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This research aims to produce a new method called pasca-multidimensional
scaling (pasca-MDS) by modifying the multidimensional scaling (MDS)
method, the developed model comes as a solution to overcome the problem
of data complexity by reducing its description dimension without losing
important information. This model, offers an innovative approach in dealing
with these problems. Pasca-MDS not only focuses on reducing the
dimensionality of data, but also retains the essence of relevant information
from each data point. As such, it allows for easier and more efficient
analysis without compromising the accuracy of the information conveyed.
The main advantage of pasca-MDS lies in its ability to produce simpler
visual representations while maintaining the original structure of complex
data. This provides clarity and ease in understanding the patterns or
relationships hidden within. By using adjustment techniques after the MDS
process, this model can provide more optimized results. This process allows
the adjustment of data points to achieve a better representation in a lower
dimensional space, resulting in a more intuitive and easy-to-understand
interpretation. The developed distance formula has the ability to minimize
stress compared to other distance formulas in MDS space, with the aim of
improving the accuracy of high-dimensional data visualization.

This is an open access article under the CC BY-SA license.

©00

Corresponding Author:

Paska Marto Hasugian

Doctoral Program, Department of Information Technology
Faculty of Computer Science and Information Technology, Universitas Sumatera Utara

Medan, Indonesia

Email: paskamartohasugian@students.usu.ac.id

1. INTRODUCTION

Visualization refers to the process of creating a visual representation of data or information. The
goal of data visualization is to communicate information through a visual medium, which allows users to
access insights into the data properties of a given data set generally determine which type of visual encoding
is more effective [1], [2]. Data visualization plays an important role in revealing relationships and trends that
may not be apparent when looking at raw multidimensional data sets [3]. Complex data sets often consist of
many interrelated variables, under these conditions, data visualization uses mathematical techniques to
reduce the number of dimensions of the data, making it possible to see and understand the relationships
between variables in a more intuitive and effective way [4]. Data visualization rests on the premise that a
picture is worth a thousand words with the assertion that visualizations have the ability to communicate
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information with high intensity and effectiveness, which can replace or surpass lengthy text explanations [5].
Visualization has gradually been placed at the forefront of research in this century and has developed rapidly
in the past decade [6]. Data visualization is useful because it transforms complex information into visual
forms that are easy to understand, reveals hidden information, facilitates communication, and supports better
decision-making in big data [5]. Visualization of high-dimensional data is difficult due to various factors
such as number of dimensions, samples, dataset size, density, sparsity, cluster density, and data structure. All
these parameters pose a challenge in visualizing complex data [7].

The problem of visualizing high-dimensional data with low sample sizes is often difficult and faces
problems such as overfitting, curse of dimensionality, computational infeasibility, and strong model
assumptions [8]. Visualization depends on the number of dimensions and the number of samples in the
dataset. The higher the number of dimensions, the more complex the data, while a large number of samples
can affect the complexity and total size of high-dimensional data [9]. High-dimensional data has challenges
such as data management issues, this condition is an increase in the number of features or dimensions can
make data modeling and analysis more difficult and complex [10]. In addition, this data continues to grow
and change over time [11].

The literature is full of statements that emphasize the importance of visualization. Data visualization
transforms complex information into easily understandable visual forms, brings out hidden information,
facilitates effective communication, and supports accurate decision-making, and team collaboration in data
analysis [11]. Data visualization plays an important role in revealing relationships and trends that may not be
apparent when looking at multidimensional data sets. The right visualization approach allows users from
various backgrounds, both industrial and academic, to gain valuable insights without having to perform
complex calculations [12]. Visualization has a central role in the development of Metaverse as it not only
influences its visual construction process, but also determines how users interact and understand the world
created [13]. With the significant increase in the amount of data from rapidly developing bioinformatics
analysis technologies, the importance of genomic data visualization has become increasingly crucial in
facilitating the understanding and efficient analysis of structural variation [14]. Visualization is crucial in
explaining the complexity of information. Change-of-use graphs, at-sea distribution maps, and sensor, and
layout infographics provide an overview of the evolution of the technology and the area under
observation [15]. Visualization has significant benefits in aiding the understanding of the structure and
distribution of solutions generated by algorithms, enabling holistic evaluation of performance simplifying
interaction, allowing users to select suitable solutions and explore the solution space efficiently and reducing
problem complexity [16]. The development of high-dimensional data visualization has become a significant
source of innovation and identified promising future research directions. The paper emphasizes
dimensionality reduction as a key technique in analyzing and visualizing high-dimensional data [17], [18].

Based on research that has developed data visualization Peterfreund and Gavish [19] identified that
ambient noise level is a limitation in data visualization, Hagele et al. [20] has developed unsupervised
multidimensional scaling (MDS) that considers the uncertainty of data assuming normal distribution and the
complexity of calculations becomes a challenge in data visualization. Research by Zhang et al. [21] stating
that the dependence on iteration which causes high computation time and delivered by Dzemyda et al. [22]
that the problem is in the interpretation of visualization, so that the development of data dimension reduction
will be carried out by ensuring normal data distribution through a series of data transformation processes
using Z-score, skewness, kurtosis, and scaling. In addition, this study also developed a distance formulation
for MDS which can solve the problem of dependence on iteration which causes high computation time and
solve the limitations of visualization interpretation.

2. METHOD

This section introduces the basic model that became the reference in the development of the method,
namely MDS, which was later developed into a new model called pasca-multidimensional scaling (pasca-
MDS). This model is designed to overcome the limitations of MDS in projecting high-dimensional data to
lower dimensions, so as to produce more optimal and accurate visualizations.

2.1. Pasca-multidimensional scaling model architecture

The development of pasca-MDS models requires an in-depth analysis of each process involved to
improve the effectiveness of data placement. This process begins with dataset preparation, which includes the
use of various data transformation techniques to ensure data quality and consistency. These transformation
techniques include skewness analysis to measure the slope of the data distribution, kurtosis to assess the
spikiness of the distribution, and scaling to normalize the data so that all variables are on the same scale.
After the dataset preparation, the next step is the establishment of the distance formula. This process involves
analyzing the established distances, and evaluating the suitability, and accuracy of the existing distance
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formulas. Based on this analysis, a new distance formula called distance pas (D_Pas) was developed. The
distance pas (D_Pas) formula aims to provide a more accurate and relevant representation of the relationship
between data. Overall, the details and steps in this process are comprehensively described in Figure 1.

Dataset e Pasca-MDS Dataset Distance Formula Analysis
ZSCe Tran_sformatlon Matrix Formation { Distance Determination Formula
Technique

Skewness Technique Coordinat Point Determination

Kurtosis Technique Stress Value Determination
T
v

Scaling Technique —

Figure 1. Pasca-MDS model development architecture

2.2. Pasca-multidimensional scaling formulation

The pasca-MDS method developed in this study is designed to project high-dimensional data into
lower dimensions, thus facilitating visualization and further analysis. The process involves several systematic
steps, from data selection and processing to evaluation and validation of the projected results. Each step plays
an important role in ensuring that the resulting data remains accurate and representative of the original
structure. The following is a full description of the steps applied in this pasca-MDS method.
a. Z matrix formation
— Matrix formation Z-score normalization:

— (xi-p) (1)

c

skewness adjustment using normalized results:

n n (xi—p)z (2)

T -2 “i=15

the formula will produce a skewness value and test the following conditions in the skewness principle.

Yz ,if skewness > 0
Zg = { z?,if skewness < 0
z, if not

— Formation of kurtosis so that the data transformation is close to normal then the formula is used:

n(n+1) xi—%\* 3(n-1)2

T (n-1D)m-2)(n-3) “=1\ 6 (n—-2)(n-3)
provided that,

log(1 + z,),if kurtosis (z5 > 3
Zge =4 e% —1, if kurtosis(z) < 3
zg, otherwise

— Scaled value mapping:

X' =pu+o0.z4 4)
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b. Distance formation with formula d,4:

2
1 Vig-Vj
dpas (vi,vj) =7 2:1 ($) (5)

max(|vigl|vjkl

c. Find the eigenvalue and eigenvector with the formula det(Bl) and det(BI)X where to calculate the matrix
B with elements:

bij: -3 (a}-a}-a}- a?) (6)

1

diz Z;Zidizj
1

df ZZZidiZJ'
1

d? =pZidi2j

d. Form object coordinates based on eigenvectors X=[X1  X2] then calculate D which is the Euclidean
distance of the formed coordinates calculate the stress value with (7):

IiLj(dij—dij)?
5 = [HLrs| %

Zi:] ij
2.3. Distance matrix formulas
As a basis for developing distance formulas, an evaluation of the theory and an evaluation of the
distance formulas that have been developed by giving initials to each distance formula, namely D1, D2, D3,
D4, D5, D6, D7, D8, D9, and D10 with a description in Table 1.

Table 1. Distance matrix formula

Distance matric Formula (v;v;) Description
Arccosine (D1) . Arccosine matrix is used to calculate distance based on the across
across Yk=1 VieVik value of the dot product between two vectors normalized by their

magnitude [23].
V=1 Vi 2k Vi

Canberra (D2) Vie Vil The Canberra distance has the task of measuring the distance between
— two points in a high-dimensional space. Canberra distance is
k=1 Vil + Vil commonly used in data analysis to measure the difference between two
feature vectors. This metric is suitable when the data has a large range
of values and outliers are present [24].
Dice (D3) k=1 (Vik-Vji)? The dice distance metric is a metric used to measure the similarity

m between two samples or feature vectors (v;) and (v;). Its function is to
measure similarity or distance in the context of common elements

shared by two sets or two vectors in data analysis [23].

Divergence is a measure of the spread or difference between two

vectors [23].

Divergence (D4) R (Vivip)?

Euclidean
distance (D5)

o (Vik+Vir)?
. Euclidean distance measurement between two vectors vi and vj, where
5 r is the number of dimensions of the vectors. Euclidean distance is
Z(Vik-"ik) often used in various applications such as machine learning, statistics,
k=1 and data analysis to measure the distance or difference between two

points in a multidimensional space [25], [26].
Jaccard (D6) i1 (Vi V)2 Jaccard distance is used to measure the similarity and diversity
r 2z r VZ _ NI o o between two data sets or vectors. The formula you mentioned seems to

Yke1 Vik + 2kt Vi — ka1 VikVik e " . -
be a variation of the traditional Jaccard index, specialized for vector
data and may be more suitable for certain applications such as in data
processing or similarity analysis [23].

Lorentzian (D7) ¥k, log(1 + |vi-vil) Lorentzian distance formula uses the logarithm of one plus the
absolute difference of the components to calculate the distance [26].
Manhattan (D8) Y1 IVik=Vik]) Calculates distance as the sum of the absolute differences between the

components of a vector, similar to walking in a city with grid-shaped
street [23], [25].
Sorenson (D9) Dkt ViVl Similar to dice, it measures the similarity between two objects [23].

Zﬂ:l |Vik+vik|
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3. RESULTS AND DISCUSSION

Pasca-MDS performance in the formation of data visualization with evaluation based on how well
the original data is represented in a lower dimensional space, while changes in the mean of each variable and
its standard deviation can indicate differences in data structure after analysis. The normalization graph gives
an idea of how well the normalization has been done, while the evaluation of the Euclidean distance after
transformation can reveal how well the transformation has been done. Matrix determination can be evaluated
by comparing the resulting matrix with the original distance matrix, while the establishment of object
coordinates can be evaluated by comparing the object positions in the low-dimensional space with the object
relationships in the original space. Finally, the stress value is a measure of the conformity of the data
representation in the low-dimensional space with the original data in the high-dimensional space. The
architecture in stress value formation in Figure 2.

Distance Determination
With Distance Formula —>  Distance (D1-D9)
(D1-D9)

Figure 2. Pasca-MDS performance building architecture

3.1. Performance of pasca-multidimensional scaling data normalization

Establishing normalization is an important step in preparing data sets for visualization.
Normalization plays an important role in transforming the data to have a uniform scale, thus facilitating
interpretation and analysis. The stages of work to be done include dataset preparation, feature selection,
normalization, dataset visualization, evaluation, storage. Pasca-MDS normalization formation architecture in
Figure 3.

v

Transformation Technique New Dataset

Data Transformation

. New Dataset
Initial Dataset

Figure 3. Formation of pasca-MDS data transformation

The objective of normalization after scaling is to produce a more normal distribution of data, where
the data distribution tends to be symmetrical and centered around the mean value. This more normal
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distribution of data can improve the quality of data visualization by facilitating more effective data
interpretation and analysis. The formation of normalization by adjusting the normalization process of
Z-score, skewness, kurtosis, and scaling successively produces a histogram in Figure 4 with data distribution
towards normal distribution. Figure 4(a) shows the formation of the data distribution using the Z-score,
which results in a distribution with a mean around zero and a standard deviation of one, allowing a general
understanding of the spread of the data. Furthermore, the skewness analysis in Figure 4(b) reveals asymmetry
in the distribution, indicating a potential skewing of the data in one particular direction, while the kurtosis
analysis in Figure 4(c) highlights the thickness or height of the tails of the distribution, which may indicate
the presence of outliers or extreme variation. After going through the scaling process in Figure 4(d), the data
distribution becomes closer to a normal distribution, with a more centered and more even range of values.
The last stage is the initial dataset that will be used during the pasca-MDS implementation.
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Figure 4. Transformation with: (a) Z-score, (b) skewness, (c) kurtosis, and (d) scaling with normal
distribution

3.2. Distance performances

Distance in pasca-MDS is a formula that has been developed in this research, with a specific
visualization of distance performance with the architecture of the distance determination process described in
Figure 5. The pasca-MDS distance formula, which has been developed in this research, plays an important
role in the analysis of multidimensional data structures. This formula is designed to measure the distance
between objects in pasca-MDS which is a technique to reduce the dimensionality of data and visualize the
relationship between objects in a lower space.

This pasca-MDS distance formula has the advantage of producing a better representation of the
original data structure, especially when the data has complex multidimensional properties. Thus, this formula
makes an important contribution in understanding and interpreting complex data more effectively. In this
research, we will explain in detail about the pasca-MDS distance formula developed, as well as how it can be
used to measure the distance between objects more accurately in the context of multidimensional analysis.
The formula comparison that forms the basis for the development of the distance formula in pasca-MDS
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consists of arccosine distance (D1), canberra distance (D2), dice distance (D3), divergence distance (D4),
euclidean distance (D5), jaccard distance (D6), lorentzian distance (D7), manhattan distance (D8), sgrenson
distance (D9), and pasca-MDS distance (D10). Each type of distance has advantages and disadvantages in
determining the distance depending on the data preparation used. In this context, pasca-MDS shows the best
distance after normalization with Z-score, normalization after skewnes, kurtosis, and scalasis, which are steps
in the pasca-MDS process. Graphical analysis shows that the pasca-MDS distance undergoes changes in the
determination of distances that are at the same coordinates, and proves to be superior to several other distance
formulas. Evaluation is done by utilizing the pasca-MDS distance formula and other distance formulas
against the normalization technique with a description of the results. After testing using the distance formula,
Table 2 is outlined. Which is a comparison of distance based on the type of matrix against data
transformation.

Initial Dataset J_' Distance With Formula D1-D9  —>| Distance Result

[
L2

—

Dataset After Scaling W

L Dataset With Pasca-MDS —>| Pasca-MDS Result

Figure 5. Pasca-MDS distance establishment architecture

Table 2. Distance comparison based on matrix type

Matrix
distance/ D1 D2 D3 D4 D5 D6 D7 D8 D9 D10
normalization
Z-Score -0.774  0.70406 1.70310 36.02884 2.350225 1.2601 13123  2.457394 1.44857 0.551415
Skewness -0.774  0.70406 1.70310 36.02884 13.86409 1.26010 3.1970 14.496296 1.44857 0.551415
Kurtosis -0.774  0.70406 1.70310 36.02884 88.53625 1.26010 6.1294 92.573468 1.44857 0.551415
Skalasi -0.6452 0.64490 155449 19.79684 11.31057 121706 2.8671 11.731907 1.11896 0.511301

The change in distance determination shown by pasca-MDS distance demonstrates the ability to
overcome the challenge of measuring the distance between complex data, thus providing more valuable
information in more in-depth data analysis. The smaller the distance value between two data points that are
actually related or similar, the better the formula is considered in describing the closeness or similarity
between data. This is supported by the MDS work steps in determining the stress value, where a lower stress
value indicates a better match between the calculated multidimensional distance and the original distance in
the data space. Thus, D10 was found to be more optimal. The graphical visualization with the comparison of
each distance against the transformation technique is described in Figure 6 with a comparative study of
distances through the transformation of: Z-score (Figure 6(a)), skewness (Figure 6(b)), kurtosis (Figure 6(c)),
and scaling (Figure 6(d)).

Based on the evaluation conducted on various distance metrics before and after applying
preprocessing techniques, such as Z-score, skewness, kurtosis, and scaling. Before preprocessing, the best
shortest distance metric is D3 with a distance value of 0.037959. However, after applying Z-score, skewness,
and kurtosis, the shortest distance metric changes to D3 with a distance value of 1.703100. Likewise, after
applying scaling, the shortest distance metric changes to D10 with a distance value of 0.511301 and is
consistent for all data conditions as shown by the comparison of all distance formulas in Figure 6. This is an
assessment of the effectiveness of data transformation in pasca-MDS distance optimization. The data
transformations evaluated include Z-score, skewness, kurtosis, and scaling. The evaluation results show that
the scaling transformation provides more optimal pasca-MDS distance improvement compared to the other
transformations. This illustrates the important role of scaling in improving the multidimensional
representation of data in the context of pasca-MDS distance. Therefore, strategies to improve the quality of
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multidimensional data analysis can be focused on improving the transformation at the scaling stage. The
results of the comparison of distance values between metrics before and after preprocessing are outlined in
Figure 7. Figure 7 shows 10 distance values D1-D10 plotted based on four different normalization methods
of Z-score, skewness, kurtosis, and scaling. The vertical axis represents the distance value, which shows how
far each data point is from the reference point after applying the corresponding normalization. The horizontal
axis, labeled as d represents the distance formula. Formula D10 is a developed formula that shows the best
distance with consistent coverage resulting in values close to the value of 0.
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Figure 6. Comparison of 10 distances against normalization: (a) Z-score, (b) skewness, (c) kurtosis, and
(d) scaling

Distance Value
=
5

D1

D2

D3 04

[»]

D6
Formula

D7

[*[]

D3

Dio

Figure 7. Comparison of distance to the whole transformation process

3.3. Evaluation of pasca-multidimensional scaling stress value

The stress value is a formula used to ensure that the data coordinates are in the right position with
the architecture of determining the stress value before and after the use of pasca-MDS. outlined in the
following Figure 8. The evaluation of stress values involved periodic data experiments with varying amounts
of data, namely 200, 500, 1000, and 2000, conducted with various distance formulas tested using the Python
application, the data runs are outlined in Table 3.
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Figure 8. Pasca-MDS stress value evaluation architecture

Table 3. Pasca-MDS stress value performance
Dataset  Stress value

200 0.8447
500 0.9030
1000 0.9311
2000 0.9487

After generating the stress values using pasca-MDS, the comparison results with the distance
formula are outlined on tables and graphs to provide a better understanding of the performance of the
distance formula on different datasets. This will help in determining the most appropriate distance formula
for data of a particular size, as well as provide an understanding of how the size of the dataset affects the
resulting stress values. the representation of the distance between objects is declared optimal if the value of S
is close to 0, which means that it will be at the optimal point if the value is close to the value of 0, which
indicates that the representation of the distance in the resulting data (dij) is very close to the actual distance in
the data (dij). The comparison results are described in Table 4.

Table 4. Comparison of stress values
Stress values
Dataset 200  Dataset 500  Dataset 1000  Dataset 2000

Matrix formula

D1 0.9201 0.9496 0.9645 0.9728
D2 0.9364 0.9603 0.9718 0.9790
D3 0.8776 0.9232 0.9459 0.9583
D4 0.9981 0.9998 0.9998 0.9995
D5 0.9811 0.9888 0.9935 0.9954
D6 0.8593 0.9109 0.9367 0.9526
D7 0.9649 0.9786 0.9932 0.9951
D8 0.9873 0.9873 0.9957 0.9969
D9 0.9441 0.9641 0.9757 0.9808
D_pas 0.8447 0.9030 0.9311 0.9487

Table 4 is a representation of stress values for several datasets of different sizes (200, 500, 1000, and
2000) using matrix formulas (D1-D9 and D_pas). Stress values are used to measure the quality of data
embedding in multidimensional analysis, such as in factor analysis or multidimensional mapping. Each cell
in the table shows the stress value generated by a particular matrix formula for the corresponding dataset.
Lower stress values indicate better data embedding (less information lost in the multidimensional
representation), while high stress values indicate the opposite. From Table 4, it can be seen that the larger the
dataset size (from 200 to 2000), generally the stress values are lower for all matrix formulas, indicating an
improvement in data embedding quality with larger dataset sizes. The best distance order for all phases with a
dataset of 200. In this phase, the matrix formula D_pas has the lowest stress value, which is 0.8447.
Therefore, the best order for phase 200 is D_pas, D6, D3, D1, D5, D7, D9, D2, D8, and D4. In this phase, the
D_pas matrix formula also has the lowest stress value, which is 0.9030. Thus, the best order for phase 500 is
D_pas, D6, D3, D1, D5, D7, D9, D2, D8, and D4. Dataset of 1000. In this phase, the D_pas matrix formula
has the lowest stress value, which is 0.9311. Thus, the best order for phase 1000 is D_pas, D6, D3, D1, D5,
D7, D9, D2, D8, and D4. Dataset of 2000. In this phase, the matrix formula D_pas also has the lowest stress
value, which is 0.9487. Therefore, the best order for phase 2000 is D_pas, D6, D3, D1, D5, D7, D9, D2, D8,
and D4. The comparison for each stress value is described through the graph in Figure 9.

Figure 9 provides a detailed visualization of the relationship between the various formulas and the
values of the stress value for four different dataset sizes, namely 200, 500, 1000, and 2000. The vertical axis
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(y-axis) of this graph displays the stress value values that ranges from 0 to 1. This value indicates how much
pressure or experienced by the system or object as a result of the application of a particular formula, where
values close to zero are used. Formula, where values closer to zero indicate better performance in reducing
the stress or pressure experienced. in reducing the stress or pressure experienced. In other words, the lower
the stress value value, the better the formula is at maintaining system stability. stability of the system.
Meanwhile, the horizontal axis (x-axis) displays the various formulas tested, denoted as D1 to D_pas. These
formulas are applied to datasets of different sizes to test how each formula affects the stress value value. The
graph it also uses different colors to represent the dataset size, blue for dataset 200, orange for dataset 500,
green for dataset 1000, and red for dataset 2000. Based on the analysis results of the visualization, it can be
concluded that the D_Pas matrix formula provides the best data embedding quality compared to other matrix
formulas. This is shown by the lowest stress value value of D_Pas for all tested dataset sizes. Therefore,
D_Pas can be considered as the most effective and reliable distance metric in reducing stress, making it the
best choice in this study. The consistent performance of D_Pas, regardless of the dataset size, confirms its
superiority as an optimal formula for maintaining stability and accuracy in the data embedding process.

1.00
0.98
0.96
0.94

0.92

Stress Value

0.90

—— Dataset 200
Dataset 500

—e— Dataset 1000

—e— Dataset 2000

DL D2 D3 D4 D5 D6 D7 D8 D9 D_pas
Formula

Figure 9. Comparison of pasca-MDS stress values

4. CONCLUSION

Pasca-MDS, as an extension of MDS, offers an innovative approach by retaining relevant
information from each data point. The evaluation results show the superiority of the pasca-MDS method with
lower stress values with other distance formulas in terms of the nine distances made for comparison in this
study. The implication of the research is the need for the development of more efficient data visualization
techniques in handling the complexity of high-dimensional data, thus providing an important basis for future
research and innovation of better data visualization techniques with a focus on accuracy.
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