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 Arrhythmia classification is categorization of irregular heart rhythms 

depending on patterns detected in electrocardiogram (ECG) signals assist in 

treatment and diagnosis of cardiac conditions. ECG evaluates heart’s 

electrical activity to diagnose various heart conditions, but it is affected by 

interference or noise. ECG’s signal filtering is essential pre-processing stage 

that minimizes noise and highlights wave characteristics in ECG data. 

However, digital filters are normally constructed by multiplying coefficient 

and then multiplying value given as feedback which leads to more power 

and area consumption. To solve these issues, coefficient memory 

compression (CMC) technique is proposed with an adaptive FIR filter (AFF) 

to achieve low area and low power dissipation by compressing memory 

requirements in a field programmable gate array (FPGA). An adaptive FIR 

filter is employed to effectively minimize noise like baseline noise, muscle 

contraction noise, and low-frequency noise. The performance of CMC-AFF 

is analyzed in terms of look up table (LUT), register, digital signal 

processing (DSP), power, and global buffer (BufG). The proposed approach 

achieves a low power consumption of 0.012 W in Zed Board Zynq7000 AP 

system on chip (SoC) FPGA device compared to existing techniques like 

collateral and sequence approaches using Bartlet filter and low-power ECG 

processor using Bartlet filter respectively. 
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1. INTRODUCTION 

Heart disease ranks among the top ten causes of death globally. An early warning system is essential 

for cardiac disease to efficiently minimize mortalities from cardiac death [1]. Cardiac arrhythmia is 

characterized by irregular heartbeats and requires continual treatment and monitoring due to its potential to 

result in cardiac arrest or stroke [2]. An electrocardiogram (ECG) is employed to visualize the electrical 

activity of the heart which provides a significant data source and its simplicity allows for easy monitoring 

and interpretation [3]. The traditional diagnosis involves identifying various kinds of arrhythmia to analyze 

the appropriate treatment strategies [4]. The QRS complex is predominant compared to all the ECG signal 

components [5]. ECG has various kinds of waves like P, T, and QRS waves. These waveforms are evaluated 

to identify the presence of the cardiac disorder. The popular significant data in ECG waveform is identified in 

the P wave morphology, T wave, and QRS complex [6]. ECG signal’s P and T waves cause false detections 

while determining the QRS complex which leads to the establishment of detection approaches that depend on 
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mathematical morphology, band-pass filter, and wavelet transforms [7]. Unique integration of performance, 

flexibility, and energy efficiency produces an field programmable gate array (FPGA) that plays a vital role in 

accelerating computations in different domains like biomedical engineering [8]. FPGAs use pipeline or 

parallel execution of tasks, which decreases power consumption by employing a slower system clock [9]. 

Utilizing an AFF for denoising allows signal preprocessing without prior knowledge of the nature of noise 

[10], [11]. There are various classes in arrhythmia fibrillation, bradycardia, paced beat (PB), tachycardia, 

right bundle branch block (RBBB), and left bundle branch block (LBBB) [12]. Within these classes of 

arrhythmia, certain types can lead to life-threatening scenarios for cardiac patients. The implementation of 

FPGA-based ECG classification is developed earlier by utilizing a generator system for categorizing the ECG 

[13]. Compressing ECG data minimizes the transmitter signal time by transmitting fewer bits due to 

compression [14]. The usage of FPGA in filtering for arrhythmia classification generates improved signal 

processing abilities with low latency. Filtering indicates a promising solution to enhance the reliability and 

effectiveness of the arrhythmia classification system. FPGA generates effective and accurate detection of 

cardiac regularities which is essential for timely intervention and diagnosis [15]. However, digital filters are 

normally constructed by multiplying the coefficient, and then multiplied value is given as feedback which 

causes more power consumption and area. Kirti et al. [16] implemented collateral and sequence approaches 

that utilize Bartlett filter with windows and wavelet methods in FPGA. This approach generates the  

pre-processing phase in two stages: coefficient selection and filter architecture. This architecture uses three 

kinds of filters: notch filter, low pass filter (LPF), and high pass filter (HPF) to remove the base line 

wandering (BLW), power line interference (PLI), and electromyography (EMG) noise. The collateral 

approach reduces the usage of resources by sharing computation among various tasks and sequence 

techniques optimize FPGA performance in a coordinated manner. However, the collateral and sequence 

approaches utilizing the Bartlett filter suffer from higher resource utilization due to the simultaneous 

processing of multiple windows and wavelets. 

Ahmad and Zafar [17] presented a quantized-pruned (QP) ID convolutional neural network (CNN) 

on system on chip (SoC) by utilizing high-level synthesis for machine learning (HLS4ML) for 3-channel 

ECG arrhythmia classification. HLS4ML provides two quantization approaches: quantization aware waiting 

(QAT) and post-training quantization (PTQ) which contain heterogenous model weight quantization. This 

heterogenous quantization through QAT with tunable precision optimizes fixed-point precision for various 

1D CNN by effectively employing precision as a hyperparameter. However, the QP-1DCNN lacks hardware 

inefficiency due to the integration of specialized hardware for quantization and pruning strategies.  

Tripathi et al. [18] suggested a low-power ECG pre-processor using a Bartlett filter to extract the appropriate 

data from biomedical signals. A low-power pre-processing technique was designed for denoising the ECG. 

The LPF, HPF, and notch filter were utilized to eliminate the noise of EMG, BLW, and PLI respectively. All 

three types of filters were constructed by employing primary components comprised of multipliers, adders, 

and delay units. This approach focuses more on the benefits of FIR in effectively extracting valuable data 

from ECG signals which generates increased resourcefulness, and capabilities of rapid processing for signal 

analysis. However, low-power ECG pre-processor using a Bartlett filter has constraints like ringing effects 

during the initial stage of signal processing, the static nature of power, and increased memory usage.  

Tang et al. [19] introduced a second-order level-crossing sampling analog-to-digital (ADC) converter for 

ECG delineation and heartbeat detection of arrhythmia using a fiducial points pruning (FPP) filter. The 

delineation technique utilizes a triangle filter to determine the fiducial points and evaluates the slopes, 

intervals, P/T waves, and QRS complex morphology. Then, those extracted features were employed in 

heartbeat detection of arrhythmia to determine premature ventricular contraction (PVC). This approach 

greatly minimizes computing overhead for digital processing, communication circuits, and storage in the 

low-power system of data acquisition by employing ADC and ECG processing techniques. However, second-

order level-crossing sampling ADCs were prone to signal distortion and noise due to the increased 

complexity of the sampling circuit. Elbedwehy et al. [20] developed an FPGA-based single node reservoir 

computing (SNRC) for ECG denoising using a cumulative mean filter. Initially, SNRC architecture was 

utilized to clean the decomposed ECG signal with high performance. A cost-effective, portable FPGA device 

was designed to combine privacy with high performance. The cumulative mean filter was employed to 

predict the recent value of the sample by averaging prior samples. This approach uses adders, SNRC, and 

multiples for fast signal summation, and signal processing which increases speed, power efficiency, and area 

utilization. However, the FPGA-SNRC has hardware constraints due to finite available resources in FPGA. 

In the overall analysis, it is indicated that existing methods have limitations like higher resource utilization 

due to simultaneous processing, static nature of power, and increased memory usage. To overcome this issue, 

the CMC-AFF is proposed to achieve low area and low power consumption by effectively compressing 

memory requirements.  

The main contribution of this research is as follows: i) the CMC technique utilizes a 2’s 

complement, Barrel shift, and addition module to efficiently minimize memory size which reduces area and 
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power consumption; ii) an AFF minimizes noise like baseline noise, muscle contraction noise, and low-

frequency noise to achieve effective noise reduction; and iii) the main goal of the CMC-AFF is to evaluate 

with Virtex 7 xc7vx485t FPGA device for designing the 16-tap AFF. Additionally, CMF-AFF is evaluated 

with 2 FPGA devices such as Zed Board Zynq7000 AP SoC and Artix 7 XC7A100T. 

The overall structure of the paper is as follows: section 2 contains the proposed method. Section 3 

discusses a coefficient memory compression with adaptive finite impulse response filter. Section 4 indicates 

the results and discussion of the proposed method. Section 5 provides the conclusion.  

 

 

2. METHOD 

In this research, the CMC-AFF is proposed to reduce memory requirements which achieves low 

consumption of power and area. The obtained ECG signal is converted using analog to digital for the filtering 

process. The AFF is employed to remove noise like baseline noise, muscle contraction noise, and  

low-frequency noise. By using CMC technique, memory requirements are reduced with low power and 

power consumption by performing 2’s complement, Barrel shift, and addition module. The QRS peaks are 

identified from filtered ECG signals and then features are extracted using a statistical analysis technique. 

Finally, naïve Bayes (NB) is developed to classify the heartbeat as normal or abnormal. Figure 1 represents 

the block diagram for the proposed approach. 

 

 

 
  

Figure 1. Block diagram for the proposed method 

 

 

The process of the proposed CMC-AFF is presented as follows: i) initially, the ECG signal is 

obtained from MIT-BIH dataset to evaluate the proposed technique, and obtained signals are converted into 

analog to digital representation for filtering; ii) then, the AFF effectively minimizes noise like baseline noise, 

muscle contraction noise, and low-frequency noise by dynamically adjusting it is filter coefficients; iii) CMC 

technique utilizes a 2’s complement, Barrel shift, and addition module to efficiently minimize memory size 

which reduces area and power consumption; iii) bandpass filtering is utilized to remove unwanted noise 

followed by QRS complex detection using PAT technique which analyzes ECG waveforms; iv) after 

detecting the QRS complex, the T and P waves are delineated depending on adaptive search windows with 

adaptive thresholds (ASW-AT) for distinguishing T and P peaks accurately from noise peaks; v) the final 

delineated waves are extracted using a statistical analysis approach. It extracts 7 features from ECG signals 

and forms them together to build a unique set; and vi) finally, the NB is utilized to classify the arrhythmia as 

abnormal or normal. 
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2.1.  Electrocardiogram signal 

In this research, the input ECG signals obtained from the standard Massachusetts Institute of 

Technology-Boston’s Beth Israel Hospital (MIT-BIH) arrhythmia dataset [21] are utilized to evaluate the 

proposed approach. There are a total of 48 ECG records each has 30-minute durations. Every data employed 

here is sampled at a rate of 360 samples per second per channel with a resolution of 11-bit over a 10 mv 

range. These obtained signals are fed into the ADC converter to convert the signal into analog to digital. 

Table 1 provides data characteristics description for MIT-BIH dataset. 

 

 

Table 1. Data characteristics description for MIT-BIH dataset 
Characteristics Description 

Number of patients 47 

Number of recordings 48 half-hour ECG recordings 
Resolution 11-bit 

Sampling rate 360 Hz 

Channels 2 channels 
Data format Standard ECG format with labeled beat annotations 

Annotation Detailed beat classification and arrhythmia occurrences 

Noise level Baseline noise, muscle contraction noise, and low-frequency noise 

 

 

2.2.  Analog-to-digital converter 

After obtaining the ECG signal from MIH-BIT, an ADC converter is utilized for converting 

continuous analog signals into digital representations for filtering that can be analyzed, processed, and 

manipulated by a microcontroller or microprocessor. This permits the FPGA to interface with analog and 

makes it interact with actuators, sensors, and other analog devices. The user program initializes the process of 

ADC conversion and it takes numerous microseconds to complete the conversion effectively. After converting 

an analog signal to digital, these signals are passed to an adaptive FIR filter to reduce noise effectively. 

 

 

3. COEFFICIENT MEMORY COMPRESSION WITH ADAPTIVE FINITE IMPULSE RESPONSE 

FILTER 

3.1.  Adaptive FIR filter  

Once ADC is performed, the digital signals are fed into an AFF which reduces noise like baseline 

noise, muscle contraction noise, and low-frequency noise. An adaptive filter is a filter with non-constant 

coefficients. Normally digital filters are constructed by multiplying the coefficients which requires more 

power and area. To solve these issues, an adaptive FIR filter is employed to reduce the consumption of power 

and area. The AFF filter doesn’t need a multiplier, which uses only a shifting process, adder and 2’s 

complement which minimizes the power consumption and area. The filter module effectively eliminates 

unwanted noise and frequency using a 64-tab MAC. Buffer stores the samples of ECG after digital 

conversion from ADC. Figure 2 shows the overall structure of the filter. 

 

 

 
 

Figure 2. Structure of filter 

 

 

3.1.1. Memory compressor 

The memory compressor contains four modules: address generator, memory module, 2’s 

complement module, and barrel shift and addition module. The memory compressor generates the address in 

16-bit by using 2’s complement module. It has 0-15 addresses with a depth of 16-bit size. Normally, each bit 

requires an address for reading the data and then multiplying it with a coefficient for filtering operation 

which leads to computational overhead and increased processing time. To overcome this issue, 2’s 

complement is used which eliminates the need for two memory locations. By using this, one location can 

effectively handle two data addresses. This research performs with coefficient compression utilizing 2’s 

complement, Barrel shift, and addition module. This integrated technique generates a reduction in memory 

size to one-fourth of the windowing method. By input operand decomposition, this compression technique is 
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employed for the effective implementation of high-precision multiplication. It is determined that the ECG 

processor exhibits low area and time complexity for 16-bit word size. However, for higher word sizes, it has 

significantly less area and shorter multiplication time compared to canonical-signed-digit (CSD)-based 

multipliers. By using a memory compressor module, low power and area are effectively achieved. Figure 3 

indicates the structure of the memory compressor module. The memory compressor with AFF is fed into the 

ECG pre-processing stage to reduce noise, to detect QRS, and T and P wave delineation. 

 

 

 
 

Figure 3. Structure of memory compressor module 

 

 

3.2.  ECG-preprocessing 

After compressing the memory module, the pre-preprocessing phase is performed which contains 

three stages: filtering, detecting QRS, and delineation of T and P waves. Bandpass filtering is used to remove 

the unwanted noise from ECG signals. QRS detection is performed utilizing PAT technique to analyze ECG 

waveforms. The T and P waves are described depending on ASW-AT for distinguishing T and P peaks 

accurately from noise peaks. 

 

3.2.1. Filtering and QRS detection 

Here, bandpass filtering [22] is utilized to remove the unwanted noise from the ECG signal which 

allows a certain range of frequencies to pass through blocking frequencies outside the range. This filter 

isolates relevant QRS energy at 10 Hz and attenuates the characteristics of a low frequency of P and T waves. 

By isolating the relevant frequency elements, the band pass filter eliminates both noises like low and high 

frequency noise. This results in a cleaner ECG signal which makes it easier to interpret and evaluate the 

underlying cardiac activity. The primary advantage is that it preserves data contained within an ECG signal 

even after filtering. QRS complex detection was performed once the unwanted noises were removed by using 

a bandpass filter. Accurate detection of QRS complex in ECG signals provides evaluation of heart rate and 

rhythm abnormalities which leads to an accurate diagnosis of arrhythmia. Here, the PAT technique is used to 

detect the QRS complex.  

PAT is effective due to its adaptability to different ECG characteristics of a signal which generates 

robust performances and is suitable for accurate and effective arrhythmia analysis. It depends on amplitude 

threshold approach which exploits fact that the R peak has greater amplitude compared to other peaks in the 

ECG waveform. With appropriate signal filtering, this approach greatly detects the R peak in each heartbeat by 

utilizing two threshold levels. PAT approach contains four phases after filtering. Filtered signal differentiation 

is utilized to distinguish the complexities of QRS [23] from another wave by determining high slopes. Next, 

non-linear transformation is established via point-to-point squaring of ECG-filtered signal. This transformation 

is significant in highlighting high-frequency signals acquired from the prior phase which represents QRS’s 

complex characteristics. Then, the integration is performed by moving the time window for extracting extra 

features like QRS width. At last, adaptive threshold amplitude is employed to average signal for detecting R 

peaks. Both average and bandpass filtered signals are stored in individual SRAM for further evaluation. 

 

3.2.2. T and P wave delineation 

After detecting the QRS complex, the T and P waves are delineated depending on ASW-AT for 

distinguishing T and P peaks accurately from noise peaks. This approach can dynamically adjust to variations 

in ECG morphology which enhances robustness. QRS is utilized as reference to detect T and P waves in each 

heartbeat in that two regions are confined to R peaks. Then, these regions are employed to establish 

backward and forward search windows for T and P waves. Consider, that a forward search window has a T 

wave, and its boundary is increased from QRS offset to 2/3 of the priorly detected RR interval. Likewise, the 

P wave is determined and increased in a backward search window from QRS onset to 1/3 of prior RR 

interval. A position of T and P peaks are determined with associating search windows by evaluating local 

maxima/minima using corresponding thresholds which are expressed in (1) and (2). 

 

𝑇
𝑤𝑎𝑣𝑒𝑡ℎ=

𝑇𝑝𝑒𝑎𝑘

𝑅𝑝𝑒𝑎𝑘
𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑖𝑛

  (1) 
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𝑃
𝑤𝑎𝑣𝑒𝑡ℎ=

𝑃𝑝𝑒𝑎𝑘

𝑅𝑝𝑒𝑎𝑘
𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑖𝑛

 (2) 

 

where 𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑖𝑛
 and 𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑖𝑛

 indicates the T and P peak which is set between 0.1 and 0.2 depending on 

distinguished values in the window processing.  

 

3.2.3. Delineation of onset and offset point  

ASW-AT hints a value of onset and offsets for P-QRS-T waves by determining sample that is 

associated with the ECG signal’s zero slopes. A sample points have a former and zero slope to a peak which 

is recognized as an onset point. Likewise, an offset is identified by another peak side. Moreover, the change 

of derivative sign has occurred which represents a false indicator. To address this, adaptive search windows 

and threshold techniques incorporate other criteria to accurately delineate wave boundaries depending on 

fiducial points. These criteria are often combined with isoelectric lines. The line of isoelectric is 

approximated as the beat signal’s average value after eliminating QRS complex. It is established and 

integrated with zero slopes to reliable and fiducial point accurate delineation. Before pre-processing, the ECG 

signal has significant noise which makes 30%-50% of the overall signal including baseline noise, muscle 

contraction noise, and low-frequency noise. After pre-processing, the noise level is minimized by 70-90% 

using filtering approaches leaving only 5-15% of signal affected by noise. After point delineation, feature 

extraction is performed to choose the best discriminative ECG features. Table 2 determines the data 

characteristics after pre-processing 

 

 

Table 2. Characteristics for after pre-processing 
Characteristics After pre-processing 

Number of patients remains same-47 

Number of recordings remains same-48 half-hour ECG recordings 

Resolution remains same-11-bit 
Sampling rate remains same-360 Hz 

Channels remains same-2 channels 

Data format Same format with minimized noise and enhanced signal quality 

Annotation Detailed beat classification and arrhythmia occurrences 

Noise level Significantly minimizes noise after filtering 

 

 

3.3.  Feature extraction 

After performing onset and offset point delineation, a statistical analysis approach is employed to 

extract the features by considering complexity for arrhythmia classification. A statistical analysis approach is 

utilized to provide a balance for complexity and generate interpretable features that capture the variations and 

patterns in ECG signals with high efficiency and robustness. This approach extracts 7 features from ECG 

signals and forms them together to build a unique set. Every feature indicates various intervals from these 

signals, they are PQ, PS, RR, QP, TR, RT, and SP intervals. However, various features are required to 

increase the model’s robustness. Hence, this unique set of ECG intervals is established. Finally, these unique 

feature sets are fed as input to a classification phase. 

 

3.4.  Classification 

After extracting features, NB [24], [25] is utilized to determine the signal that is susceptible to 

ventricular arrhythmia. Compared to other techniques like support vector machine (SVM) and decision tree 

(DT), NB has a high potential with a p-value <0.001 in arrhythmia classification whether the heartbeat is 

normal or abnormal in ECG features. It determines the system performance without establishing significant 

bias in classification. NB is the simplest classification technique, requiring no complex estimation of iterative 

parameters. This enables it particularly helpful for the implementation of hardware. It considers strong naïve 

independent distributions among feature vectors, and these considerations are met since every extracted 

feature of ECG is independently assessed and analyzed from the starting stage. Bayesian classifier employs 

Bayes to determine data possibility for a specific class. Bayes theorem is expressed in (3) for a feature set 

vector 𝑑 and class 𝑐𝑖. 

 

𝑃 (𝑐𝑖|𝑑) =
𝑃(𝑑 | 𝑐𝑖) 𝑃( 𝑐𝑖)

𝑝 (𝑑)
 (3) 

  

Assigning data in the best class increases the probability of condition out of every class which are 

indicated in (4) and (5). Due to the risk of floating-point underflow, while calculating the product of the 

above probabilities, the point evaluation is transmitted into summation using logarithms. Instead of selecting 
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a class with the greatest probability, one with greatest log score is selected. Consider that log function is 

monotonic and decisions are identical which is formulated in (6). According to Gaussian, every feature 

vector value is connected with each distributed class. Therefore, the given value’s conditional probability of 

𝑣 from vector 𝑥 has a class of 𝑐𝑖, 𝑃 (𝑣|𝑐𝑖) is expressed in (7)-(9). 

 

𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑐𝑖|𝑑) (4) 

 

𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑐𝑖) ∏ 𝑃(𝑥|𝑥 𝑐𝑖) (5) 

 

𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥 [log(𝑃( 𝑐𝑖)) + ∑ log(𝑃 (𝑥|𝑐𝑖))]𝑋  (6) 

 

𝑃 (𝑥 = 𝑣|𝑐𝑖) =
1

𝜎√2𝜋
𝑒−(𝑣−𝜇)2/2𝜎2

 (7) 

 

𝜇 = ∑ (𝑥𝑖)𝑁
𝑖=1  (8) 

 

𝜎2 =
1

𝑁
∑ (𝑥𝑖 − 𝜇)2𝑁

𝑖=1  (9) 

 

Where 𝜇 and 𝜎2 are mean and variance of 𝑥 connected with class 𝑐𝑖. Figure 4 represents a schematic diagram 

of three stages: pre-processing, feature extraction, and classification.  

 

 

 
 

Figure 4. Schematic diagram of three stages 

 

 

The probability log is computed by utilizing a LUT those entries are 𝜔-bit and 2𝜔-bit deep. The 

LUT entries are indicated in 2’s complement format. The Gaussian technique is constructed by calculating 

the above equations from each class training data for unclassified new values. This approach provides  

real-time processing with low power consumption and effective area utilization which enables it a significant 

solution for the effective arrhythmia classification diagnosis in FPGA. CMC effectively minimizes memory 

with the help of 2’s complement, Barrel shift, and addition module which reduces low power consumption 

and area. AFF minimizes noise like muscle contraction noise, low-frequency noise, and baseline noise and 

achieves effective noise reduction. Therefore, the CMC-AFF technique reduces area utilization and power 

consumption by minimizing memory requirements and providing an effective filter design. 

 

 

4. RESULTS AND DISCUSSION 

The proposed CMC-AFF is simulated using Xilinx ISE 14.2 software. In this research, the 

Modelsim simulator is utilized to evaluate the adaptive FIR filter functional simulations. The main goal of 

the proposed technique is to utilize with Virtex 7 xc7vx485t FPGA device to design a 16-tap AFF. 

Additionally, CMC-AFF is evaluated with 2 FPGA devices Zed Board ZYNQ7000 and Artix 7 XC7A100T. 

The proposed memory compressor with 2’s complement requires only one memory location instead of two 

different memory locations which assists in acquiring data from two different addresses. The AFF filter 

doesn’t need a multiplier which uses only a shifting process and it contains an adder in a filter. Accordingly, 

the proposed memory compressor minimizes hardware utilization. The performance and hardware utilization 

are presented in the following subsections.  
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4.1.  Performance analysis 

The performance of CMC-AFF is evaluated using three different FPGA devices. The proposed 

technique is evaluated to LUT, FF, DSP, I/O, global buffer (BUFG), and power (mW). Figures 5 and 6 

determine the abnormal or normal performances for arrhythmia classification. ECG signals from the  

MIT-BIH dataset undergo a filtering process that removes the noise from it. Then, the QRS complex is 

detected and extracted utilizing a statistical analysis. At last, arrhythmia classification is performed utilizing 

NB to classify the heartbeat as abnormal or normal which is shown in Figure 5. 

 

 

 
 

Figure 5. Abnormal signal for arrhythmia classification 

 

 

 
 

Figure 6. Normal signal for arrhythmia classification 

 

 

Figure 7 represents the hardware utilization of conventional digital filter performance for Virtex 7 

xc7vx485t FPGA device without compressing memory coefficient. From this evaluation, it is concluded that 

the conventional digital filter performance of LUT, FF, DSP, I/O, and BUFG are employed between 0.20% 

to 85.83% of resources in the overall analysis. Figure 8 indicates the hardware utilization of CMC-AFF for 

the Virtex 7 xc7vx485t FPGA device. CMC-AFF occupies resource utilization between 0.01 to 17.83% 

which achieves less performance because of compressing memory coefficient compared to conventional 

digital filter performance. 
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Figure 7. Hardware utilization of conventional digital 

filter for Virtex 7 xc7vx485t FPGA device 

Figure 8. Hardware utilization of CMC-AFF for 

Virtex 7 xc7vx485t FPGA device 

 

 

Figures 9 and 10 illustrate the conventional power and proposed power consumption for the Virtex 7 

xc7vx485t FPGA device. This analysis, shows that CMC-AFF has a less static power consumption of  

1.587 W compared to conventional static power consumption of 6.632 W respectively. The proposed 

technique achieves less power because of compressing memory coefficient using 2’s complement, Barrel 

shift, and addition module which reduces memory size and achieves low power consumption. 

 

 

 
 

Figure 9. Power consumption of conventional digital filter for Virtex 7 xc7vx485t FPGA device 

 

 

 
 

Figure 10. Power consumption of CMC-AFF for Virtex 7 xc7vx485t FPGA device 
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Tables 3 and 4 show hardware utilization of conventional digital filter performance and proposed 

CMC-AFF for Zed Board ZYNQ7000 FPGA devices. This analysis, clearly demonstrates that conventional 

digital filter performance utilizes between 0.795% to 37.500% of LUT, FF, DSP, I/O, and BUFG resources 

respectively. The proposed approach employs resource utilization between 0.287% to 23% which achieves 

less performance compared to conventional digital filter performances due to memory compression. 

 

 

Table 3. Hardware utilization of conventional digital 

filter for Zed Board ZYNQ7000 FPGA device 

Table 4. Hardware utilization of CMC-AFF for Zed 

Board ZYNQ7000 FPGA device 
Resources Utilization Available Utilization (%) 

LUT 628 53,200 1.180 

FF 847 106,440 0.795 

DSP 35 220 15.909 
I/O 150 400 37.500 

BUFG 2 26 7.692 
 

Resources Utilization Available Utilization (%) 

LUT 410 53,200 0.770 

FF 306 106,440 0.287 

DSP 12 220 5.454 
I/O 92 400 23 

BUFG 1 26 3.846 
 

 

 

Table 5 represents hardware utilization of conventional digital filter performances for Artix 7 

XC7A100T FPGA device. From this analysis, hardware utilization of conventional digital filter performances 

employs between 1.041% to 19.230% of LUT, FF, DSP, I/O, and BUFG resources. Table 6 indicates the 

hardware utilization of CMC-AFF for the Artix 7 XC7A100T FPGA device. CMC-AFF obtains less resource 

utilization between 0.615% to 11.538% compared to conventional digital filter performances because of the 

memory compressor. 

 

 

Table 5. Hardware utilization of conventional digital 

filter for Artix 7 XC7A100T FPGA device 

Table 6. Hardware utilization of CMC-AFF for Artix 

7 XC7A100T FPGA device 
Resources Utilization Available Utilization (%) 

LUT 1,057 101,440 1.041 
FF 1,123 106,440 1.055 

DSP 35 220 15.909 

I/O 40 400 10 
BUFG 5 26 19.230 

 

Resources Utilization Available Utilization (%) 

LUT 650 101,440 0.640 
FF 655 106,440 0.615 

DSP 9 220 4.090 

I/O 32 400 8 
BUFG 3 26 11.538 

 

 

 

Table 7 indicates power analysis for conventional digital filters and CMC-AFF using Zed Board 

ZYNQ7000 and Artix 7 XC7A100T. It shows that CMC-AFF achieves less power consumption of 0.012W 

and 45 mW compared to conventional digital filters for Zed Board ZYNQ7000 and Artix 7 XC7A100T 

FPGA devices. Because to AFF filter does not require a multiplier which uses only a shifting process, adder, 

and 2’s complement operations, it significantly minimizes the power consumption. 

 

 

Table 7. Analysis of power for conventional and CMC-AFF using two FPGA devices 
FPGA devices Conventional digital filter Proposed CMC-AFF 

Zed Board ZYNQ7000 0.234 W 0.012 W 

Artix 7 XC7A100T 90 mW 45 mW 

 

 

4.2.  Comparative analysis 

Table 8 indicates the comparative analysis with existing methods for ZYNQ7000 FPGA device. The 

existing techniques like collateral and sequence approaches using Bartlett filter [16], and low-power ECG 

pre-processor using the Bartlett filter [18] are compared with a proposed technique for the Zed Board 

Zynq7000 AP SoC FPGA device. Compared to these existing techniques, CMC-AFF achieves a better LUT 

of 410, register of 850, DSP of 12, and power consumption of 0.012 W because of compressing memory 

coefficient. Table 9 represents the comparative analysis with existing methods for Artix 7 XC7A100T. SNRC 

with cumulative mean filter [20] is considered for the Artix 7 XC7A100T device. The proposed CMC-AFF is 

analyzed with and without pre-processing with the existing method [20]. When compared to this existing 

technique, the proposed CMC-AFF achieves 105 registers, 650 LUT, 3 BUFG, 9 DSP, and a power 

consumption of 45 mW respectively. Due developed AFF filter does not require a multiplier which uses only 

the shifting process in a filter which minimizes hardware utilization.  

 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 1190-1201 

1200 

Table 8. Comparative analysis with an existing technique for Zed Board Zynq7000 AP SoC FPGA device 
Methods LUT Register DSP Power (W) 

Collateral and sequence approaches using Bartlett filter [16] 462 894 18 0.136 
Low-power ECG pre-processor using Bartlett filter [18] 462 894 18 0.140 

Proposed CMC-AFF 410 850 12 0.012 

 

 

Table 9. Comparative analysis with the existing technique for Artix 7 XC7A100T FPGA device 
Methods Pre-processing Register LUT BUFG DSP Power (mW) 

SNRC with cumulative mean filter [20] Without pre-processing N/A N/A N/A N/A N/A 

With pre-processing 131 2938 1 12 82 

Proposed CMC-AFF Without pre-processing 128 1356 4 11 79 
With pre-processing 105 650 3 9 45 

 

 

4.3.  Discussion 

In this section, the advantages of the proposed technique and the limitations of existing techniques 

are discussed. The existing techniques have limitations like Collateral and sequence approaches using Bartlett 

[16] suffer from higher resource utilization due to the simultaneous processing of multiple windows and 

wavelets. Low-power ECG pre-processor using Bartlett [18] has constraints like ringing effects during the 

initial stage of signal processing, static power consumption, and increased memory usage. FPGA-based 

SNRC using cumulative mean filter [20] has hardware constraints due to finite available resources in FPGA. 

The proposed CMC-AFF overcomes these existing techniques’ limitations by compressing memory. The 

Bartlett filter and cumulative mean filter are static filters with fixed coefficients that have limited adaptability 

in varying noise. The proposed AFF filter doesn’t need a multiplier, which uses only a shifting process, 

adder, and 2’s complement which minimizes the power consumption. Hence, the CMC-AFF achieves less 

power consumption of 0.012 W for Zed Board Zynq7000 AP SoC FPGA devices compared to existing 

techniques respectively. 

 

 

5. CONCLUSION 

In this research, the CMC-AFF is proposed to achieve less power consumption and area during the 

filtering process. The memory coefficient with 2’s complement eliminates the need for two memory locations 

that require only one location which effectively handles two data addresses. AFF reduces noises like baseline 

noise, muscle contraction noise, and low-frequency noise to achieve noise reduction. The filter doesn’t need a 

multiplier which uses only a shifting process and incorporates an adder which minimizes hardware 

utilization. By performing these operations, the CMC-AFF achieves less power consumption of 0.112 W in 

Zed Board Zynq7000 AP SoC FPGA device compared to existing techniques like collateral and sequence 

approaches using Bartlet filter and low-power ECG processor using Bartlet filter respectively. In the future, 

an advanced filter architecture will be constructed to enhance the model performance. 
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