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 This research aims to produce a new method called pasca-multidimensional 

scaling (pasca-MDS) by modifying the multidimensional scaling (MDS) 

method, the developed model comes as a solution to overcome the problem 

of data complexity by reducing its description dimension without losing 

important information. This model, offers an innovative approach in dealing 

with these problems. Pasca-MDS not only focuses on reducing the 

dimensionality of data, but also retains the essence of relevant information 

from each data point. As such, it allows for easier and more efficient 

analysis without compromising the accuracy of the information conveyed. 

The main advantage of pasca-MDS lies in its ability to produce simpler 

visual representations while maintaining the original structure of complex 

data. This provides clarity and ease in understanding the patterns or 

relationships hidden within. By using adjustment techniques after the MDS 

process, this model can provide more optimized results. This process allows 

the adjustment of data points to achieve a better representation in a lower 

dimensional space, resulting in a more intuitive and easy-to-understand 

interpretation. The developed distance formula has the ability to minimize 

stress compared to other distance formulas in MDS space, with the aim of 

improving the accuracy of high-dimensional data visualization. 
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1. INTRODUCTION 

Visualization refers to the process of creating a visual representation of data or information. The 

goal of data visualization is to communicate information through a visual medium, which allows users to 

access insights into the data properties of a given data set generally determine which type of visual encoding 

is more effective [1], [2]. Data visualization plays an important role in revealing relationships and trends that 

may not be apparent when looking at raw multidimensional data sets [3]. Complex data sets often consist of 

many interrelated variables, under these conditions, data visualization uses mathematical techniques to 

reduce the number of dimensions of the data, making it possible to see and understand the relationships 

between variables in a more intuitive and effective way [4]. Data visualization rests on the premise that a 

picture is worth a thousand words with the assertion that visualizations have the ability to communicate 

https://creativecommons.org/licenses/by-sa/4.0/
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information with high intensity and effectiveness, which can replace or surpass lengthy text explanations [5]. 

Visualization has gradually been placed at the forefront of research in this century and has developed rapidly 

in the past decade [6]. Data visualization is useful because it transforms complex information into visual 

forms that are easy to understand, reveals hidden information, facilitates communication, and supports better 

decision-making in big data [5]. Visualization of high-dimensional data is difficult due to various factors 

such as number of dimensions, samples, dataset size, density, sparsity, cluster density, and data structure. All 

these parameters pose a challenge in visualizing complex data [7]. 

The problem of visualizing high-dimensional data with low sample sizes is often difficult and faces 

problems such as overfitting, curse of dimensionality, computational infeasibility, and strong model 

assumptions [8]. Visualization depends on the number of dimensions and the number of samples in the 

dataset. The higher the number of dimensions, the more complex the data, while a large number of samples 

can affect the complexity and total size of high-dimensional data [9]. High-dimensional data has challenges 

such as data management issues, this condition is an increase in the number of features or dimensions can 

make data modeling and analysis more difficult and complex [10]. In addition, this data continues to grow 

and change over time [11]. 

The literature is full of statements that emphasize the importance of visualization. Data visualization 

transforms complex information into easily understandable visual forms, brings out hidden information, 

facilitates effective communication, and supports accurate decision-making, and team collaboration in data 

analysis [11]. Data visualization plays an important role in revealing relationships and trends that may not be 

apparent when looking at multidimensional data sets. The right visualization approach allows users from 

various backgrounds, both industrial and academic, to gain valuable insights without having to perform 

complex calculations [12]. Visualization has a central role in the development of Metaverse as it not only 

influences its visual construction process, but also determines how users interact and understand the world 

created [13]. With the significant increase in the amount of data from rapidly developing bioinformatics 

analysis technologies, the importance of genomic data visualization has become increasingly crucial in 

facilitating the understanding and efficient analysis of structural variation [14]. Visualization is crucial in 

explaining the complexity of information. Change-of-use graphs, at-sea distribution maps, and sensor, and 

layout infographics provide an overview of the evolution of the technology and the area under 

observation [15]. Visualization has significant benefits in aiding the understanding of the structure and 

distribution of solutions generated by algorithms, enabling holistic evaluation of performance simplifying 

interaction, allowing users to select suitable solutions and explore the solution space efficiently and reducing 

problem complexity [16]. The development of high-dimensional data visualization has become a significant 

source of innovation and identified promising future research directions. The paper emphasizes 

dimensionality reduction as a key technique in analyzing and visualizing high-dimensional data [17], [18]. 

Based on research that has developed data visualization Peterfreund and Gavish [19] identified that 

ambient noise level is a limitation in data visualization, Hagele et al. [20] has developed unsupervised 

multidimensional scaling (MDS) that considers the uncertainty of data assuming normal distribution and the 

complexity of calculations becomes a challenge in data visualization. Research by Zhang et al. [21] stating 

that the dependence on iteration which causes high computation time and delivered by Dzemyda et al. [22] 

that the problem is in the interpretation of visualization, so that the development of data dimension reduction 

will be carried out by ensuring normal data distribution through a series of data transformation processes 

using Z-score, skewness, kurtosis, and scaling. In addition, this study also developed a distance formulation 

for MDS which can solve the problem of dependence on iteration which causes high computation time and 

solve the limitations of visualization interpretation. 

 

 

2. METHOD 

This section introduces the basic model that became the reference in the development of the method, 

namely MDS, which was later developed into a new model called pasca-multidimensional scaling (pasca-

MDS). This model is designed to overcome the limitations of MDS in projecting high-dimensional data to 

lower dimensions, so as to produce more optimal and accurate visualizations. 

 

2.1.  Pasca-multidimensional scaling model architecture 

The development of pasca-MDS models requires an in-depth analysis of each process involved to 

improve the effectiveness of data placement. This process begins with dataset preparation, which includes the 

use of various data transformation techniques to ensure data quality and consistency. These transformation 

techniques include skewness analysis to measure the slope of the data distribution, kurtosis to assess the 

spikiness of the distribution, and scaling to normalize the data so that all variables are on the same scale. 

After the dataset preparation, the next step is the establishment of the distance formula. This process involves 

analyzing the established distances, and evaluating the suitability, and accuracy of the existing distance 
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formulas. Based on this analysis, a new distance formula called distance pas (D_Pas) was developed. The 

distance pas (D_Pas) formula aims to provide a more accurate and relevant representation of the relationship 

between data. Overall, the details and steps in this process are comprehensively described in Figure 1. 
 

 

 

Dataset 

Z-Score Transformation 

Technique

Skewness Technique

Kurtosis Technique

Scaling Technique

Pasca-MDS Dataset

Matrix Formation 

Coordinat Point Determination

Stress Value Determination

Distance Formula Analysis

Distance Determination Formula 

 
 

Figure 1. Pasca-MDS model development architecture 
 

 

2.2.  Pasca-multidimensional scaling formulation 

The pasca-MDS method developed in this study is designed to project high-dimensional data into 

lower dimensions, thus facilitating visualization and further analysis. The process involves several systematic 

steps, from data selection and processing to evaluation and validation of the projected results. Each step plays 

an important role in ensuring that the resulting data remains accurate and representative of the original 

structure. The following is a full description of the steps applied in this pasca-MDS method. 

a. Z matrix formation 

− Matrix formation Z-score normalization: 
 

z =  
(xi - μ)

σ
 (1) 

 

skewness adjustment using normalized results: 
 

𝜆 =
𝑛

(𝑛−1)(𝑛−2)
 ∑ (

𝑥𝑖−μ

σ
)
2

𝑛
𝑖=1   (2) 

 

the formula will produce a skewness value and test the following conditions in the skewness principle. 
 

𝑧𝑠 = {
√z
3
 , if skewness > 0

z2, if skewness < 0
z, if not 

  

 

− Formation of kurtosis so that the data transformation is close to normal then the formula is used: 
 

𝑘 =  
𝑛(𝑛+1)

(𝑛−1)(𝑛−2)(𝑛−3)
 ∑ (

𝑥𝑖−𝑥̅

σ
)
4

−
3(𝑛−1)2

(𝑛−2)(𝑛−3)
 𝑛

𝑖=1  (3) 

 

provided that, 
 

𝑧𝑠𝑘 = {

𝑙𝑜𝑔(1 + 𝑧𝑥) , 𝑖𝑓 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (𝑧𝑠) > 3

𝑒𝑍𝑠 − 1, 𝑖𝑓 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑧𝑠) < 3
𝑧𝑠, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

− Scaled value mapping: 
 

𝑋′ =  𝜇 + 𝜎. 𝑧𝑠𝑘  (4) 
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b. Distance formation with formula 𝑑𝑝𝑎𝑠: 

 

𝑑𝑝𝑎𝑠(𝑣𝑖,𝑣𝑗) =
1

𝑟
√∑ (

𝑣𝑖𝑘−𝑣𝑗𝑘

𝑚𝑎𝑥(|𝑣𝑖𝑘|,|𝑣𝑗𝑘| 
)
2

𝑟
𝑘=1  (5) 

 

c. Find the eigenvalue and eigenvector with the formula det(BI) and det(BI)X where to calculate the matrix 

B with elements: 

 

𝑏
𝑖𝑗= −

1

2
 (𝑑𝑖𝑗

2 −𝑑𝑖
2−𝑑𝑗 

2− 𝑑…
2 )

 (6) 

 

𝑑𝑖
2 =

1

𝑛
 ∑ 𝑑𝑖𝑗

2
𝑖   

 

𝑑𝑗
2 =

1

𝑛
 ∑ 𝑑𝑖𝑗

2
𝑖   

 

𝑑…
2 =

1

𝑛2
 ∑ 𝑑𝑖𝑗

2
𝑖   

 

d. Form object coordinates based on eigenvectors X=[X1    X2] then calculate D which is the Euclidean 

distance of the formed coordinates calculate the stress value with (7): 

 

𝑆 =  ⌊
∑ (𝑑𝑖𝑗−𝑑𝑖𝑗)

2𝑛
𝑖=𝑗

∑ 𝑑𝑖𝑗
2𝑛

𝑖=𝑗

⌋ (7) 

 

2.3.  Distance matrix formulas 

As a basis for developing distance formulas, an evaluation of the theory and an evaluation of the 

distance formulas that have been developed by giving initials to each distance formula, namely D1, D2, D3, 

D4, D5, D6, D7, D8, D9, and D10 with a description in Table 1. 

 
 

Table 1. Distance matrix formula 
Distance matric Formula (vi,vj) Description 

Arccosine (D1) 

across 

(

 
∑  vik.vjk
r 
k=1

√∑ Vik
2r

k=1  √∑ Vjk
2r

k=1  
)

  

Arccosine matrix is used to calculate distance based on the across 

value of the dot product between two vectors normalized by their 

magnitude [23]. 

Canberra (D2) 

∑
|vik−vjk| 

|vik| + |vjk|

R

k=1

 

The Canberra distance has the task of measuring the distance between 

two points in a high-dimensional space. Canberra distance is 

commonly used in data analysis to measure the difference between two 
feature vectors. This metric is suitable when the data has a large range 

of values and outliers are present [24]. 

Dice (D3) ∑ (vik−vjk)
2r

k=1

∑ Vik
2r

k=1 + ∑ Vjk
2r

k=1

 
The dice distance metric is a metric used to measure the similarity 

between two samples or feature vectors (vi,) and (vj). Its function is to 

measure similarity or distance in the context of common elements 

shared by two sets or two vectors in data analysis [23]. 

Divergence (D4) 
2∑

(vik−vjk)
2

(vik+vjk)
2

R

k=1

 
Divergence is a measure of the spread or difference between two 
vectors [23]. 

Euclidean 
distance (D5) 

√∑(vik−vjk)
2

r

k=1

 

Euclidean distance measurement between two vectors vi and vj, where 
r is the number of dimensions of the vectors. Euclidean distance is 

often used in various applications such as machine learning, statistics, 

and data analysis to measure the distance or difference between two 
points in a multidimensional space [25], [26]. 

Jaccard (D6) ∑ (vik−vjk)
2r

k=1

∑ Vik
2r

k=1 + ∑ Vjk
2 − ∑ vikvjk 

r
k=1

r
k=1

 
Jaccard distance is used to measure the similarity and diversity 

between two data sets or vectors. The formula you mentioned seems to 
be a variation of the traditional Jaccard index, specialized for vector 

data and may be more suitable for certain applications such as in data 

processing or similarity analysis [23]. 
Lorentzian (D7) ∑ log(1 + |vik−vjk|

r
k=1 ) Lorentzian distance formula uses the logarithm of one plus the 

absolute difference of the components to calculate the distance [26]. 

Manhattan (D8) ∑ |vik−vjk|
r
k=1 ) Calculates distance as the sum of the absolute differences between the 

components of a vector, similar to walking in a city with grid-shaped 

street [23], [25]. 

Sorenson (D9) ∑ |vik−vjk|
r
k=1

∑ |vik+vjk|
r
k=1

 
Similar to dice, it measures the similarity between two objects [23]. 
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3. RESULTS AND DISCUSSION 

Pasca-MDS performance in the formation of data visualization with evaluation based on how well 

the original data is represented in a lower dimensional space, while changes in the mean of each variable and 

its standard deviation can indicate differences in data structure after analysis. The normalization graph gives 

an idea of how well the normalization has been done, while the evaluation of the Euclidean distance after 

transformation can reveal how well the transformation has been done. Matrix determination can be evaluated 

by comparing the resulting matrix with the original distance matrix, while the establishment of object 

coordinates can be evaluated by comparing the object positions in the low-dimensional space with the object 

relationships in the original space. Finally, the stress value is a measure of the conformity of the data 

representation in the low-dimensional space with the original data in the high-dimensional space. The 

architecture in stress value formation in Figure 2. 

 

 

Initial Dataset

Distance Determination 

With Distance Formula 

(D1-D9)

Pasca-MDS DistanceDataset After Scaling

Distance (D1-D9)
Determination Of

 Matrix B

Shapping Object 

Coordinates

Stress Value

Performance

 
 

Figure 2. Pasca-MDS performance building architecture 

 

 

3.1.  Performance of pasca-multidimensional scaling data normalization 

Establishing normalization is an important step in preparing data sets for visualization. 

Normalization plays an important role in transforming the data to have a uniform scale, thus facilitating 

interpretation and analysis. The stages of work to be done include dataset preparation, feature selection, 

normalization, dataset visualization, evaluation, storage. Pasca-MDS normalization formation architecture in 

Figure 3. 

 

 

 

Initial Dataset

Data Transformation

Pasca-MDS Data Transformation

Transformation Technique New Dataset

Z-Score New Dataset

Skewness

Kurtosis

Scaling New Dataset

 
 

Figure 3. Formation of pasca-MDS data transformation 

 

 

The objective of normalization after scaling is to produce a more normal distribution of data, where 

the data distribution tends to be symmetrical and centered around the mean value. This more normal 
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distribution of data can improve the quality of data visualization by facilitating more effective data 

interpretation and analysis. The formation of normalization by adjusting the normalization process of  

Z-score, skewness, kurtosis, and scaling successively produces a histogram in Figure 4 with data distribution 

towards normal distribution. Figure 4(a) shows the formation of the data distribution using the Z-score, 

which results in a distribution with a mean around zero and a standard deviation of one, allowing a general 

understanding of the spread of the data. Furthermore, the skewness analysis in Figure 4(b) reveals asymmetry 

in the distribution, indicating a potential skewing of the data in one particular direction, while the kurtosis 

analysis in Figure 4(c) highlights the thickness or height of the tails of the distribution, which may indicate 

the presence of outliers or extreme variation. After going through the scaling process in Figure 4(d), the data 

distribution becomes closer to a normal distribution, with a more centered and more even range of values. 

The last stage is the initial dataset that will be used during the pasca-MDS implementation. 

 

 

  
(a) (b) 

  

  
(c) (d) 

  

Figure 4. Transformation with: (a) Z-score, (b) skewness, (c) kurtosis, and (d) scaling with normal 

distribution 

 

 

3.2.  Distance performances 

Distance in pasca-MDS is a formula that has been developed in this research, with a specific 

visualization of distance performance with the architecture of the distance determination process described in 

Figure 5. The pasca-MDS distance formula, which has been developed in this research, plays an important 

role in the analysis of multidimensional data structures. This formula is designed to measure the distance 

between objects in pasca-MDS which is a technique to reduce the dimensionality of data and visualize the 

relationship between objects in a lower space. 

This pasca-MDS distance formula has the advantage of producing a better representation of the 

original data structure, especially when the data has complex multidimensional properties. Thus, this formula 

makes an important contribution in understanding and interpreting complex data more effectively. In this 

research, we will explain in detail about the pasca-MDS distance formula developed, as well as how it can be 

used to measure the distance between objects more accurately in the context of multidimensional analysis. 

The formula comparison that forms the basis for the development of the distance formula in pasca-MDS 
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consists of arccosine distance (D1), canberra distance (D2), dice distance (D3), divergence distance (D4), 

euclidean distance (D5), jaccard distance (D6), lorentzian distance (D7), manhattan distance (D8), sørenson 

distance (D9), and pasca-MDS distance (D10). Each type of distance has advantages and disadvantages in 

determining the distance depending on the data preparation used. In this context, pasca-MDS shows the best 

distance after normalization with Z-score, normalization after skewnes, kurtosis, and scalasis, which are steps 

in the pasca-MDS process. Graphical analysis shows that the pasca-MDS distance undergoes changes in the 

determination of distances that are at the same coordinates, and proves to be superior to several other distance 

formulas. Evaluation is done by utilizing the pasca-MDS distance formula and other distance formulas 

against the normalization technique with a description of the results. After testing using the distance formula, 

Table 2 is outlined. Which is a comparison of distance based on the type of matrix against data 

transformation. 

 

 

Initial Dataset

Dataset After Scaling

Distance With Formula D1-D9

Dataset With Pasca-MDS

Distance Result

Pasca-MDS Result

 
 

Figure 5. Pasca-MDS distance establishment architecture 

 

 

Table 2. Distance comparison based on matrix type 
Matrix 

distance/ 
normalization 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 

Z-Score -0.774 0.70406 1.70310 36.02884 2.350225 1.2601 1.3123 2.457394 1.44857 0.551415 

Skewness -0.774 0.70406 1.70310 36.02884 13.86409 1.26010 3.1970 14.496296 1.44857 0.551415 

Kurtosis -0.774 0.70406 1.70310 36.02884 88.53625 1.26010 6.1294 92.573468 1.44857 0.551415 

Skalasi -0.6452 0.64490 1.55449 19.79684 11.31057 1.21706 2.8671 11.731907 1.11896 0.511301 

 

 

The change in distance determination shown by pasca-MDS distance demonstrates the ability to 

overcome the challenge of measuring the distance between complex data, thus providing more valuable 

information in more in-depth data analysis. The smaller the distance value between two data points that are 

actually related or similar, the better the formula is considered in describing the closeness or similarity 

between data. This is supported by the MDS work steps in determining the stress value, where a lower stress 

value indicates a better match between the calculated multidimensional distance and the original distance in 

the data space. Thus, D10 was found to be more optimal. The graphical visualization with the comparison of 

each distance against the transformation technique is described in Figure 6 with a comparative study of 

distances through the transformation of: Z-score (Figure 6(a)), skewness (Figure 6(b)), kurtosis (Figure 6(c)), 

and scaling (Figure 6(d)). 

Based on the evaluation conducted on various distance metrics before and after applying 

preprocessing techniques, such as Z-score, skewness, kurtosis, and scaling. Before preprocessing, the best 

shortest distance metric is D3 with a distance value of 0.037959. However, after applying Z-score, skewness, 

and kurtosis, the shortest distance metric changes to D3 with a distance value of 1.703100. Likewise, after 

applying scaling, the shortest distance metric changes to D10 with a distance value of 0.511301 and is 

consistent for all data conditions as shown by the comparison of all distance formulas in Figure 6. This is an 

assessment of the effectiveness of data transformation in pasca-MDS distance optimization. The data 

transformations evaluated include Z-score, skewness, kurtosis, and scaling. The evaluation results show that 

the scaling transformation provides more optimal pasca-MDS distance improvement compared to the other 

transformations. This illustrates the important role of scaling in improving the multidimensional 

representation of data in the context of pasca-MDS distance. Therefore, strategies to improve the quality of 
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multidimensional data analysis can be focused on improving the transformation at the scaling stage. The 

results of the comparison of distance values between metrics before and after preprocessing are outlined in 

Figure 7. Figure 7 shows 10 distance values D1-D10 plotted based on four different normalization methods 

of Z-score, skewness, kurtosis, and scaling. The vertical axis represents the distance value, which shows how 

far each data point is from the reference point after applying the corresponding normalization. The horizontal 

axis, labeled as d represents the distance formula. Formula D10 is a developed formula that shows the best 

distance with consistent coverage resulting in values close to the value of 0. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 6. Comparison of 10 distances against normalization: (a) Z-score, (b) skewness, (c) kurtosis, and  

(d) scaling 

 

 

 
 

Figure 7. Comparison of distance to the whole transformation process 

 

 

3.3.  Evaluation of pasca-multidimensional scaling stress value 

The stress value is a formula used to ensure that the data coordinates are in the right position with 

the architecture of determining the stress value before and after the use of pasca-MDS. outlined in the 

following Figure 8. The evaluation of stress values involved periodic data experiments with varying amounts 

of data, namely 200, 500, 1000, and 2000, conducted with various distance formulas tested using the Python 

application, the data runs are outlined in Table 3. 
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Stress Value 

Determination

MDS Stress Value 

Performance 

 
 

Figure 8. Pasca-MDS stress value evaluation architecture 

 

 

Table 3. Pasca-MDS stress value performance 
Dataset Stress value 

200 0.8447 
500 0.9030 

1000 0.9311 

2000 0.9487 

 

 

After generating the stress values using pasca-MDS, the comparison results with the distance 

formula are outlined on tables and graphs to provide a better understanding of the performance of the 

distance formula on different datasets. This will help in determining the most appropriate distance formula 

for data of a particular size, as well as provide an understanding of how the size of the dataset affects the 

resulting stress values. the representation of the distance between objects is declared optimal if the value of S 

is close to 0, which means that it will be at the optimal point if the value is close to the value of 0, which 

indicates that the representation of the distance in the resulting data (dij) is very close to the actual distance in 

the data (dij). The comparison results are described in Table 4. 

 

 

Table 4. Comparison of stress values 

Matrix formula 
Stress values 

Dataset 200 Dataset 500 Dataset 1000 Dataset 2000 

D1 0.9201 0.9496 0.9645 0.9728 

D2 0.9364 0.9603 0.9718 0.9790 
D3 0.8776 0.9232 0.9459 0.9583 

D4 0.9981 0.9998 0.9998 0.9995 
D5 0.9811 0.9888 0.9935 0.9954 

D6 0.8593 0.9109 0.9367 0.9526 

D7 0.9649 0.9786 0.9932 0.9951 
D8 0.9873 0.9873 0.9957 0.9969 

D9 0.9441 0.9641 0.9757 0.9808 

D_pas 0.8447 0.9030 0.9311 0.9487 

 

 

Table 4 is a representation of stress values for several datasets of different sizes (200, 500, 1000, and 

2000) using matrix formulas (D1-D9 and D_pas). Stress values are used to measure the quality of data 

embedding in multidimensional analysis, such as in factor analysis or multidimensional mapping. Each cell 

in the table shows the stress value generated by a particular matrix formula for the corresponding dataset. 

Lower stress values indicate better data embedding (less information lost in the multidimensional 

representation), while high stress values indicate the opposite. From Table 4, it can be seen that the larger the 

dataset size (from 200 to 2000), generally the stress values are lower for all matrix formulas, indicating an 

improvement in data embedding quality with larger dataset sizes. The best distance order for all phases with a 

dataset of 200. In this phase, the matrix formula D_pas has the lowest stress value, which is 0.8447. 

Therefore, the best order for phase 200 is D_pas, D6, D3, D1, D5, D7, D9, D2, D8, and D4. In this phase, the 

D_pas matrix formula also has the lowest stress value, which is 0.9030. Thus, the best order for phase 500 is 

D_pas, D6, D3, D1, D5, D7, D9, D2, D8, and D4. Dataset of 1000. In this phase, the D_pas matrix formula 

has the lowest stress value, which is 0.9311. Thus, the best order for phase 1000 is D_pas, D6, D3, D1, D5, 

D7, D9, D2, D8, and D4. Dataset of 2000. In this phase, the matrix formula D_pas also has the lowest stress 

value, which is 0.9487. Therefore, the best order for phase 2000 is D_pas, D6, D3, D1, D5, D7, D9, D2, D8, 

and D4. The comparison for each stress value is described through the graph in Figure 9.  

Figure 9 provides a detailed visualization of the relationship between the various formulas and the 

values of the stress value for four different dataset sizes, namely 200, 500, 1000, and 2000. The vertical axis 
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(y-axis) of this graph displays the stress value values that ranges from 0 to 1. This value indicates how much 

pressure or experienced by the system or object as a result of the application of a particular formula, where 

values close to zero are used. Formula, where values closer to zero indicate better performance in reducing 

the stress or pressure experienced. in reducing the stress or pressure experienced. In other words, the lower 

the stress value value, the better the formula is at maintaining system stability. stability of the system. 

Meanwhile, the horizontal axis (x-axis) displays the various formulas tested, denoted as D1 to D_pas. These 

formulas are applied to datasets of different sizes to test how each formula affects the stress value value. The 

graph it also uses different colors to represent the dataset size, blue for dataset 200, orange for dataset 500, 

green for dataset 1000, and red for dataset 2000. Based on the analysis results of the visualization, it can be 

concluded that the D_Pas matrix formula provides the best data embedding quality compared to other matrix 

formulas. This is shown by the lowest stress value value of D_Pas for all tested dataset sizes. Therefore, 

D_Pas can be considered as the most effective and reliable distance metric in reducing stress, making it the 

best choice in this study. The consistent performance of D_Pas, regardless of the dataset size, confirms its 

superiority as an optimal formula for maintaining stability and accuracy in the data embedding process. 

 

 

 
 

Figure 9. Comparison of pasca-MDS stress values 

 

 

4. CONCLUSION  

Pasca-MDS, as an extension of MDS, offers an innovative approach by retaining relevant 

information from each data point. The evaluation results show the superiority of the pasca-MDS method with 

lower stress values with other distance formulas in terms of the nine distances made for comparison in this 

study. The implication of the research is the need for the development of more efficient data visualization 

techniques in handling the complexity of high-dimensional data, thus providing an important basis for future 

research and innovation of better data visualization techniques with a focus on accuracy. 
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