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Accurate brain tumor segmentation is essential for managing gliomas, which
arise from brain and spinal cord support cells. Traditional image processing
and machine learning methods have improved tumor segmentation but are
often limited by accuracy and noise handling. Recent advances in deep
learning, particularly using U-Net and its variants, have achieved significant
progress but still face challenges with heterogeneous data and real-time
processing. This study introduces a hybrid bilateral mean filter for noise
reduction coupled with an ensemble deep learning model that integrates U-
Net, InceptionV2, InceptionResNetV2, and W-Net to enhance segmentation
accuracy and efficiency. Additionally, we propose a novel modified African
vulture optimization algorithm (MAVOA) to further refine segmentation
performance. Evaluated on the BraTS 2020 dataset, our model achieved a
loss of 0.023 with strong performance metrics: 98.2% accuracy, 97.2% mean
intersection over union (I0U), and 99.1% precision. It effectively segmented
glioma subregions with dice scores of 0.96 for necrotic areas, 0.97 for
edema, and 0.91 for enhancing regions. On the BraTS 2021 dataset, the

model maintained high accuracy 96.4%, mean 10U 95.9%, and dice
coefficients of 0.91 for necrotic areas, 0.95 for edema, and 0.92 for
enhancing regions.
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1. INTRODUCTION

Glioblastoma is the most common and aggressive type of primary brain tumor. Statistics reveal that
85-90% of all primary central nervous system (CNS) tumors are brain tumors. Newly diagnosed cases of
brain and CNS cancer are responsible for about 3% of all cancers globally. In European countries, these cases
are five times higher than in Asian countries. Early-stage diagnosis and treatment require automatic
segmentation of brain tumors, which is expensive and time-consuming if done manually. Recent
advancements in image processing and computer vision have significantly contributed to this area.

Gliomas, a type of brain tumor, are categorized into low-grade glioma (LGG), which grows slowly,
and high-grade glioma (HGG), which can be life-threatening. According to the World Health Organization,
HGG tumors are critical, with a maximum survival rate of two years, while LGG-affected patients can have
several years of life expectancy [1]. Despite advancements in imaging, radiotherapy, and surgical techniques,
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some tumors remain untreatable. Among various imaging techniques, magnetic resonance imaging (MRI) is
preferred for brain tumor diagnosis due to its ability to produce detailed and clear images compared to
computed tomography (CT) scans [2]. Brain tumors typically have three regions: necrotic and non-enhancing
tumor, peritumoral edema, and enhancing tumor [3]. Recent advancements in medical imaging and machine
learning have improved brain tumor segmentation by enhancing diagnostic accuracy and reducing analysis
timecompared to manual methods [4]. Deep learning models, such as U-Net, have advanced segmentation
precision through data augmentation and architecture optimization. However, challenges remain, including
high computational demands and noise handling [5]. Research is focusing on integrating multiple models and
optimizing preprocessing to address these issues, aiming for more robust and efficient methods suitable for
diverse clinical settings. Additionally, advancements in heterogeneous system-on-chip (SoC) based
simulations, such as the Lattice-Boltzmann interactive blood flow simulation pipeline [6] and the Lattice-
Boltzmann visual simulation system [7], highlight strategies for optimizing processing speed and integrating
specialized hardware. To provide a comprehensive overview of these developments, Table 1 summarizes key
literature contributions, their methodologies, and performance metrics.

Table 1. Summary of related work

Authors Methods used Advantages Limitations Performance
Xu etal. LSTM-based multi- Captures long-term High computational Dice score: 0.84,
2019 [8] modal U-Net dependencies; good for complexity; potential sensitivity: 0.81

sequential MRI data overfitting
Raza et al. dResU-Net (3D deep High segmentation accuracy; High computational Dice similarity
2023 [9] residual U-Net for effective for multimodal MRI requirements score 0.87 for the
MRI) data (WT) 0.77 (CT),
and 0.74 for (ET)
Das et al. Cascaded CNN Good for 3D MR, High memory usage; longer Dice score: 0.87,
2021 [10] hierarchical processing training times specificity: 0.89

Rajbdad et al.

Automated fiducial

improves feature capture
Reduces manual intervention;

Less effective on complex

Precision: 89%,

2018 [11] points detection efficient for human body brain structures recall: 88%
segmentation

Vijay et al. Residual SPP- Improved feature extraction Requires large-scale data for Dice score: 0.89,

2023 [12] powered 3D U-Net with spatial pyramid pooling; training specificity: 95.2%,
robust segmentation sensitivity: 93.8%

Yang et al. MRI texture analysis Discriminative features for Older method; lacks advanced Accuracy: 87%,

2015 [13] for glioblastoma survival prediction and deep learning techniques accuracy: 82%

classification molecular subtype analysis
Montaha et U-Net for 3D MRI Efficient architecture for Requires preprocessing; Dice score: 0.90,
al. 2023 [14] tumor segmentation volumetric data limited scalability sensitivity: 92%,
specificity: 91%
Sangui et al. 3D U-Net for brain Strong segmentation High computational cost Dice score: 0.88,
2023 [15] tumor segmentation performance with enhanced precision: 90%,

Soltaninejad

Multi-resolution

spatial coherence
High efficiency and scalability

Limited to specific MRI

recall: 87%
Dice score: 0.85

et al. 2020 encoder-decoder for multi-resolution modalities (WT), 0.82 (CT).

[16] networks segmentation tasks

Isensee etal.  nnU-Net for brain Self-configuring network; Computationally intensive; Dice score: 0.91,

2020 [17] tumor segmentation superior performance across requires fine-tuning for specific  sensitivity: 94.5%,
diverse datasets tasks specificity: 93%

Alietal. Ensemble of 2D/3D Combines the strengths of Complex training process; high  Dice score: 0.90

2020 [18] U-Nets both 2D and 3D models for computational demand (WT), 0.85 (CT),
segmentation 0.83 (ET).

Ren et al. Faster R-CNN Real-time performance; Not specifically designed for Accuracy: 93%,

2017 [19] effective object detection medical segmentation FPS: 7

Traditional methods such as thresholding, region growth, and watershed algorithms struggle to
detect tumor boundaries and handle appearance variability. Machine learning techniques, such as neural
networks and support vector machines (SVMs), improve accuracy while relying heavily on feature selection,
which limits performance. Deep learning models also struggle with generalization across datasets and
imaging conditions. While U-Net and its variants perform advanced segmentation tasks, there are still gaps in
the integration of multi-modal data for comprehensive tumor characterization [20]. A long short-term
memory (LSTM) multi-modal U-Net addresses temporal dependencies, but it requires additional
optimization for 3D data. Furthermore, alignment across imaging modalities remains a challenge, which
Vijay et al. [12] attempted to address with their symmetric non-rigid registration technique. However, more
progress is required to develop an end-to-end brain tumor segmentation solution.
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To address these challenges, this paper proposes a fully automated deep learning-based brain tumor
segmentation technique that combines different encoder-decoder convolutional models [21]. Our approach
integrates U-Net, InceptionResNetV2, and W-Net models which are recognized for their effectiveness in
medical image segmentation. Additionally, our approach addresses the limitations of prior work by
improving segmentation accuracy and ensures precise alignment and generalizability across different
imaging modalities, making it a robust solution for real-world clinical applications.

2. METHOD
The precise segmentation of glioma subregions from medical imaging data, crucial for treatment
planning and disease monitoring. Gliomas exhibit diverse characteristics in size, shape, and location, posing
challenges for accurate segmentation. Traditional methods to deep learning techniques have been explored,
yet achieving accurate and consistent segmentation remains a challenge. The implementation aims to
leverage hybrid filter,advanced convolutional neural networks (CNN) architectures such as U-Net, W-Net,
and InceptioResNetV2 and novel optimization algorithm to develop an ensembleas given in Figure 1, aiming
to improve segmentation accuracy. The main objectives of this study are as follows:
— Preprocessing: apply a hybrid bilateral mean filter, N4ITK bias field correction, and normalization to
reduce noise and improve feature extraction and classification performance.
— Segmentation: use an ensemble model combining U-Net, InceptionResNetV2, and W-Net architectures
for improved segmentation accuracy.
— Optimization: introduce a modified African vulture optimization algorithm (MAVOA) to optimize the
model's loss function.
— Evaluation: compare metrics such as accuracy, sensitivity, specificity, and area under the receiver
operating characteristic (ROC) curve (AUC) to assess performance.

Hybrid Filter, U-Net
Nommalization / \.
Pr Incepti Feature Segmented
BraT$ = Data Build cepton Exfraction
._b . . .
DataSet Processing ™ Splitting Ea Model ™ ResnetV2 [» & La (;u:)pli;w]th
? Ensembling ubclasses
MAVOA wae |7
Optmization

A

User

Figure 1. Architecture diagram

2.1. Data acquisition and preprocessing
The BraTS 2020 dataset is used for this study, consisting of multimodal MRI scans from glioma
patients. These scans, collected from multiple institutions, have been standardized to ensure consistency.
Each patient’s data set includes four MRI modalities:
T1-weighted (T1)
Post-contrast T1-weighted (T1ce)
T2-weighted (T2)
Fluid attenuated inversion recovery (FLAIR)

These modalities provide distinct contrasts essential for accurate tumor segmentation by offering
varied insights into tumor anatomy and pathology. The dataset includes expert-annotated labels for tumor
sub-regions, crucial for training supervised learning models. The labels are provided as masks for each MRI
slice, indicating pixel-wise classification of tumor sub-regions as follows:

— Necrotic and non-enhancing tumor core (NCR/NET): Label 1
— Peritumoral edema (ED): Label 2
— GD-enhancing tumor (ET): Label 3

Glioma segmentation using hybrid filter and modified African vulture ...(Bhagyalaxmi Kuntiyellannagari)
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To preprocess MRI images from the BraTS 2020 dataset, we performed a sequence of normalization
followed by noise reduction using a hybrid bilateral mean filter given in Algorithm 1. In medical MRI image
preprocessing, preserving edges while reducing noise is crucial for accurate diagnosis. The proposed filter
enhances the quality of MRI images. The bilateral filter preserves edges by considering both spatial and
intensity differences, while the mean filter reduces random noise. The proposed hybrid filtering algorithm
leverages the edge-preserving capabilities of the bilateral filter and the noise-reducing properties of the mean
filter. This combination is particularly effective for medical MRI images, where maintaining the integrity of
anatomical structures is critical.

Algorithm 1. Hybrid bilateral mean filter
1 Input: Original image I

Bilateral filter parameters: Ocolor and Ospatial

Mean filter window size: N
Output: Hybrid filtered image Inybria
Procedure: Bilateral Filtering:

Apply bilateral filtering to the original image to produce a

denoised version Idenoised

o U W N

~J

Tdencised (1, J) =bilateral filter (I,ocolor,ogspatial) (i,]))

Mean Filtering:
9 Apply mean filtering to the original image to obtain a smoothed
version Inean.

[ee)

10 N/2
hnean ) =5 Y SNG4 K+ D
k=-N/2
11 Hybrid Filtering:
12 Combine the results of the bilateral filtering and the mean
filtering
13 TIhybria (i, J)=Tdencisea(h,3) + (I(i,3)—Imean(i,J))
14 End

The hybrid bilateral mean filter is ideal for brain tumor segmentation as it preserves crucial tumor
edges and reduces noise, enhancing segmentation accuracy. Despite its computational demands, it can be
optimized for real-time use, making it valuable in clinical applications where precise and quick tumor
detection is critical. The bilateral filter is well-suited for brain MRI scans because it can be fine-tuned to
handle the subtle intensity differences between healthy tissue and tumor regions. By adjusting the o
parameter, the filter effectively reduces noise without losing critical tumor details. While it may not be ideal
for impulse noise, it excels in managing the Gaussian or Rician noise typically found in MRI scans. Proper
selection of o5 and o, ensures optimal performance, enhancing the clarity and accuracy of brain tumor
segmentation.

2.2. Tumor segmentation
2.2.1. U-Net architecture

U-Net is a CNN architecture optimized for high-resolution biomedical image segmentation [22]. It
starts with an input layer for images of shape (IMG_SIZE,IMG_SIZE,2)(IMG\_SIZE, IMG\ SIZE,
2)(IMG_SIZE,IMG_SIZE,?2), where IMG_SIZE denotes the spatial dimension and 2 represents the number
of input channels. The encoder path uses two convolutional layers with rectified linear unit (ReLU)
activations and He normal initialization, followed by max-pooling layers for down sampling. The
architecture progresses through blocks with 32, 64, 128, 256, and 512 filters, with the fifth block including a
dropout layer (rate 0.2). The bottleneck connects the encoder and decoder with two convolutional layers,
each with 512 filters. In the decoder path, up sampling layers replace pooling to restore spatial dimensions,
with each step followed by concatenation with corresponding encoder feature maps for precise localization.
The decoder uses blocks with 256, 128, 64, and 32 filters, each containing two convolutional layers. The
model concludes with a final convolutional layer (4 filters, 1x1 kernel) and a SoftMax activation to produce
the segmentation map. The model is compiled using the categorical cross-entropy loss function and the
MAVOA.

2.2.2. Inception Res-Net V2 architecture

InceptionResNetV2 is a sophisticated neural network architecture that combines Inception modules
with residual connections to enhance image recognition efficiency and accuracy. In the proposed work the
initial feature extraction occurs in the stem block, which includes convolutional and pooling layers to down
sample the input. This block starts with three convolutional layers: 32 filters (3x3, stride 2, no padding), 32
filters (3x3, no padding), and 64 filters (3x3, padding), followed by a max-pooling layer (3x3 pool size,
stride 2). It continues with a convolutional layer of 80 filters (1x1), another with 192 filters (3x3), and ends
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with a max-pooling layer (3%3 pool size, stride 2). The core architecture features Inception-ResNet blocks.
Inception-ResNet-A has parallel convolutional paths with various kernel sizes (1x1, 3x3, 5x5) and residual
connections. The Reduction-A block reduces spatial dimensions using pooling and convolutional layers.
Inception-ResNet-B follows, with more complex structures and residual connections, and Reduction-B
further reduces dimensions. Inception-ResNet-C consists of intricate convolutional paths and residual
connections. The network concludes with a global average pooling layer to reduce dimensions to 1x1, and a
dense layer for final classification. InceptionResNetV2 effectively merges inception and residual methods,
providing a powerful model for high-performance image recognition with efficient feature extraction.

2.2.3. W-Net architecture

W-Net is a deep learning architecture for image segmentation, especially effective for glioma sub
region segmentation in MRI images. It features two stacked U-Nets, allowing for progressive refinement of
segmentation results by using the output of the first U-Net as the input for the second. The first U-Net
includes an encoder path with sequential convolutional and max-pooling layers, increasing the number of
filters in each block (e.g., 32, 64, 128, 256), and a bottleneck layer to capture abstract features. The decoder
path restores spatial dimensions using up sampling and convolutional layers, decreasing the number of filters
(e.g., 256, 128, 64, 32). The output of the first U-Net is passed to the second U-Net, which has a similar
structure. The second U-Net refines the segmentation map with its own encoder and decoder paths, again
employing convolutional, max-pooling, and up sampling layers. The final output layer has filters matching
the number of segmentation classes, followed by a soft max activation for multi-class segmentation. W-Net is
compiled with loss functions like categorical cross-entropy, the MAVOA optimizer.

2.2.4. Ensemble model

The ensemble model integrates individual models, such as U-Net, InceptionResNetV2, and W-Net,
each providing segmentation predictions for MRI images. In this approach [23], the predictions from these
models are combined using an average weighting technique. For each pixel in the final segmentation map,
the predicted probabilities from U-Net, InceptionResNetV2, and W-Net are averaged. By leveraging the
strengths of these diverse models, the ensemble method enhances the accuracy and robustness of glioma
subregion segmentation, offering more detailed and precise results than any single model could achieve
alone. Table 2 shows the hyperparameters that are employed in the segmentation model.

Table 2. Details of hyperparameters
Hyperparameters  Details

Epochs 100
Batch size 16
Learning rate 0.001
Dilation rate 3
Dropout rate 0.2

2.3. Modified African vulture optimization algorithm

Nature-inspired optimization algorithms enhance deep learning in medical image analysis by
efficiently navigating complex data, improving diagnosis and treatment planning. In this aspect we proposed
a novel MAVOA algorithm, given in Algorithm 2 for image segmentation incorporates spatial awareness,
localized foraging, and adaptive mutation, enhancing its effectiveness for segmenting objects from images
with improved accuracy and spatial coherence.

Algorithm 2. Modified African vulture optimization algorithm for image segmentation
1 Input: Image I, Number of vultures N, Maximum iterations T, Parameters «,f
Output: Optimized segmentation S*
Initialization:
Randomly initialize wvultures' positions within the image space:
InitializeVultures (N,I)
Initialize best solution found so far:
best solution=None, best fitness=~
Main Loop:
for t=1 to T do:

W ~J oy U b WwN

12 Evaluate fitness for each vulture :EvaluateFitness(I,vultures)
17 Update vultures' positions:
13 UpdateVulturesPosition (I, vultures,best solution)

Select the best solution found so far:
current best solution,current best fitness=SelectBestSolution(vultures)

Glioma segmentation using hybrid filter and modified African vulture ...(Bhagyalaxmi Kuntiyellannagari)
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14 if current best fitness<best fitness then:
15
16 best solution=current best solution,best fitness=current best fitness
17 if stopping criterion met then:
18 break
19 Update Vultures' Positions:
20 UpdateVulturesPosition (l,vultures,best solution)
21 for each vulture v do:
22 Update vulture's position based on attraction and social
23 components:
24 update vulture position(l,v,best solution)
25  Fitness Evaluation:
;S EvaluateFitness (I, vultures)
o8 for each vulture v do:
29 Calculate fitness based on segmentation accuracy and spatial
30 coherence:
31 v.fitness=calculate fitness (I, v.position)
32 Utility Functions:
33 sum_of other vultures_influence (v,best_solution)
34 Calculate the sum of other vultures' influence on a vulture's
35 position.
36 Other utility functions (not explicitly shown) for initializing

selecting
the best solution,
Fitness Calculation:
calculate fitness(l,segmentation)calculate fitness(I,segmentation):
Compute segmentation accuracy and spatial coherence.
Combine accuracy and coherence into a single fitness value.

vultures,
and stopping criterion.

The AVOA for medical image segmentation is enhanced by including spatial awareness in the

fitness calculation, which penalizes incoherent solutions. Vultures' movements now incorporate a localized
foraging strategy and a dynamic exploration radius based on image context. Adaptive mutation adjusts

stren

gth and probability based on optimization progress. The fitness function also considers multiple

objectives, such as segmentation accuracy and spatial coherence, to ensure precise results.

3.

RESULTS AND DISCUSSION
The ensemble model generated a final segmentation map for the input MRI images by averaging

predictions from U-Net, InceptionResNetV2, and W-Net. This combined approach is visualized in Figure 2,
where each pixel in the segmentation map reflects the aggregated confidence of the models regarding the
presence of various glioma subregions.
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Figure 2. Glioma sub region segmentation of ensemble mode
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To enhance segmentation accuracy, optional post-processing steps such as thresholding,
morphological operations, or connected component analysis may be applied to the ensemble output. The
performance metrics for the ensemble model are as follows: accuracy of 98.2%, loss of 0.023, recall of 0.982,
mean intersection over union (IOU) of 0.972, dice coefficient of 0.96, precision of 0.991, sensitivity of 0.98,
and specificity of 0.981. The dice coefficients for specific glioma subregions were 0.96 for necrotic regions,
0.970 for edema, and 0.91 for enhancing regions. These metrics provide a detailed evaluation of the model's
effectiveness and highlight areas for potential optimization. Figure 3 displays the training and validation plots
for accuracy, loss, dice coefficient, and mean 10U.
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Figure 3. Graphical representation of accuracy, loss, dice coefficient, and mean 10U of the ensembling model

Additionally, Figure 4 presents a comparative analysis of metrics including recall, specificity,
sensitivity, and precision, contrasting the ensemble model's performance with that of region convolutional
neural network (RCNN), U-Net, and W-Net combined with a decision tree. This comparison underscores the
ensemble model’s superior performance in segmentation tasks. Our brain tumor segmentation
implementation can benefit from insights into real-time performance demonstrated by Lattice-Boltzmann
simulation methods [24]. The interactive blood flow simulation highlights strategies for optimizing
processing speed, while the SoC-based system underscores the advantages of specialized hardware. Adapting
these insights could enhance the efficiency and real-time capabilities of our segmentation approach [25].
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Figure 4. Comparison of metrics (recall, specificity, sensitivity, and precision) with other models

4. CONCLUSION

This study presents a novel approach for accurate glioma subregion segmentation from MRI data,
integrating a hybrid bilateral mean filter for preprocessing with an ensemble model comprising U-Net,
InceptionV2, InceptionResNetV2, and W-Net architectures. Additionally, the introduction of a MAVOA has
led to impressive performance metrics on BraTS 2020 data, with a loss of 0.023 and high accuracy 98.2%,
recall 98.2%, mean 10U 97.2%, dice coefficient 0.96, precision of 99.1%, sensitivity of 98%, and specificity
of 98.1%. The model effectively delineates glioma subregions, achieving dice coefficients of 0.96 for
necrotic areas, 0.97 for edema, and 0.91 for enhancing regions. On the BraTS 2021 dataset, the model
maintained high accuracy of 96.4%, mean 10U 95.9%, and dice coefficients of 0.91 for necrotic areas, 0.95
for edema, and 0.92 for enhancing regions. These findings demonstrate a significant advancement in the
precision and effectiveness of glioma segmentation, which can greatly impact clinical practice by enhancing
diagnosis, treatment planning, and disease monitoring. Future research should concentrate on clinical
validation, improving model generalizability, and improving interpretability through explainable artificial
intelligent (Al). Exploring new imaging modalities and incorporating the model into clinical systems could
help to advance neurooncology and patient care.
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