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 Accurate brain tumor segmentation is essential for managing gliomas, which 

arise from brain and spinal cord support cells. Traditional image processing 

and machine learning methods have improved tumor segmentation but are 

often limited by accuracy and noise handling. Recent advances in deep 

learning, particularly using U-Net and its variants, have achieved significant 

progress but still face challenges with heterogeneous data and real-time 

processing. This study introduces a hybrid bilateral mean filter for noise 

reduction coupled with an ensemble deep learning model that integrates U-

Net, InceptionV2, InceptionResNetV2, and W-Net to enhance segmentation 

accuracy and efficiency. Additionally, we propose a novel modified African 

vulture optimization algorithm (MAVOA) to further refine segmentation 

performance. Evaluated on the BraTS 2020 dataset, our model achieved a 

loss of 0.023 with strong performance metrics: 98.2% accuracy, 97.2% mean 

intersection over union (IOU), and 99.1% precision. It effectively segmented 

glioma subregions with dice scores of 0.96 for necrotic areas, 0.97 for 

edema, and 0.91 for enhancing regions. On the BraTS 2021 dataset, the 

model maintained high accuracy 96.4%, mean IOU 95.9%, and dice 

coefficients of 0.91 for necrotic areas, 0.95 for edema, and 0.92 for 

enhancing regions. 
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1. INTRODUCTION 

Glioblastoma is the most common and aggressive type of primary brain tumor. Statistics reveal that 

85-90% of all primary central nervous system (CNS) tumors are brain tumors. Newly diagnosed cases of 

brain and CNS cancer are responsible for about 3% of all cancers globally. In European countries, these cases 

are five times higher than in Asian countries. Early-stage diagnosis and treatment require automatic 

segmentation of brain tumors, which is expensive and time-consuming if done manually. Recent 

advancements in image processing and computer vision have significantly contributed to this area. 

Gliomas, a type of brain tumor, are categorized into low-grade glioma (LGG), which grows slowly, 

and high-grade glioma (HGG), which can be life-threatening. According to the World Health Organization, 

HGG tumors are critical, with a maximum survival rate of two years, while LGG-affected patients can have 

several years of life expectancy [1]. Despite advancements in imaging, radiotherapy, and surgical techniques, 

https://creativecommons.org/licenses/by-sa/4.0/
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some tumors remain untreatable. Among various imaging techniques, magnetic resonance imaging (MRI) is 

preferred for brain tumor diagnosis due to its ability to produce detailed and clear images compared to 

computed tomography (CT) scans [2]. Brain tumors typically have three regions: necrotic and non-enhancing 

tumor, peritumoral edema, and enhancing tumor [3]. Recent advancements in medical imaging and machine 

learning have improved brain tumor segmentation by enhancing diagnostic accuracy and reducing analysis 

timecompared to manual methods [4]. Deep learning models, such as U-Net, have advanced segmentation 

precision through data augmentation and architecture optimization. However, challenges remain, including 

high computational demands and noise handling [5]. Research is focusing on integrating multiple models and 

optimizing preprocessing to address these issues, aiming for more robust and efficient methods suitable for 

diverse clinical settings. Additionally, advancements in heterogeneous system-on-chip (SoC) based 

simulations, such as the Lattice-Boltzmann interactive blood flow simulation pipeline [6] and the Lattice-

Boltzmann visual simulation system [7], highlight strategies for optimizing processing speed and integrating 

specialized hardware. To provide a comprehensive overview of these developments, Table 1 summarizes key 

literature contributions, their methodologies, and performance metrics. 

 

 

Table 1. Summary of related work 
Authors Methods used Advantages Limitations Performance 

Xu et al. 

2019 [8] 

LSTM-based multi-

modal U-Net 

Captures long-term 

dependencies; good for 
sequential MRI data 

High computational 

complexity; potential 
overfitting 

Dice score: 0.84, 

sensitivity: 0.81 

Raza et al. 

2023 [9] 

dResU-Net (3D deep 

residual U-Net for 
MRI) 

High segmentation accuracy; 

effective for multimodal MRI 
data 

High computational 

requirements 

Dice similarity 

score 0.87 for the 
(WT) 0.77 (CT), 

and 0.74 for (ET) 

Das et al. 
2021 [10] 

Cascaded CNN Good for 3D MRI; 
hierarchical processing 

improves feature capture 

High memory usage; longer 
training times 

Dice score: 0.87, 
specificity: 0.89 

Rajbdad et al. 
2018 [11] 

Automated fiducial 
points detection 

Reduces manual intervention; 
efficient for human body 

segmentation 

Less effective on complex 
brain structures 

Precision: 89%, 
recall: 88% 

Vijay et al. 
2023 [12] 

Residual SPP-

powered 3D U-Net 

Improved feature extraction 

with spatial pyramid pooling; 

robust segmentation 

Requires large-scale data for 

training 

Dice score: 0.89, 

specificity: 95.2%, 

sensitivity: 93.8% 

Yang et al. 
2015 [13] 

MRI texture analysis 
for glioblastoma 

classification 

Discriminative features for 
survival prediction and 

molecular subtype analysis 

Older method; lacks advanced 
deep learning techniques 

Accuracy: 87%, 
accuracy: 82% 

Montaha et 
al. 2023 [14] 

U-Net for 3D MRI 
tumor segmentation 

Efficient architecture for 
volumetric data 

Requires preprocessing; 
limited scalability 

Dice score: 0.90, 
sensitivity: 92%, 

specificity: 91% 

Sangui et al. 
2023 [15] 

3D U-Net for brain 
tumor segmentation 

Strong segmentation 
performance with enhanced 

spatial coherence 

High computational cost Dice score: 0.88, 
precision: 90%, 

recall: 87% 

Soltaninejad 
et al. 2020 

[16] 

Multi-resolution 
encoder-decoder 

networks 

High efficiency and scalability 
for multi-resolution 

segmentation tasks 

Limited to specific MRI 
modalities 

Dice score: 0.85 
(WT), 0.82 (CT). 

Isensee et al. 

2020 [17] 

nnU-Net for brain 

tumor segmentation 

Self-configuring network; 

superior performance across 

diverse datasets 

Computationally intensive; 

requires fine-tuning for specific 

tasks 

Dice score: 0.91, 

sensitivity: 94.5%, 

specificity: 93% 
Ali et al. 

2020 [18] 

Ensemble of 2D/3D 

U-Nets 

Combines the strengths of 

both 2D and 3D models for 

segmentation 

Complex training process; high 

computational demand 

Dice score: 0.90 

(WT), 0.85 (CT), 

0.83 (ET). 
Ren et al. 

2017 [19] 

Faster R-CNN Real-time performance; 

effective object detection 

Not specifically designed for 

medical segmentation 

Accuracy: 93%, 

FPS: 7 

 

 

Traditional methods such as thresholding, region growth, and watershed algorithms struggle to 

detect tumor boundaries and handle appearance variability. Machine learning techniques, such as neural 

networks and support vector machines (SVMs), improve accuracy while relying heavily on feature selection, 

which limits performance. Deep learning models also struggle with generalization across datasets and 

imaging conditions. While U-Net and its variants perform advanced segmentation tasks, there are still gaps in 

the integration of multi-modal data for comprehensive tumor characterization [20]. A long short-term 

memory (LSTM) multi-modal U-Net addresses temporal dependencies, but it requires additional 

optimization for 3D data. Furthermore, alignment across imaging modalities remains a challenge, which 

Vijay et al. [12] attempted to address with their symmetric non-rigid registration technique. However, more 

progress is required to develop an end-to-end brain tumor segmentation solution. 
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To address these challenges, this paper proposes a fully automated deep learning-based brain tumor 

segmentation technique that combines different encoder-decoder convolutional models [21]. Our approach 

integrates U-Net, InceptionResNetV2, and W-Net models which are recognized for their effectiveness in 

medical image segmentation. Additionally, our approach addresses the limitations of prior work by 

improving segmentation accuracy and ensures precise alignment and generalizability across different 

imaging modalities, making it a robust solution for real-world clinical applications. 

 

 

2. METHOD 

The precise segmentation of glioma subregions from medical imaging data, crucial for treatment 

planning and disease monitoring. Gliomas exhibit diverse characteristics in size, shape, and location, posing 

challenges for accurate segmentation. Traditional methods to deep learning techniques have been explored, 

yet achieving accurate and consistent segmentation remains a challenge. The implementation aims to 

leverage hybrid filter,advanced convolutional neural networks (CNN) architectures such as U-Net, W-Net, 

and InceptioResNetV2 and novel optimization algorithm to develop an ensembleas given in Figure 1, aiming 

to improve segmentation accuracy. The main objectives of this study are as follows: 

− Preprocessing: apply a hybrid bilateral mean filter, N4ITK bias field correction, and normalization to 

reduce noise and improve feature extraction and classification performance. 

− Segmentation: use an ensemble model combining U-Net, InceptionResNetV2, and W-Net architectures 

for improved segmentation accuracy. 

− Optimization: introduce a modified African vulture optimization algorithm (MAVOA) to optimize the 

model's loss function. 

− Evaluation: compare metrics such as accuracy, sensitivity, specificity, and area under the receiver 

operating characteristic (ROC) curve (AUC) to assess performance. 

 

 

 
 

Figure 1. Architecture diagram 

 

 

2.1.  Data acquisition and preprocessing 

The BraTS 2020 dataset is used for this study, consisting of multimodal MRI scans from glioma 

patients. These scans, collected from multiple institutions, have been standardized to ensure consistency. 

Each patient’s data set includes four MRI modalities: 

− T1-weighted (T1) 

− Post-contrast T1-weighted (T1ce) 

− T2-weighted (T2) 

− Fluid attenuated inversion recovery (FLAIR) 

These modalities provide distinct contrasts essential for accurate tumor segmentation by offering 

varied insights into tumor anatomy and pathology. The dataset includes expert-annotated labels for tumor 

sub-regions, crucial for training supervised learning models. The labels are provided as masks for each MRI 

slice, indicating pixel-wise classification of tumor sub-regions as follows: 

− Necrotic and non-enhancing tumor core (NCR/NET): Label 1 

− Peritumoral edema (ED): Label 2 

− GD-enhancing tumor (ET): Label 3 
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To preprocess MRI images from the BraTS 2020 dataset, we performed a sequence of normalization 

followed by noise reduction using a hybrid bilateral mean filter given in Algorithm 1. In medical MRI image 

preprocessing, preserving edges while reducing noise is crucial for accurate diagnosis. The proposed filter 

enhances the quality of MRI images. The bilateral filter preserves edges by considering both spatial and 

intensity differences, while the mean filter reduces random noise. The proposed hybrid filtering algorithm 

leverages the edge-preserving capabilities of the bilateral filter and the noise-reducing properties of the mean 

filter. This combination is particularly effective for medical MRI images, where maintaining the integrity of 

anatomical structures is critical. 

 

Algorithm 1. Hybrid bilateral mean filter 
1 Input:         Original image I 

2                     Bilateral filter parameters: 𝜎color and 𝜎spatial 
3                     Mean filter window size: N 

4 Output:       Hybrid filtered image Ihybrid 

5 Procedure:  Bilateral Filtering:  

6                          Apply bilateral filtering to the original image to produce a 

denoised version  Idenoised 

7 Idenoised(i,j)=bilateral_filter(I,𝜎color,𝜎spatial)(i,j)) 
8                    Mean Filtering:  

9                         Apply mean filtering to the original image to obtain a smoothed 

version Imean. 

10 
Imean(i, j) =

1

N2
∑ ∑ (i + k, j + l)

N/2
l=−N/2

N/2

k=−N/2
  

11                  Hybrid Filtering:  

12                    Combine the results of the bilateral filtering and the mean 

filtering  

13 Ihybrid(i,j)=Idenoised(h,j) + (I(i,j)−Imean(i,j)) 

14 End 

 

The hybrid bilateral mean filter is ideal for brain tumor segmentation as it preserves crucial tumor 

edges and reduces noise, enhancing segmentation accuracy. Despite its computational demands, it can be 

optimized for real-time use, making it valuable in clinical applications where precise and quick tumor 

detection is critical. The bilateral filter is well-suited for brain MRI scans because it can be fine-tuned to 

handle the subtle intensity differences between healthy tissue and tumor regions. By adjusting the σr 

parameter, the filter effectively reduces noise without losing critical tumor details. While it may not be ideal 

for impulse noise, it excels in managing the Gaussian or Rician noise typically found in MRI scans. Proper 

selection of σs and σr ensures optimal performance, enhancing the clarity and accuracy of brain tumor 

segmentation. 

 

2.2.  Tumor segmentation 

2.2.1. U-Net architecture 

U-Net is a CNN architecture optimized for high-resolution biomedical image segmentation [22]. It 

starts with an input layer for images of shape (IMG_SIZE,IMG_SIZE,2)(IMG\_SIZE, IMG\_SIZE, 

2)(IMG_SIZE,IMG_SIZE,2), where IMG_SIZE denotes the spatial dimension and 2 represents the number 

of input channels. The encoder path uses two convolutional layers with rectified linear unit (ReLU) 

activations and He normal initialization, followed by max-pooling layers for down sampling. The 

architecture progresses through blocks with 32, 64, 128, 256, and 512 filters, with the fifth block including a 

dropout layer (rate 0.2). The bottleneck connects the encoder and decoder with two convolutional layers, 

each with 512 filters. In the decoder path, up sampling layers replace pooling to restore spatial dimensions, 

with each step followed by concatenation with corresponding encoder feature maps for precise localization. 

The decoder uses blocks with 256, 128, 64, and 32 filters, each containing two convolutional layers. The 

model concludes with a final convolutional layer (4 filters, 1×1 kernel) and a SoftMax activation to produce 

the segmentation map. The model is compiled using the categorical cross-entropy loss function and the 

MAVOA. 

 

2.2.2. Inception Res-Net V2 architecture  

InceptionResNetV2 is a sophisticated neural network architecture that combines Inception modules 

with residual connections to enhance image recognition efficiency and accuracy. In the proposed work the 

initial feature extraction occurs in the stem block, which includes convolutional and pooling layers to down 

sample the input. This block starts with three convolutional layers: 32 filters (3×3, stride 2, no padding), 32 

filters (3×3, no padding), and 64 filters (3×3, padding), followed by a max-pooling layer (3×3 pool size, 

stride 2). It continues with a convolutional layer of 80 filters (1×1), another with 192 filters (3×3), and ends 
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with a max-pooling layer (3×3 pool size, stride 2). The core architecture features Inception-ResNet blocks. 

Inception-ResNet-A has parallel convolutional paths with various kernel sizes (1×1, 3×3, 5×5) and residual 

connections. The Reduction-A block reduces spatial dimensions using pooling and convolutional layers. 

Inception-ResNet-B follows, with more complex structures and residual connections, and Reduction-B 

further reduces dimensions. Inception-ResNet-C consists of intricate convolutional paths and residual 

connections. The network concludes with a global average pooling layer to reduce dimensions to 1×1, and a 

dense layer for final classification. InceptionResNetV2 effectively merges inception and residual methods, 

providing a powerful model for high-performance image recognition with efficient feature extraction. 

 

2.2.3. W-Net architecture 

W-Net is a deep learning architecture for image segmentation, especially effective for glioma sub 

region segmentation in MRI images. It features two stacked U-Nets, allowing for progressive refinement of 

segmentation results by using the output of the first U-Net as the input for the second. The first U-Net 

includes an encoder path with sequential convolutional and max-pooling layers, increasing the number of 

filters in each block (e.g., 32, 64, 128, 256), and a bottleneck layer to capture abstract features. The decoder 

path restores spatial dimensions using up sampling and convolutional layers, decreasing the number of filters 

(e.g., 256, 128, 64, 32). The output of the first U-Net is passed to the second U-Net, which has a similar 

structure. The second U-Net refines the segmentation map with its own encoder and decoder paths, again 

employing convolutional, max-pooling, and up sampling layers. The final output layer has filters matching 

the number of segmentation classes, followed by a soft max activation for multi-class segmentation. W-Net is 

compiled with loss functions like categorical cross-entropy, the MAVOA optimizer. 

 

2.2.4. Ensemble model 
The ensemble model integrates individual models, such as U-Net, InceptionResNetV2, and W-Net, 

each providing segmentation predictions for MRI images. In this approach [23], the predictions from these 

models are combined using an average weighting technique. For each pixel in the final segmentation map, 

the predicted probabilities from U-Net, InceptionResNetV2, and W-Net are averaged. By leveraging the 

strengths of these diverse models, the ensemble method enhances the accuracy and robustness of glioma 

subregion segmentation, offering more detailed and precise results than any single model could achieve 

alone. Table 2 shows the hyperparameters that are employed in the segmentation model. 

 

 

Table 2. Details of hyperparameters 
Hyperparameters Details 

Epochs 100 

Batch size 16 
Learning rate 0.001 

Dilation rate 3 

Dropout rate 0.2 

 

 

2.3.  Modified African vulture optimization algorithm 

Nature-inspired optimization algorithms enhance deep learning in medical image analysis by 

efficiently navigating complex data, improving diagnosis and treatment planning. In this aspect we proposed 

a novel MAVOA algorithm, given in Algorithm 2 for image segmentation incorporates spatial awareness, 

localized foraging, and adaptive mutation, enhancing its effectiveness for segmenting objects from images 

with improved accuracy and spatial coherence. 

  

Algorithm 2. Modified African vulture optimization algorithm for image segmentation 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

 Input: Image 𝐼, Number of vultures 𝑁, Maximum iterations 𝑇, Parameters 𝛼,𝛽 
 Output: Optimized segmentation 𝑆∗ 
 Initialization: 

         Randomly initialize vultures' positions within the image space:   

InitializeVultures(𝑁,𝐼) 
         Initialize best solution found so far:  

best_solution=None, best_fitness=∞ 

 Main Loop: 

        for 𝑡=1 to 𝑇 do: 
               Evaluate fitness for each vulture :EvaluateFitness(I,vultures) 

               Update vultures' positions: 

UpdateVulturesPosition(𝐼,vultures,best_solution) 
               Select the best solution found so far:  

          current_best_solution,current_best_fitness=SelectBestSolution(vultures) 
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14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

               if current_best_fitness<best_fitness then:            

                         

best_solution=current_best_solution,best_fitness=current_best_fitness 

               if stopping criterion met then: 

                         break 

Update Vultures' Positions: 

UpdateVulturesPosition(𝐼,vultures,best_solution) 

              for each vulture 𝑣 do: 
                     Update vulture's position based on attraction and social 

components:              

update_vulture_position(𝐼,𝑣,best_solution) 
Fitness Evaluation: 

EvaluateFitness(𝐼,vultures) 
             for each vulture 𝑣 do: 
                     Calculate fitness based on segmentation accuracy and spatial 

coherence:       

v.fitness=calculate_fitness (𝐼,𝑣.𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 
 Utility Functions: 

sum_of_other_vultures_influence(𝑣,best_solution) 
                     Calculate the sum of other vultures' influence on a vulture's 

position. 

            Other utility functions (not explicitly shown) for initializing 

vultures, selecting   

            the best solution, and stopping criterion. 

Fitness Calculation: 

           calculate_fitness(𝐼,segmentation)calculate_fitness(I,segmentation): 
                Compute segmentation accuracy and spatial coherence. 

                Combine accuracy and coherence into a single fitness value. 

 

The AVOA for medical image segmentation is enhanced by including spatial awareness in the 

fitness calculation, which penalizes incoherent solutions. Vultures' movements now incorporate a localized 

foraging strategy and a dynamic exploration radius based on image context. Adaptive mutation adjusts 

strength and probability based on optimization progress. The fitness function also considers multiple 

objectives, such as segmentation accuracy and spatial coherence, to ensure precise results. 

 

 

3. RESULTS AND DISCUSSION 

The ensemble model generated a final segmentation map for the input MRI images by averaging 

predictions from U-Net, InceptionResNetV2, and W-Net. This combined approach is visualized in Figure 2, 

where each pixel in the segmentation map reflects the aggregated confidence of the models regarding the 

presence of various glioma subregions.  

 

 

 
 

Figure 2. Glioma sub region segmentation of ensemble mode 
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To enhance segmentation accuracy, optional post-processing steps such as thresholding, 

morphological operations, or connected component analysis may be applied to the ensemble output. The 

performance metrics for the ensemble model are as follows: accuracy of 98.2%, loss of 0.023, recall of 0.982, 

mean intersection over union (IOU) of 0.972, dice coefficient of 0.96, precision of 0.991, sensitivity of 0.98, 

and specificity of 0.981. The dice coefficients for specific glioma subregions were 0.96 for necrotic regions, 

0.970 for edema, and 0.91 for enhancing regions. These metrics provide a detailed evaluation of the model's 

effectiveness and highlight areas for potential optimization. Figure 3 displays the training and validation plots 

for accuracy, loss, dice coefficient, and mean IOU.  

 

 

 
 

Figure 3. Graphical representation of accuracy, loss, dice coefficient, and mean IOU of the ensembling model 

 

 

Additionally, Figure 4 presents a comparative analysis of metrics including recall, specificity, 

sensitivity, and precision, contrasting the ensemble model's performance with that of region convolutional 

neural network (RCNN), U-Net, and W-Net combined with a decision tree. This comparison underscores the 

ensemble model’s superior performance in segmentation tasks. Our brain tumor segmentation 

implementation can benefit from insights into real-time performance demonstrated by Lattice-Boltzmann 

simulation methods [24]. The interactive blood flow simulation highlights strategies for optimizing 

processing speed, while the SoC-based system underscores the advantages of specialized hardware. Adapting 

these insights could enhance the efficiency and real-time capabilities of our segmentation approach [25]. 
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Figure 4. Comparison of metrics (recall, specificity, sensitivity, and precision) with other models 

 

 

4. CONCLUSION 

This study presents a novel approach for accurate glioma subregion segmentation from MRI data, 

integrating a hybrid bilateral mean filter for preprocessing with an ensemble model comprising U-Net, 

InceptionV2, InceptionResNetV2, and W-Net architectures. Additionally, the introduction of a MAVOA has 

led to impressive performance metrics on BraTS 2020 data, with a loss of 0.023 and high accuracy 98.2%, 

recall 98.2%, mean IOU 97.2%, dice coefficient 0.96, precision of 99.1%, sensitivity of 98%, and specificity 

of 98.1%. The model effectively delineates glioma subregions, achieving dice coefficients of 0.96 for 

necrotic areas, 0.97 for edema, and 0.91 for enhancing regions. On the BraTS 2021 dataset, the model 

maintained high accuracy of 96.4%, mean IOU 95.9%, and dice coefficients of 0.91 for necrotic areas, 0.95 

for edema, and 0.92 for enhancing regions. These findings demonstrate a significant advancement in the 

precision and effectiveness of glioma segmentation, which can greatly impact clinical practice by enhancing 

diagnosis, treatment planning, and disease monitoring. Future research should concentrate on clinical 

validation, improving model generalizability, and improving interpretability through explainable artificial 

intelligent (AI). Exploring new imaging modalities and incorporating the model into clinical systems could 

help to advance neurooncology and patient care. 
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