Bulletin of Electrical Engineering and Informatics
Vol. 14, No. 1, February 2025, pp. 543~550
ISSN: 2302-9285, DOI: 10.11591/eei.v14i1.8736 a 543

A simplified approach to establishing the impact of software
source code changes on requirements specifications

Fredrick Mugambi Muthengi?, David Muchangi Mugo?, Stephen Makau Mutua?, Faith Mueni

Musyoka!

!Department of Computing and Information Technology, Faculty of Applied Sciences, University of Embu, Embu, Kenya
2Department of Computer Science, School of Computing and Informatics, Meru University of Science and Technology, Meru, Kenya

Article Info

ABSTRACT

Article history:

Received May 24, 2024
Revised Sep 3, 2024
Accepted Sep 28, 2024

Keywords:

Association

Change impact
Changed method
Functional requirement
Method name

This paper proposes an improved approach to establishing the impact of
source code changes in software features. An association of the methods
affected by the changes made and functional requirements of the software
reveals the likely impact of the changes made in the software. Changes in
source code are exhibited in the operational behaviour of the software.
Functional requirements and source code artefacts play a key role in
assessing the impact of the changes made. In this study, we investigated the
possibility of establishing the association between the changed methods and
the functional requirements. The study found out that changes made in the
methods can be mapped to the functional requirements that the methods are
implementing. The motivation in this endeavour was to assess the impacted
software requirements which translate to the likely software features affected
by the changes made in the software. With the intent of the software users
being seen in the requirements statements and the method naming by the

developers, a mapping of the two software artefacts would help developers
find out the impacted software features when assessing the overall effect of
the committed changes.

This is an open access article under the CC BY-SA license.

Corresponding Author:

Fredrick Mugambi Muthengi

Department of Computing and Information Technology, Faculty of Applied Sciences, University of Embu
Embu, Kenya
Email: fremugambi@gmail.com

1. INTRODUCTION

Software maintenance involves making changes to correct errors, to modify existing features, to add
new features, and to adapt to new execution platforms among others [1]. The change tasks major on updating
the source code [2]. Majorly source code analysis approaches have been extensively carried out in the past
years [3]-[6]. Studies have also been conducted on tracing software requirements to source code [7]-[9].
However, from the literature searches, no approach has been proposed for linking software behaviour
changes to the functional requirements likely impacted by the changes made in a software system.

Functional software requirements communicate the users’ needs of the software system. These are
the requirements used by software engineers in the design and implementation phases. Also, software testers
use them to generate test cases and test data. This demonstrates the critical role played by software
requirements in the software development industry. Software behaviour is wired in the operations defined in
the program. Therefore, method level source code analysis gives developers a chance to check the
behavioural changes on the software away from the complexity of detailed static code analysers [10].

In many cases, system owners suggest changes in the system that are then implemented by the
developers in the source code. Prior to change implementation, a change impact analysis is conducted in

Journal homepage: http://beei.org

https://creativecommons.org/licenses/by-sa/4.0/

544 a ISSN: 2302-9285

which requirements play a key role. However, the one software asset that is not well updated and tracked is
the software requirements artefact. This leads to code changes that may adversely deviate from the user
specified expectations. Program comprehension, a precursor to making correct and effective changes in the
software suffers the most in light of incomplete requirements to code traceability during software
maintenance tasks.

The aim of this paper is to design and implement a an approach for mapping changed methods to
their associated functional requirements [11] capable of guiding developers in the assessment of the impact
of changes made to the behaviour of the software system. This would help understand why the behaviour of a
software system changes in particular ways after changes have been implemented and integrated in the code.
Therefore, a link between the changed methods and the impacted software requirements would offer
developers an opportunity to interrogate the behaviour modifications of the system without having to deal
with complex analysis of the whole source code.

2. LITERATURE REVIEW
2.1. Functional requirements

Several approaches have been fronted for requirements to source code traceability [7], [8], [12]-
[15]. Requirement traceability is recognised as an important aspect in the software development. Checking
software completeness with regard to the software specifications requires ways to ascertain if all the
requirements have been implemented. Existing approaches such as information retrieval, execution trace
analysis, and static analysis have been used to create traceability links between software requirements and
source code. Some approaches just create links between work items in the software project and the code
during development [7].

During software maintenance, the maintenance team in the absence of traceability links between
changed methods and the requirements, faces challenges in assessing the impact of applied changes in light
of the affected software requirements. Inadequate, incomplete, and outdated software documentations
hampers program comprehension. Therefore, a well-documented software offers a good base for
understanding the system under evaluation for future upgrades [16]. In the regression testing of the applied
changes, affected requirements play a definitive role in the selection and fine tuning of the tests to be run to
assess the effectiveness of the changes made. A change in a software system is geared towards behaviour
change or upgrade. The change in any part of the system whether a variable renaming or addition, method
removal or addition, or statements changes (removal or addition) or even refactoring will eventually reflect in
one or more operations defined in the system.

In test driven development, a software system functionality is derived from the user stories. These
user stories that represent expected functional behaviour of the system making a requirement to be associated
to one or more method definitions in the source code. This means that every defined software functionality is
associated with at least one software requirement [17].

2.2. Operational changes in source code

Software changes are implemented in the source code to realise the intended behaviour. Research by
Almhana et al. [18] an automated approach for finding and ranking the potential methods in order to localize
the source of a bug based on a bug report is proposed. However, they fall short of locating the changed
method that would provide developers an advantage in analysing changes for bugs reported during testing.

Developers write code in a method or create methods based on the rationale of the software
requirements. The naming, the logic flow and the expected results all are guided by the user expectation as
understood by the developers. Every method created and each piece of code written in a method, implements
the intent of the software requirements [13].

Refactoring, a source code improvement task [19]-[25] has a key code change referred to as extract
method refactoring [19]. Extract method presents a case where a method is changed by creating another
method or several methods to perform some functionality previously performed by some code in the original
method. The motivation being to shorten the methods and reuse some chuck of code in several methods
thereby improving code maintainability. Another case of method extraction may involve code from two or
more methods being taken to form one extract method. The newly extracted method will presumably be
called in the methods where the codes were extracted.

2.3. Methods and requirements software artefacts

A software system consists of several artefacts: the requirements specifications, design
specifications, source code, test cases and test data, among many others. A Java software system can be
defined as follows:

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 543-550

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 545

— Software (S) consists of a set of classes (C): S={C}

— Each class has a set of methods (M): C={M}

— Class methods (CM): CM={M1, M2, M3, M4, ..., Mx}

Software S, then defined as: S={C1, C2, C3, ..., Cn} where C1, C2, ...and Cn are the classes. Software
consisting of a set of operations (F) implemented in the classes can be defined as: S ={F} where F={F1, F2,
F3, ..., Fi} and i is the total number of operations implemented in the classes making up the software.

S=Y,FiwhereFie F&i<n (1)

Another definition of software as consisting of a set of software requirements denoted as R where n
refers to the total number of requirements.
S={R1,R2,R3, ...,Rn}
S={r|reR}
A requirement is implemented by one or more functionalities in the software. Also, a functionality
could be implementing different requirements at the same time. For example:
R1={f1, f2, f3, ..., fn}
R2={f3, f4, {5, ..., fn}
Rk={fn | fn € F} where n varies depending on number of functionalities implementing a requirement.

3. METHOD

This study sampled three java projects and a software requirements dataset extracted from
www.kaggle.com. The requirements dataset was edited by adding a few other requirements of concern for the
sampled Java projects. The sampled projects were recently committed in git repositories and represents a
realistic reflection of the actual operations in the software industry. The changed methods list was extracted
from the list of methods defined in the sampled software projects. In this study, a list of changed methods
was generated by random sampling from the methods defined in the projects.

3.1. Information retrieval using vector space model

Vector space model (VSM) is a widely used technique in computing textual similarity [26]. The
requirements dataset consists of a collection of requirements that are treated as vectors in the common vector
space. Each requirement statement is then treated as a document (vector) in the VSM. A changed method
name is decomposed to its constituent words that become the terms to check in the corpus. Given the corpus
dataset P containing a document (requirement) p and a term (a method name) t, the term frequency TF(t, p),
represents the frequency of occurrence of t in p. DF(t, P) is a document frequency representing the number
of documents (requirements) that contain the term t in the corpus P. A weight w of a term t in a document p
from the corpus P is computed as (2) and (3):

1

IDF(t,P) = DR

)
Wt,p, P = TF(t,p)xIDF (¢, P) 3)

The value of the weight w signifies the number of requirements implemented by the method. The
model takes into account the number of words forming the method name. Figure 1 represents the retrieval of
requirements associated with a given changed method.

Method name query

Mapping and
extraction of
q Mapped
associated N Sp_ -
Software requirements requirements
Rﬂlu]l‘ﬁl\]fﬂli

Figure 1. Retrieval of associated requirements as per the method name query

3.2. Mapping changed method (s) to requirements

This research adopted the idea that software artefacts like method names can be derived from the
user requirements [27]. For example, the stories given in agile extreme programming describe software
artefacts including requirements and the methods has deciphered by the developers [28]. The requirements

A simplified approach to establishing the impact of software source code ... (Fredrick Mugambi Muthengi)

546 a ISSN: 2302-9285

description languages encapsulate expected software functionalities thereby making developers derive
method names from the requirements statements [29]. The method names used communicate the intent of the
expressed requirement statements [13]. Hence, we extract the requirements impacted by the changes by
mapping them to the method names. The investigation used the shortest name to be one word and longest
method name to have four words since on average a method name consists of four words [30] for clarity in
functionality representation. The study assumed best and standard practice in the software development
industry in method naming conventions [31] and requirements expressions. The Algorithm 1 was used in the
mapping of changed methods to the requirements affected by the method changes.

Algorithm 1
Input: (i) changed methods list
(ii1) Software requirements corpus dataset
Output: Requirements associated with the changed methods

Step 1: for each method m in methods list M
Step 2: for each requirement REQ in requirements
Step 3: if match m - REQ

Step 4: mREQlist € Add REQ

Step 5: end for

Step 6: end for

Step 7: return mREQlist

3.3. Equivalent mapping approximations

A method name can consist of a single verb or several words describing the actual intent of the
code [31]. For a one-word and two words method name a 100% match was needed to map a method name to
the requirements it implements. In cases where the name contained three to six words, a 100% match was the
most appropriate. The purpose of using many words in naming methods is to succinctly communicate the
intention of the block of code inside it [13], [30]. Occasionally, programmers may connect several nouns in a
method name. For example, the method name searchFileOnDisk has the word “on” which is joining the
nouns file and disk to communicate the exact operation to be carried out. The actual operation is defined by
the words search and File. Also, developers label identifiers with terms familiar in the application
domain [32] that are used in documenting software requirements. For a one-word method name, the match
would be either 100% or 0%. For a two-word method name, the match would be either 100%, 50%, or 0%.
For a three-word function name, the match would be either 100%, 66.7%, 33.3%, or 0%, for a four-word
method name, the match would be either 100%, 75%, 50%, 25%, or 0%. For a five-word method name, the
match would be either 100%, 80%, 60%, 40%, 20%, or 0%. For a six-word method name, the match would
be either 100%, 83.3%, 66.7%, 50%, 33.3%, 16.7%, or 0%. A match of >51.00% guarantees a majority
matching of the words forming a method name. However, as the words increase, the results reliability may
dwindle hence the tuning to higher percentages like >75% and 100% match. 100% match represents the best
case scenario for a higher precision in the results generated. In some instances, fuzzy string matching was
utilized like matching the word add and additions.

4. RESULTS AND DISCUSSION

This study sampled three Java projects. In each project, an arbitrary sample of methods to represent
changed methods was used. From the sampled methods, each method was linked to the requirements it
implements. The study finds that some methods may be implementing the same requirement or several
requirements. The cases where a method’s change impact cuts across many requirements, presents a case of a
common functionality that when changed, there is a larger impact in the entire system as compared to method
changes whose impact is felt in only one requirement. Tables 1 and 2 shows experiment results of the
sampled changed methods associated to requirements impacted by the changes.

For a 1-word and 2-word method names, the mapping results for >51%, >75%, and 100% match are
the same. This represents the best case scenario also given that by convention this is the preferred method
naming. The results indicate a high relevance value. When the method name consists of three or four words,
the results vary for >51%, >75%, and the 100% matchings. The 100% match produces the best relevant
results with the four-word method naming reaching optimal relevance. Upon observation, methods mapping
to several requirements some of which are not relevant mappings is contributed by: the requirements dataset
contains requirements for several systems with differing application domains. For example, addUser method
maps to seven requirements whilst the relevant true maps are three.

4.1. Using method names with shortened formats
Method names with initial substring like addProd and addProduct, yields the same results.

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 543-550

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 547

— PE: the product shall provide dynamic change support and transparent resource addition. The product
shall support transparent resource addition and dynamic change support to provide scalability and avoid
service interruptions of more than 1 day.

— INVENTORY: the managerial users shall add products for sales in the system.

— MN: the product shall continue to operate during upgrade change or new resource addition. The product
shall be able to continue to operate with no interruption in service due to new resource additions.

— PE: izogn administrator must be able to add new products to the website within 2 minutes.

— INVENTORY: the manager shall View all existing products and add a new product detail.

Like the case shown in the methods selectTransaction and requestTicket, some requirements may
cut across several systems implemented methods. This only serves to mean when a change is made say for
requestTicket method, the ripple effects of the change will be spread to many requirements. This means that
this change has a significant impact on the overall larger system and would therefore necessitate much more
attention than other changes. Also, since the first method selectTransaction is impacting the same
requirement with requestTicket method change, change impact assessment for the two methods would
somewhat be limited in the same scope thereby saving on time and resources that would be expended on
check each method change in isolation. We also observe that the requestTicket method could be called in
many other methods implementing sections of the requirements extracted. This would mean that the change
in requestTicket method has a broader effect on the entire system functionality and could be a key
functionality in the system. Therefore, developers working on changing this system would devote keen
attention to the operation requestTicket.

Based on the results shown in Tables 1 and 2, it is possible to map a method to the requirements it
implements using the method name. One-word and two-word method names gives most relevant results at all
considered percentages (>51%, >75%, and 100% matching) with a majority giving a 100% results relevance.
The results show that a matching of 100% yields the best relevant results for the various method names
considered. The more the words used in naming a method, the higher the precision in establishing the
associated requirement. This is probably due to the fact that developers generate the many words method
naming from the user functional requirements statements in an effort to document the expected operation
implementing the requirement.

Table 1. Sample extract of methods mapped to requirements
Method name Requirements associated with the method
addBook OBS: the system admin shall be able to Add and manage books.
selectTransaction F: the disputes system must allow the users to select disputable transactions (based on the age of the
transaction) from a user interface and initiate a dispute (ticket retrieval request or chargeback notification) on
the selected transaction.
requestTicket — F: the disputes system will provide the user the ability to create or initiate a ticket retrieval request. As part
of ticket retrieval creation process the system must prompt the user to enter all the required information to
create the ticket retrieval request. The ticket retrieval request is a document that is sent to merchant
inquiring the validity of a transaction.

— F: the disputes system must provide a confirmation to the user upon the creation of ticket retrieval request
that contains the following information; the dispute case number the type of retrieval requested (copy
original or portfolio) and the date that the merchant response is due.

— F: the disputes system must allow the user to create three unique types of ticket retrieval requests. The three
types of ticket retrieval requests are; i) request for original receipt, ii) request for a copy of the receipt or, iii)
request for a portfolio. A portfolio consists of documentation that would provide proof of a purchase such as
the documentation that is received from a car rental agency that is more than a sales receipt.

— F: the disputes system must allow the users to select disputable transactions (based on the age of the
transaction) from a user interface and initiate a dispute (ticket retrieval request or chargeback notification)
on the selected transaction.

— F: the disputes system must provide search functionality. The search method must include the ability to
search by; i) the dispute case number, ii) the merchant account number, iii) the card member account
number, and) the issuer number. In addition to the above criteria the search functionality must further allow
the user to limit the results of the search by a date range the type of dispute (ticket retrieval request or
chargeback notification) the case status (open closed or all) and the dispute reason code.

Login — OBS: the user shall login before performing any transaction.

— BANK: the customer shall be able to sign in with login and password.

— INVENTORY: it allows admin to manage two types of users, hold their details, authenticate these users at
the time of login and accordingly provide different options.

— INVENTORY: the system allows the godown manager to login into the system and enter their inwards
entries related to their godown.

— SE: the WCS system shall not allow automatic logins by any user. Cookies containing WCS login
information about a user will not be stored on a user’s computer.

— INVENTORY: the system management users shall edit a purchase. Before a purchase edit, the user shall
login to authenticate the purchase edit.

— OBS: before using the system, a user shall be required to login.

A simplified approach to establishing the impact of software source code ... (Fredrick Mugambi Muthengi)

548 a ISSN: 2302-9285

Table 2. Experiment results of mapping changed methods to requirements
Requirements associated with the changed method

Index Changed method >51% match >75% match ==100% match
Extract Actual Precision Extract Actual Precision Extract Actual Precision
1 Deposit 3 3 1 3 3 1 3 3 1
2 Login 10 10 1 10 10 1 10 10 1
3 Logout 5 5 1 5 5 1 5 5 1
4 Withdraw 2 2 1 2 2 1 2 2 1
5 addBook 3 3 1 3 3 1 3 3 1
6 addCustomer 6 2 0.3333 6 2 0.3333 6 2 0.3333
7 addPurchase 1 1 1 1 1 1 1 1 1
8 addSale 3 2 0.6667 3 2 0.6667 3 2 0.6667
9 addUser 14 6 0.4286 14 6 0.4286 14 6 0.4286
10 applyLoan 1 1 1 1 1 1 1 1 1
11 availableBooks 6 6 1 6 6 1 6 6 1
12 changePassword 7 7 1 7 7 1 7 7 1
13 checkBalance 1 1 1 1 1 1 1 1 1
14 clearLoan 1 1 1 1 1 1 1 1 1
15 deleteBook 1 1 1 1 1 1 1 1 1
16 deleteProduct 3 1 0.3333 3 1 0.3333 3 1 0.3333
17 deleteSale 1 1 1 1 1 1 1 1 1
18 deleteUser 1 1 1 1 1 1 1 1 1
19 editCustomer 2 1 05 2 1 0.5 2 1 0.5
20 editUser 5 3 0.6 5 3 0.6 5 3 0.6
21 getAuthor 1 1 1 1 1 1 1 1 1
22 getPrice 3 3 1 3 3 1 3 3 1
23 setQuantity 1 1 1 1 1 1 1 1 1
24 updateBook 1 1 1 1 1 1 1 1 1
25 seacrhProduct 7 7 1 7 7 1 7 7 1
26 searchltem 1 1 1 1 1 1 1 1 1
0.8793 0.8793 0.8793
27 searchProductName 9 1 0.1111 1 1 1 1 1 1
28 editPurchaseStock 4 3 0.75 0 0 0 0 0 0
29 getCustomerName 4 3 0.75 1 1 1 1 1 1
30 getProductinformation 16 1 0.0625 1 1 1 1 1 1
31 getProductName 12 2 0.1667 0 0 0 0 0 0
32 getSupplierInformation 3 0 0 0 0 0 0 0 0
0.3067 0.5 0.5
33 addBookToCart 3 1 0.3333 3 1 0.3333 1 1 1
34 addltemToSale 6 1 0.1667 6 1 0.1667 1 1 1
35 removeBookFromCart 2 1 0.5 2 1 0.5 1 1 1
36 removeltemFromSale 1 1 1 1 1 1 1 1 1
05 05 1
Overall averages 0.5620 0.6264 0.7931

In cases where the matching is capped at >50%, the results indicate that further processing would be
needed to filter the actual relevant mappings for method names with three and above words. The main
advantage of this, however, is that it ensures a majority of the matching for any number of words for a
method name. Considering that the >51% and >75% gives results that are indicative of the method name to
requirements relationship, developers can choose to configure the mapping to either >51%, >75%”, or 100%
depending on the level of results relevance the system provides. Tuning to 100% match would guarantee a
near perfect scenario. But in cases where developers deviate a little on naming methods with regard to intent
or where software requirements deviate from communicating actual intent, leaving developers to struggle in
getting user’s intent, the tuning of >51% would be appropriate.

Also, the fact that a majority of the mapped requirements relate to the specific software methods in
consideration implies that developers use domain specific terms as spelt out in the requirements. This
increases the likelihood of useful mappings. In situations where developers use short names like addProd
instead of addProduct the results indicate the intention of the developer and that of the user map to the same
result. The results of this study agrees with the idea that methods implement the intent and expectation of the
software users as detailed in the requirements specifications [13], [33].

5. CONCLUSION

Our study’s objective was to establish a link between the changed methods in a particular software
to the requirements whose implementations are affected by the changes made in the code. The study finds
that the association between changed methods can appropriately be established with the affected functional

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 543-550

Bulletin of Electr Eng & Inf ISSN: 2302-9285 a 549

requirements. Since software requirements communicate the intent of the software and the developers write
methods to bring out the intent, the mapping established provides a clear glimpse of the impacted functional
requirements. The results are indicative of the possible impact of the method changes in the software under
test. Some method changes cut across several requirements translating to several features of the system being
affected making the change impact widespread. The findings also reveal that the higher the number of
requirements a changed method is associated with, the higher the number of software features impacted by
the change in the system. This is also a case of a common and critical operation in the system.

REFERENCES

[1] L. Ghadhab, I. Jenhani, M. W. Mkaouer, and M. B. Messaoud, “Augmenting commit classification by using fine-grained source
code changes and a pre-trained deep neural language model,” Information and Software Technology, vol. 135, 2021, doi:
10.1016/j.infsof.2021.106566.

[2] G. Canfora, A. D. Sorbo, S. Forootani, M. Martinez, and C. A. Visaggio, “Patchworking: exploring the code changes induced by
vulnerability ~ fixing activities,” Information and Software Technology, vol. 142, p. 106745, 2022, doi:
10.1016/j.infs0f.2021.106745.

[3] R. Paramitha and Y. D. W. Asnar, “Static code analysis tool for laravel framework based web application,” in Proceedings of
2021 International Conference on Data and Software Engineering: Data and Software Engineering for Supporting Sustainable
Development Goals, ICoDSE 2021, pp. 1-6, 2021, doi: 10.1109/ICoDSE53690.2021.9648519.

[4] A. Grosu, “Software tools for source code analysis,” Journal of Mobile, Embedded and Distributed Systems, vol. 7, no. 2, pp. 47—
53, 2015.

[5] S. Wang, J. Nam, and L. Tan, “QTEP: quality-aware test case prioritization,” in Proceedings of the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pp. 523-534, 2017, doi: 10.1145/3106237.3106258.

[6] R.Mudduluru and M. K. Ramanathan, “Efficient flow profiling for detecting performance bugs,” in ISSTA 2016 - Proceedings of
the 25th International Symposium on Software Testing and Analysis, pp. 413-424, 2016, doi: 10.1145/2931037.2931066.

[71 A. Delater and B. Paech, “Tracing requirements and source code during software development: an empirical study,” in
International Symposium on Empirical Software Engineering and Measurement, 2013, doi: 10.1109/ESEM.2013.16.

[8] P.Dai, L. Yang, Y. Wang, D. Jin, and Y. Gong, “Constructing traceability links between software requirements and source code
based on neural networks,” Mathematics, vol. 11, no. 2, pp. 315-339, 2023, doi: 10.3390/math11020315

[9] J. Singh, S. R. Chowdhuri, G. Bethany, and M. Gupta, “Detecting design patterns: a hybrid approach based on graph matching
and static analysis,” Information Technology and Management, vol. 23, no. 3, pp. 139-150, Sep. 2022, doi: 10.1007/s10799-021-

00339-3.
[10] R. Tufano, L. Pascarella, M. Tufano, D. Poshyvanyk, and G. Bavota, “Towards automating code review activities,” in
Proceedings - International Conference on Software Engineering, no. i, pp. 163-174, 2021, doi:

10.1109/ICSE43902.2021.00027.

[11] K. Feichtinger, D. Hinterreiter, L. Linsbauer, H. Prahofer, and P. Griinbacher, “Guiding feature model evolution by lifting code-
level dependencies,” Journal of Computer Languages, vol. 63, no. 101034, 2021, doi: 10.1016/j.cola.2021.101034.

[12] B. Wang, R. Peng, Y. Li, H. Lai, and Z. Wang, “Requirements traceability technologies and technology transfer decision support:
A systematic review,” Journal of Systems and Software, vol. 146, pp. 59-79, 2018, doi: 10.1016/j.js5.2018.09.001.

[13] T. Hey, “INDIRECT: intent-driven requirements-to-code traceability,” in Proceedings - 2019 IEEE/ACM 41st International
Conference on Software Engineering: Companion, ICSE-Companion 2019, pp. 190-191, 2019, doi: 10.1109/ICSE-
Companion.2019.00078

[14] C. Strobbe, S. S. Cordero, and R. Vingerhoeds, “Open-source CubeSat MBSE approach to address traceability: power
subsystem,” in SysCon 2023 - 17th Annual IEEE International Systems Conference, Proceedings, 2023, doi:
10.1109/SysCon53073.2023.10131054.

[15] P. Rempel and P. Mader, “Preventing defects: the impact of requirements traceability completeness on software quality,” IEEE
Transactions on Software Engineering, vol. 43, no. 8, pp. 777-797, 2017, doi: 10.1109/TSE.2016.2622264.

[16] A. Boyarchuk, O. Pavlova, M. Bodnar, and 1. Lopatto, “Approach to the analysis of software requirements specification on its
structure correctness,” in CEUR Workshop Proceedings, vol. 2623, pp. 85-95, 2020.

[17] M. Irshad, R. Britto, and K. Petersen, “Adapting behavior driven development (BDD) for large-scale software systems,” Journal
of Systems and Software, vol. 177, no. 110944, 2021, doi: 10.1016/j.jss.2021.110944.

[18] R. Almhana, M. Kessentini, and W. Mkaouer, “Method-level bug localization using hybrid multi-objective search,” Information
and Software Technology, vol. 131, no. 106474, 2021, doi: 10.1016/j.infsof.2020.106474.

[19] A. Hora and R. Robbes, “Characteristics of method extractions in Java: a large scale empirical study,” Empirical Software
Engineering, vol. 25, pp. 1798-1833, 2020, doi: 10.1007/s10664-020-09809-8.

[20] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “A comparison of code similarity analysers,” Empirical Software Engineering, no.
23, pp. 2464-2519, 2018, doi: 10.1007/510664-017-9564-7.

[21] J. Pantiuchina, B. Lin, F. Zampetti, M. D. Penta, M. Lanza, and G. Bavota, “Why do developers reject refactorings in open-source
projects?,” ACM Transactions on Software Engineering and Methodology, vol. 31, no. 2, pp. 1-3, 2022, doi: 10.1145/3487062.

[22] Y. Zhang, C. Li, and Y. Bai, “Consistency validation method for Java fine-grained lock refactoring,” IEEE Access, vol. 9, pp.
149287-149301, 2021, doi: 10.1109/ACCESS.2021.3120414.

[23] A. Brito, A. Hora, and M. T. Valente, “Towards a catalog of composite refactorings,” Journal of Software: Evolution and
Process, vol. 36, no. 4, Jan. 2024, doi: 10.1002/smr.2530.

[24] 1. H. Moghadam, M. O. Cinnéide, A. Sardarian, and F. Zarepour, “Model-based source code refactoring with interaction and
visual cues,” Journal of Software: Evolution and Process, no. €2596, 2023, doi: 10.1002/smr.2596.

[25] V. Alizadeh, M. Kessentini, M. W. Mkaouer, M. Ocinneide, A. Ouni, and Y. Cai, “An interactive and dynamic search-based
approach to software refactoring recommendations,” IEEE Transactions on Software Engineering, vol. 46, no. 9, pp. 932-961,
2020, doi: 10.1109/TSE.2018.2872711.

[26] M. Rath, J. Rendall, J. L. C. Guo, J. Cleland-Huang, and P. Méder, “Traceability in the wild: automatically augmenting
incomplete trace links,” in Proceedings - International Conference on Software Engineering, 2018, pp. 834-845. doi:
10.1145/3180155.3180207.

[27] F. Dalpiaz, P. Gieske, and A. Sturm, “On deriving conceptual models from user requirements: an empirical study,” Information

A simplified approach to establishing the impact of software source code ... (Fredrick Mugambi Muthengi)

http://dx.doi.org/10.1016/j.infsof.2021.106566
http://dx.doi.org/10.1016/j.infsof.2021.106745
http://dx.doi.org/10.1109/ICoDSE53690.2021.9648519
http://dx.doi.org/10.1145/3106237.3106258
http://dx.doi.org/10.1145/2931037.2931066
http://dx.doi.org/10.1109/ESEM.2013.16
https://doi.org/10.3390/math11020315
http://dx.doi.org/10.1007/s10799-021-00339-3
http://dx.doi.org/10.1007/s10799-021-00339-3
http://dx.doi.org/10.1109/ICSE43902.2021.00027
http://dx.doi.org/10.1016/j.cola.2021.101034
http://dx.doi.org/10.1016/j.jss.2018.09.001
https://doi.org/10.1109/ICSE-Companion.2019.00078
https://doi.org/10.1109/ICSE-Companion.2019.00078
http://dx.doi.org/10.1109/SysCon53073.2023.10131054
http://dx.doi.org/10.1109/TSE.2016.2622264
http://dx.doi.org/10.1016/j.jss.2021.110944
http://dx.doi.org/10.1016/j.infsof.2020.106474
http://dx.doi.org/10.1007/s10664-020-09809-8
http://dx.doi.org/10.1007/s10664-017-9564-7
http://dx.doi.org/10.1145/3487062
http://dx.doi.org/10.1109/ACCESS.2021.3120414
http://dx.doi.org/10.1002/smr.2596
http://dx.doi.org/10.1109/TSE.2018.2872711

550

a ISSN: 2302-9285

[28]
[29]
[30]
[31]
[32]

[33]

and Software Technology, vol. 131, no. 106484, 2021, doi: 10.1016/j.infsof.2020.106484.

J. Medeiros, A. Vasconcelos, C. Silva, and M. Goulao, “Requirements specification for developers in agile projects: evaluation by
two industrial case studies,” Information and Software Technology, vol. 117, pp. 1-21, 2020, doi: 10.1016/j.infsof.2019.106194.
A. Ohnishi, “Software requirements specification database based on requirements frame model,” in Proceedings of the IEEE
International Conference on Requirements Engineering, pp. 221-228, 1996, doi: 10.1109/ICRE.1996.491450.

R. Alsuhaibani, C. Newman, M. Decker, M. Collard, and J. Maletic, “On the naming of methods: a survey of professional developers,”
Proceedings-International Conference on Software Engineering, 2021, pp. 587-599, doi: 10.1109/ICSE43902.2021.00061.

“Naming Conventions,” Oracle, 1999, [Online]. Available: https://www.oracle.com/java/technologies/javase/codeconventions-
namingconventions.html. (Accessed: Feb. 10, 2024).

A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella, and S. Panichella, “Labeling source code with information retrieval methods:
An empirical study,” Empirical Software Engineering, vol. 19, no. 5, pp. 1383-1420, 2014, doi: 10.1007/s10664-013-9285-5.

H. Cibulski and A. Yehudai, “Regression test selection techniques for test-driven development,” in Proceedings - 4th IEEE
International Conference on Software Testing, Verification, and Validation Workshops, ICSTW 2011, 2011, pp. 115-124, doi:
10.1109/ICSTW.2011.28.

BIOGRAPHIES OF AUTHORS

Fredrick Mugambi Muthengi Bd 12 holds a master of science degree in computer
Science from the University of Hull, UK and a bachelor of science in computer science from
Masinde Muliro University of Science and Technology, Kenya. He is Ph.D. student in
computer science programme at the University of Embu. His research interests are software
regression testing, maintaining large software systems, and artificial intelligence in education.
He can be contacted at email: fremugambi@gmail.com.

Dr. David Muchangi Mugo B 12 is a Ph.D. holder of information systems from
Kenyatta University, Kenya. He has a master of science degree in computer science from
Technical University of Hamburg, Germany and a Masters of Business Administration where
he specialized in Technology Management from Northern Institute of Technology
Management, Hamburg, Germany. He graduated with a first class honors degree in bachelor
of science in computer science from Kenyatta University. His research interests include ICT
for development, electronic health and deployment of artificial intelligence to transform
agricultural and health sector. He can be contacted at email: david.mugo@embuni.ac.ke.

Dr. Stephen Makau Mutua £ B4 12 holds Ph.D. in systems analysis and integration, a
master in information technology and bachelor of science in computer science. He is an
Associate Professor in the Department of Computer Science in Meru University of Science
and Technology and currently serving as the dean of the School of Computing and
Informatics. He is an established scholar and academician with several publications in refereed
journals and book chapters. His research interests are neural networks, computer networks,
and data science. He can be contacted at email: smutua@must.ac.ke.

Dr. Faith Mueni Musyoka B4 B 2 s a Lecturer in the Department of Computing and
Information Technology at the University of Embu, Kenya. She possesses Ph.D. in
information technology from Kabarak University, Kenya, M.Sc. information technology and
B.Sc. computer science both from Masinde Muliro University of Science and Technology. She
is an esteemed member of ACM and OWSD, and has extensive list of publications in well-
regarded journals. Her research interests encompass a wide spectrum, from software quality
metrics to health informatics. She can be contacted at email: mueni.faith@embuni.ac.ke.

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 543-550

http://dx.doi.org/10.1016/j.infsof.2020.106484
http://dx.doi.org/10.1016/j.infsof.2019.106194
http://dx.doi.org/10.1109/ICRE.1996.491450
http://dx.doi.org/10.1109/ICSE43902.2021.00061
http://dx.doi.org/10.1007/s10664-013-9285-5
http://dx.doi.org/10.1109/ICSTW.2011.28
https://orcid.org/0000-0002-5003-5784
https://scholar.google.com.pk/citations?hl=en&user=9t7iu98AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=59035001200
https://orcid.org/0000-0002-7070-7656
https://scholar.google.com.pk/citations?hl=en&user=fRk-hVkAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57224069925
https://orcid.org/0000-0002-5668-6051
https://scholar.google.com/citations?hl=en&authuser=2&user=PeVPiEYAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=36554687000
https://orcid.org/0000-0002-9574-8235
https://scholar.google.com.pk/citations?hl=en&user=I8-9ixYAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58284560000

