartenberg (DH) modelling method is widely used to establish a link 

coordinate system for each joint in robotic manipulators. This approach assigns specific parameters to define 

the relative positions and orientations of adjacent links, ensuring consistency in kinematic analysis. The DH 

parameters of the 6-DOF robot manipulator used in this work are presented in Table 1. 
 
 

Table 1. DH parameters of 6-DOF robot manipulator used in this work 
Joint Ɵi (°) αi-1 (°) ai (mm) di (mm) 

J0 0 0 0 143.5 

J1 Ɵ1 Π/2 0 28 
J2 Ɵ2 0 83 0 

J3 Ɵ3 0 83 0 

J4 Ɵ4 - Π/2 0 72.5 
J5 Ɵ5 - Π/2 0 116 

 

 

2.2.  Forward kinematic 

Robot manipulator operation relies on FK to translate joint angles into end-effector position and 

orientation. It checks the precision of servo movement and detects errors that cause rotation instability. 

Applying homogeneous transformation matrices that represent rotations and translations based on the DH 

parameters in Table 1 can sequentially transform the position and orientation of each link's origin until the 6-

DOF robot manipulator's end-effector. Therefore, the coordinate for the centre point of the end-effector (ECP) 

can be calculated by using the transformation matrix, 𝑇1
6 as (1). In (1) can be expressed in the transformation 

matrix, T form, as (2). Derive the six-dimensional coordinates of the manipulator's pose by transforming the 

matrix, T, to achieve a comprehensive solution for the positive kinematics of the manipulator. 
 

𝑇1
6 =  𝑇0

1𝑇1
2𝑇2

3𝑇3
4𝑇4

5𝑇5
6 (1) 

 

𝑇 =  [

𝑎𝑥 𝑏𝑥 𝑐𝑥 𝑝𝑥

𝑎𝑦 𝑏𝑦 𝑐𝑦 𝑝𝑦

𝑎𝑧 𝑏𝑧 𝑐𝑧 𝑝𝑧

0 0 0 1

] (2) 

 

2.3.  Optimised inverse kinematics using Levenberg-Marquardt 

The LM optimisation of IK can be used to minimise the difference between the current end-effector 

position and the desired target position. The inverse kinematic controls the servo motors to the desired 

location. Firstly, the position error, Pe is calculated using (3) by subtracting the initial coordinate (𝑥0, 𝑦0 , 𝑧0) 
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with the target coordinate (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡). Then, the LM pseudo-inverse (LMPI) is implemented using (4). In this 

phase, the initial joint variable values, e.g., all joint variable values, are set to 0. LMPI is an iterative 

procedure that will stop when the convergence joint variable values with the given end-effector position are 

achieved. 

 

𝑃𝑒 = [(𝑥𝑡 − 𝑥0), (𝑦𝑡 − 𝑦0), (𝑧𝑡 − 𝑧0) (3) 

 

𝐿𝑀𝑃𝐼 =  (  𝑇𝑖
𝑗

+  𝜆𝐼 )−1 (4) 

 

where, 𝐼 is identity matrix, 𝜆 is damping parameter, and 𝑇𝑖
𝑗
 is transformation matrix for each joint. 

Then, the joint velocity, JVi, for each joint of the robot manipulator is calculated using (5): 

 

𝐽𝑉𝑖 = 𝐿𝑀𝑃𝐼 × 𝑃𝑒 (5) 

 

JAi is added with the JVi for each joint angle to obtain the new angle, JA_Newi, using (6): 

 

𝐽𝐴_𝑁𝑒𝑤𝑖  =  𝐽𝐴𝑖  +   𝐽𝑉 𝑖 (6) 
 

If the position error is less than the tolerance value, that is 0.0001, then the optimisation is converged. 

 

 

3. METHOD 

3.1.  Hardware structure of the robot manipulator 

Figure 1 shows the 6-DOF Yahboom DOFBOT arm made of anodised aluminium alloy used in this 

study. A Raspberry Pi processor, Arduino Mega expansion board, and I2C servo bus are included. The servo 

bus controls five 15 kg YB-P15M servo motors and one Yahboom 6 kg gripper motor. The manipulator also 

has a 640×480 vision sensor with a 30 fps frame rate and 110-degree view angle. With an error margin of 

less than 1 degree, each servo motor can cover 180 degrees. The processor runs Ubuntu 20.04 and ROS 

Noetic. A graph paper is placed before the robot manipulator to test the pick-and-place target location (XY-

coordinate). This graph paper states that the smallest coordinate resolution is 1 mm. This robot manipulator 

uses six servos: ServoID_1, ServoID_2, ServoID_3, ServoID_4, ServoID_5, and Servo_Gripper. A laser 

beam marks the end-effector's final graph paper position. DOFBOT robot manipulator translations peak at 

34.4 cm. This study's longest linear distance for testing is 16.6 cm due to the Z-axis, which must always face 

down to track the end-effector through the laser beam. 

 

 

 
 

Figure 1. A DOFBOT Yahboom 6-DOF robot manipulator is used in this work 

 

 

3.2.  Object and colour detections 

Image processing identifies things, the OpenCV library was used. Image processing-based color and 

object detection are shown in Figure 2. The code started RGB webcam recording. To simplify processing, 

pictures, Figure 2(a), were converted to grayscale, Figure 2(b). Image processing algorithms process one-

third of data, making them computationally light and accelerating real-time apps. Grayscale and Gaussian 

images were blended to remove sensor limitations, light fluctuations, and edge detection mistakes. A low-

pass filter blurs edges and removes high-frequency noise to smooth the image, as in Figure 2(c). Object 

boundaries are found using Canny edge detection, Figure 2(d). Hysteresis thresholding finds essential edges. 

Strong edges with gradient magnitudes above the high threshold are accepted instantaneously. Between low 
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and high thresholds, edge connections must be more substantial. Greater image intensity robustness and noise 

reduction. Next, the object's midpoint was calculated for accurate pick-and-place. This experiment uses 

squares, and (7) locates the midpoint of the square, as shown in Figure 2(e). 

 

𝑀1 =  
√(𝑌1 − 𝑋1)2+ (𝑌2 − 𝑋2)2

2
     (7) 

 

 

     
(a) (b) (c) (d) (e) 

 

Figure 2. The captured image: (a) is converted, (b) a grayscale image, (c) Gaussian filter is applied for edge 

detection improvement, (d) Canny edge detection is applied to detect the edge of the object, and (e) the 

centroid of the detected object is computed 

 

 

3.4.  Image-to-coordinate translation for motion planning 

Image-to-coordinate translation involves converting the information captured by the robot's vision 

system (images) into precise coordinates the manipulator can use to navigate its workspace and interact with 

the objects. A homogeneous transformation matrix is used for this purpose. It enables one to find the position 

of a point in the robotic arm base frame, given the position of a point in the camera reference frame. To do 

this, the camera lens is parallel to the surface. The pixel resolution must be known as pixel_res. It can be 

calculated by using (8): 
 

𝑝𝑖𝑥𝑒𝑙_𝑟𝑒𝑠 =  
𝑤𝑖𝑑𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑐𝑚

𝑤𝑖𝑑𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙
 (8) 

 

The computation of the XY-coordinates, (𝑥𝑐𝑜𝑜𝑟 , 𝑦𝑐𝑜𝑜𝑟) can be transformed into SI by using (9) and (10), with 

𝑥𝑝𝑖𝑥𝑒𝑙  and 𝑦𝑝𝑖𝑥𝑒𝑙  are the total number of pixels to reach these points. 
 

𝑥𝑐𝑜𝑜𝑟  =  𝑥𝑝𝑖𝑥𝑒𝑙 ×  𝑝𝑖𝑥𝑒𝑙_𝑟𝑒𝑠 (9) 
 

𝑦𝑐𝑜𝑜𝑟  =  𝑦𝑝𝑖𝑥𝑒𝑙 ×  𝑝𝑖𝑥𝑒𝑙_𝑟𝑒𝑠 (10) 
 

The relationship between the object's position from the robot and its position in the image frame can be 

calculated using (11): 
 

𝑃𝑅 = 𝐻𝐶
𝑅 × 𝑃𝐶  (11) 

 

where, 𝑃𝑅 is the position of the object from the robot frame, 𝑃𝐶  is the position of the object from the camera 

frame, and 𝐻𝐶
𝑅  is the homogenous relationship between 𝑃𝑅 and 𝑃𝐶 . 

Then, the homogenous relationship between the object location from the viewpoint of the robot 

frame and camera frame, 𝐻𝐶
𝑅 , can be defined as (12): 

 

𝐻𝐶
𝑅  =  [𝑅𝐶

𝑅 𝑑𝐶
𝑅 ∗ ∗

0 0 0 1
] (12) 

 

where, 𝐻𝐶
𝑅  is the homogenous relationship between 𝑃𝑅 and 𝑃𝐶 , 𝑅𝐶

𝑅 is the rotation from the robot frame to the 

image frame, 𝑑𝐶
𝑅 is the displacement from the robot frame to the image frame, and ∗ leave as blank. 

The rotation of the robot frame to the camera frame, 𝑅𝐶
𝑅  this can be calculated using (13): 

 

𝑅𝐶
𝑅 = [

𝑐𝑜𝑠(𝜃𝑥) −𝑠𝑖𝑛(𝜃𝑥) 0

𝑠𝑖𝑛(𝜃𝑥) 𝑐𝑜𝑠(𝜃𝑥) 0
0 0 1

] × [

1 0 0
0 𝑐𝑜𝑠(𝜃𝑦) −𝑠𝑖𝑛(𝜃𝑦)

0 𝑠𝑖𝑛(𝑦𝜃𝑦) 𝑐𝑜𝑠(𝜃𝑦)

] (13) 
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where, 𝜃𝑥 is the x rotation of the robot angle to the camera angle and 𝜃𝑦 is the y rotation of the robot angle to 

the camera angle. 

The displacement of the robot frame and camera frame, 𝑑𝐶
𝑅 is determined by using (14). The 

displacement can be measured using a ruler, which measures the displacement in the X-axis and Y-axis 

between the robot and camera frames. 
 

𝑑𝐶
𝑅 = [𝑥𝑑 , 𝑦𝑑] (14) 

 

where, 𝑥𝑑 is the displacement from the robot frame to the camera frame along the X-axis and 𝑦𝑑  is the 

displacement from the robot frame to the camera frame along the Y-axis.  

After the homogenous relationship is calculated, the object's position in the real world can be 

obtained through (15): 
 

𝑃𝑅 = 𝐻𝐶
𝑅 × [

𝑥𝑐𝑜𝑜𝑟

𝑦𝑐𝑜𝑜𝑟

0
1

] (15) 

 

3.5.  Performance analysis 

The robot manipulator's pick-and-place accuracy for sorting must be tested using end-effector 

position precision and camera image object recognition accuracy. We evaluated the servo motor angle and 

end-effector location. The latter checks the object's edge colour and size. The robotic manipulator's whole 

motion was carefully analysed for servo motors. Smoothness variations like binding or jerking could suggest 

mechanical faults were checked. The servo motor's accuracy was tested using its embedded encoder, a 

feedback sensor that captures output angle data corresponding to input commands. In (16) was used to 

compute the servo motor absolute error. An average error value was calculated after ten replications to ensure 

statistical robustness and eliminate random fluctuations. 
 

|𝑆𝑒|  =  𝜃𝐼  −  𝜃𝑂 (16) 
 

where, 𝑆𝑒 is angle error of the servo motor, 𝜃𝐼 is input angle of the servo motor, and 𝜃𝑂 is output angle of the 

servo motor. 

The robot manipulator uses IK to analyse the end-effector's position to reach target positions in 

Cartesian space (x, y). After calculating joint angles using IK, the manipulator moves. After that, the end-

effector's final position is accurately recorded. In (17) quantifies accuracy using the Euclidean distance (Ed). 

This distance represents the difference between the target position (x1, y1) and the end-effector's location (x2, 

y2). A camera on a robot manipulator measured RGB values of paper prints for colour detection analysis. The 

camera's RGB values are compared to the true values to determine colour detection accuracy. As shown in 

Table 2, the test is repeated with different colours.  
 

 

Table 2. The reference colours used in the colour detection experiment 
RGB value HEX Value Colour RGB Value HEX Value Colour 

(255,0,0) #FF0000 
 

(65,135,90) #41875A  

(0,255,0) #00FF00 
 

(50,220,40) #32DC28  

(0,0,255) #0000FF 
 

(100,100,100) #646464  

(0,20,40) #001428 
 

(210,165,135) #D2A587  

(40,20,0) #281400 
 

   

 
 

The error (𝑅𝑒 , 𝐺𝑒 , 𝐵𝑒) between measured and real RGB values is calculated using (17). Colour 

distance error is a quantitative measure of the difference between two RGB colours. In (19) and (20) 

calculate the colour distance, |∆𝐷| error using the Euclidean equation for RGB and its percentage. 
 

𝐸𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (17) 
 

|𝑅𝑒𝐺𝑒𝐵𝑒|  =  (𝑅𝑚  −  𝑅𝑟), (𝐺𝑚 − 𝐺𝑟), (𝐵𝑚 − 𝐵𝑟) (18) 
 

where, 𝑅𝑚, 𝐺𝑚 , 𝐵𝑚 are the measured RGB value by the camera and 𝑅𝑟 , 𝐺𝑟 , 𝐵𝑟  are the real RGB value 
 

|∆𝐷|  =  √(𝑅𝑚  −  𝑅𝑟)2 + (𝐺𝑚 − 𝐺𝑟)2 + (𝐵𝑚 − 𝐵𝑟)2 (19) 
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where, 𝑅𝑚, 𝐺𝑚 , 𝐵𝑚 are the measured RGB value by the camera and 𝑅𝑟 , 𝐺𝑟 , 𝐵𝑟  are the real RGB value. 

 

|∆𝐷%|  =  (
𝐶𝑚− 𝐶𝑟

𝐶𝑟
) ×  100 (20) 

 

where, 𝐶𝑚 is the component of measured RGB value by the camera (𝑅𝑚, 𝐺𝑚, 𝐵𝑚) and 𝐶𝑟 is the component of 

real RGB value (𝑅𝑟 , 𝐺𝑟 , 𝐵𝑟). 

This study evaluates Canny edge detection in a camera system. The test subject is a cubic object 

carefully positioned orthogonal to the camera's field of view for edge detection. The cubic's estimated edge 

profile is then extracted using the Canny edge detection algorithm. The cubic width is calculated based on the 

number of pixels in the detected edge region. In (8) calculates pixel resolution, which (21) uses to convert 

pixel count to width. This estimated width is compared to the cubic object's actual width. The experiment is 

meticulously replicated to find its average accuracy value to reduce random fluctuations and improve 

evaluation robustness. Ten different-sized objects are used in this experiment. 
 

𝑤𝑐  =  𝑛 ×  𝑝𝑖𝑥𝑒𝑙_𝑟𝑒𝑠 (21) 
 

where, 𝑛 is the number of pixels that fall within the detected region. 

 

  

4. RESULTS AND DISCUSSION 

4.1.  Servo angle analysis 

Table 3 shows the results of the servo angle performance analysis. Each servo motor was rigorously 

tested during dynamic motion by the robot manipulator. To achieve this, a PC terminal was used to command 

Servo_1, Servo_2, Servo_3, Servo_4, and Servo_5 to position themselves at 40°, 50°, 10°, 30°, and 50°. The 

encoders reported the achieved angles after servo movements. The measured values were (40°, 51°, 10°, 29°, 

and 50°), indicating servo errors of (0°, 1°, 0°, -1°, and 0°). The calculated average absolute error across all 

trials was 0.4°, which was remarkable. Further analysis showed that each servo motor had a maximum error 

of+1° or -1°. Motor positions and speeds have less jitter or rapid fluctuations, which accounts for this high 

accuracy. The robot manipulator's digital bus servo motors' low jitter shows their precision and stability, 

proving its suitability for high-precision applications. It benefits pick and place operations in colour sorting, 

which require high positional accuracy and control. 
 

 

Table 3. Result of servo motors analysis 

#/Servo_ID 
Absolute error (⁰) 

Average absolute error (⁰) 
1 2 3 4 5 

1 0 1 0 -1 0 0.4 
2 1 1 0 -1 0 0.6 

3 1 1 0 -1 0 0.6 

4 1 0 0 -1 0 0.4 
5 1 0 0 0 0 0.2 

6 1 0 0 0 1 0.4 

7 0 0 0 0 1 0.2 
8 0 1 0 0 1 0.4 

9 0 1 0 0 1 0.4 

10 1 -1 -1 -1 1 1 

Total average error (mm) 0.46 

 

 

4.2.  End-effector's position analysis 

Based on the IK with LM optimisation, Table 4 shows the end-effector's final position calculated by 

Ed. Using 1-millimetre units, this table shows the end-effector's trajectory on a Cartesian plane with X and Y 

axes. Trials 8-10 had more significant errors when the end-effector extended further along the X-axis and the 

Servo_2 angle exceeded 99°. These increased errors may be due to the control system's inability to 

manipulate the manipulator at long distances precisely or the robot's physical constraints. Although these 

occasional deviations occurred, 70% of experiments yielded promising results with errors less than 1 mm, 

proving the system's accuracy. The average error across all trials was 1.65 mm, bolstering the system's 

potential for moderate positional precision applications. 

 

4.3.  Object colour estimation analysis 

Table 5 compares the robot manipulator's camera's measured colour values and hexadecimal codes 

to the reference colours. Visual inspection shows that measured colours are consistently darker than 
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references. Without additional lighting during the experiment, this discrepancy is perceived. The experiment 

used only the room's ambient lighting, reducing the illumination of the analysis area. Thus, the observed 

colour shift is attributed to this reduced lighting level. Even though the darkness is visible, the colour 

difference is negligible. Nevertheless, the measured colours are still within the experiment's parameters and 

acceptable for accurate colour detection. To address this concern, we acknowledge the importance of 

investigating the variability in colour detection under different lighting conditions under a systematic 

experiment in future. 
 
 

Table 4. Result of end-effector's position analysis 

# 
Target position Final position 

Euclidean error from the target position, Ed (mm) 
Xcoor (mm) Ycoor (mm) Xcoor (mm) Ycoor (mm) 

1 0 0 0 0 0 
2 0 10 0 10 0 

3 0 20 0 20.5 0.5 

4 0 30 0 31 1 

5 0 40 0 41 1 

6 20 0 20 0 0 

7 30 0 30 0 0 
8 40 0 43 4 5 

9 50 0 49 2.9 3 

10 60 0 63 5.2 6 
Average error (mm) 1.65 

 

 

Table 5. Result of colour detection by the robot manipulator's camera 
Reference colour Measured colour Reference colour Measured colour 

HEX Colour HEX Colour HEX Colour HEX Colour 

#FF0000 
 

#E62323 
 

#41875A 
 

#1B522E 
 

#00FF00 
 

#37FF1C 
 

#32DC28 
 

#3EB215 
 

#0000FF 
 

#0028FA 
 

#646464 
 

#2A352A 
 

#001428 
 

#040D10 
 

#D2A587 
 

#A07459 
 

#281400 
 

#0B0D0C 
 

    

 

 

Using a similarity-based experiment, Table 7 analyse the robot manipulator's colour detection 

abilities. Table 6 shows higher Ed and ∆D values, which indicate more significant colour detection 

discrepancies. The smallest distance, 25.32 (from #001428), indicates accurate detection, while #646464's 

maximum distance was 95. The more comprehensive range suggests that colour detection performance varies 

widely across colours. Notably, the observed errors, ranging from 25 to 95 in colour distance, are acceptable. 

The average colour distance across all measurements is 57.84, confirming the excellent performance. The 

minimum deviation of 4.6% suggests little difference, while #646464's maximum of 21.3% matches the 

previously observed more significant error for this colour. This higher percentage difference is attributed to 

"poor lighting" during the experiment. 
 
 

Table 6. The result of colour detection by the robot manipulator's camera is based on similarity values 

# 
Input colour Measured colour Euclidean distance, Ed 

Ed for RGB, ∆D 
Rr Gr Br Rm Gm Bm Re Ge Be 

1 255 0 0 230 35 35 25 35 35 55.45 
2 0 255 0 55 255 28 55 0 28 61.72 

3 0 0 255 0 45 250 0 45 5 45.28 

4 0 20 40 4 13 16 4 7 24 25.32 
5 40 20 0 11 13 12 29 7 12 32.16 

6 65 135 90 27 82 46 38 53 44 78.67 

7 50 220 40 62 178 41 12 42 1 43.69 
8 100 100 100 42 53 42 58 47 58 94.54 

9 210 165 135 160 116 89 50 49 46 83.77 

Average Ed 57.84 

 

 

4.4.  Object's width estimation analysis 

Table 7 shows the Canny edge detection results. The absolute error is calculated by comparing the 

estimated object width to its reference values. This table shows that each object has absolute errors of 0.2 to 
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0.8 mm. Due to poor lighting and the camera's inability to detect the larger object's edge, Object 1 has the 

highest absolute error of 0.8 mm, indicating a more significant edge detection discrepancy. However, the 

consistency of the errors suggests that the Canny edge detection algorithm estimates object widths accurately. 

 

 

Table 7. Result of object's width estimation  
Object Reference object's width (mm) Estimated object's width, 𝑤𝑐 (mm) Absolute error (mm) 

1 90.0 90.8 0.8 

2 54.0 54.3 0.3 

3 45.5 45.3 0.2 
4 30.0 30.3 0.3 

5 75.0 75.2 0.2 

6 62.5 62.7 0.2 
7 81.0 81.5 0.5 

8 40.0 40.2 0.2 

9 67.5 67.8 0.3 

10 50.0 50.3 0.3 

Average error (mm) 0.33 

 

 

Overall, the proposed system outperforms traditional sorting robots using real-time image 

processing with ROS and OpenCV, enabling dynamic adjustments and higher sorting accuracy. It balances 

efficiency and cost-effectiveness, achieving precision with affordable hardware like Raspberry Pi and 

Arduino, unlike more expensive systems that require high computational power. Its modularity and flexibility 

allow adaptation to various sorting tasks, making it a versatile solution for industrial applications. 

 

 

5. CONCLUSION 

A 6-DOF sorting robot was created and tested using servos, vision, advanced kinematic models, and 

optimisation. In this investigation, the arm's pick-and-place precision was 0.46° absolute servo error and 1.65 

mm positioning error. The average Ed of 57.84 in RGB values in colour detection trials is good but needs 

better lighting or image processing to improve accuracy. These results affect industrial automation, robotic 

system integration precision and real-time jobs like colour-based sorting. Advanced robotic applications in 

adaptive and autonomous contexts can benefit from LM IK. This study showed depth cameras reduced robot 

object recognition and spatial awareness errors. Machine learning or more significant optimisation for real-

time decision-making can improve manipulator accuracy and efficiency. Using the robotic manipulator for 

industrial lines or precision agriculture beyond sorting could demonstrate its adaptability and impact. Further 

improvements can automate and address the growing need for intelligent and efficient robotic solutions in 

many sectors by expanding robotic system adoption. 
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