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Arrhythmia classification is categorization of irregular heart rhythms
depending on patterns detected in electrocardiogram (ECG) signals assist in
treatment and diagnosis of cardiac conditions. ECG evaluates heart’s
electrical activity to diagnose various heart conditions, but it is affected by
interference or noise. ECG’s signal filtering is essential pre-processing stage
that minimizes noise and highlights wave characteristics in ECG data.
However, digital filters are normally constructed by multiplying coefficient
and then multiplying value given as feedback which leads to more power
and area consumption. To solve these issues, coefficient memory
compression (CMC) technique is proposed with an adaptive FIR filter (AFF)
to achieve low area and low power dissipation by compressing memory
requirements in a field programmable gate array (FPGA). An adaptive FIR
filter is employed to effectively minimize noise like baseline noise, muscle
contraction noise, and low-frequency noise. The performance of CMC-AFF
is analyzed in terms of look up table (LUT), register, digital signal
processing (DSP), power, and global buffer (BufG). The proposed approach
achieves a low power consumption of 0.012 W in Zed Board Zyngq7000 AP
system on chip (SoC) FPGA device compared to existing techniques like
collateral and sequence approaches using Bartlet filter and low-power ECG
processor using Bartlet filter respectively.
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1. INTRODUCTION

Heart disease ranks among the top ten causes of death globally. An early warning system is essential
for cardiac disease to efficiently minimize mortalities from cardiac death [1]. Cardiac arrhythmia is
characterized by irregular heartbeats and requires continual treatment and monitoring due to its potential to
result in cardiac arrest or stroke [2]. An electrocardiogram (ECG) is employed to visualize the electrical
activity of the heart which provides a significant data source and its simplicity allows for easy monitoring
and interpretation [3]. The traditional diagnosis involves identifying various kinds of arrhythmia to analyze
the appropriate treatment strategies [4]. The QRS complex is predominant compared to all the ECG signal
components [5]. ECG has various kinds of waves like P, T, and QRS waves. These waveforms are evaluated
to identify the presence of the cardiac disorder. The popular significant data in ECG waveform is identified in
the P wave morphology, T wave, and QRS complex [6]. ECG signal’s P and T waves cause false detections
while determining the QRS complex which leads to the establishment of detection approaches that depend on
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mathematical morphology, band-pass filter, and wavelet transforms [7]. Unique integration of performance,
flexibility, and energy efficiency produces an field programmable gate array (FPGA) that plays a vital role in
accelerating computations in different domains like biomedical engineering [8]. FPGAs use pipeline or
parallel execution of tasks, which decreases power consumption by employing a slower system clock [9].
Utilizing an AFF for denoising allows signal preprocessing without prior knowledge of the nature of noise
[10], [11]. There are various classes in arrhythmia fibrillation, bradycardia, paced beat (PB), tachycardia,
right bundle branch block (RBBB), and left bundle branch block (LBBB) [12]. Within these classes of
arrhythmia, certain types can lead to life-threatening scenarios for cardiac patients. The implementation of
FPGA-based ECG classification is developed earlier by utilizing a generator system for categorizing the ECG
[13]. Compressing ECG data minimizes the transmitter signal time by transmitting fewer bits due to
compression [14]. The usage of FPGA in filtering for arrhythmia classification generates improved signal
processing abilities with low latency. Filtering indicates a promising solution to enhance the reliability and
effectiveness of the arrhythmia classification system. FPGA generates effective and accurate detection of
cardiac regularities which is essential for timely intervention and diagnosis [15]. However, digital filters are
normally constructed by multiplying the coefficient, and then multiplied value is given as feedback which
causes more power consumption and area. Kirti et al. [16] implemented collateral and sequence approaches
that utilize Bartlett filter with windows and wavelet methods in FPGA. This approach generates the
pre-processing phase in two stages: coefficient selection and filter architecture. This architecture uses three
kinds of filters: notch filter, low pass filter (LPF), and high pass filter (HPF) to remove the base line
wandering (BLW), power line interference (PLI), and electromyography (EMG) noise. The collateral
approach reduces the usage of resources by sharing computation among various tasks and sequence
techniques optimize FPGA performance in a coordinated manner. However, the collateral and sequence
approaches utilizing the Bartlett filter suffer from higher resource utilization due to the simultaneous
processing of multiple windows and wavelets.

Ahmad and Zafar [17] presented a quantized-pruned (QP) ID convolutional neural network (CNN)
on system on chip (SoC) by utilizing high-level synthesis for machine learning (HLS4ML) for 3-channel
ECG arrhythmia classification. HLS4ML provides two quantization approaches: quantization aware waiting
(QAT) and post-training quantization (PTQ) which contain heterogenous model weight quantization. This
heterogenous quantization through QAT with tunable precision optimizes fixed-point precision for various
1D CNN by effectively employing precision as a hyperparameter. However, the QP-1DCNN lacks hardware
inefficiency due to the integration of specialized hardware for quantization and pruning strategies.
Tripathi et al. [18] suggested a low-power ECG pre-processor using a Bartlett filter to extract the appropriate
data from biomedical signals. A low-power pre-processing technique was designed for denoising the ECG.
The LPF, HPF, and notch filter were utilized to eliminate the noise of EMG, BLW, and PLI respectively. All
three types of filters were constructed by employing primary components comprised of multipliers, adders,
and delay units. This approach focuses more on the benefits of FIR in effectively extracting valuable data
from ECG signals which generates increased resourcefulness, and capabilities of rapid processing for signal
analysis. However, low-power ECG pre-processor using a Bartlett filter has constraints like ringing effects
during the initial stage of signal processing, the static nature of power, and increased memory usage.
Tang et al. [19] introduced a second-order level-crossing sampling analog-to-digital (ADC) converter for
ECG delineation and heartbeat detection of arrhythmia using a fiducial points pruning (FPP) filter. The
delineation technique utilizes a triangle filter to determine the fiducial points and evaluates the slopes,
intervals, P/T waves, and QRS complex morphology. Then, those extracted features were employed in
heartbeat detection of arrhythmia to determine premature ventricular contraction (PVC). This approach
greatly minimizes computing overhead for digital processing, communication circuits, and storage in the
low-power system of data acquisition by employing ADC and ECG processing techniques. However, second-
order level-crossing sampling ADCs were prone to signal distortion and noise due to the increased
complexity of the sampling circuit. Elbedwehy et al. [20] developed an FPGA-based single node reservoir
computing (SNRC) for ECG denoising using a cumulative mean filter. Initially, SNRC architecture was
utilized to clean the decomposed ECG signal with high performance. A cost-effective, portable FPGA device
was designed to combine privacy with high performance. The cumulative mean filter was employed to
predict the recent value of the sample by averaging prior samples. This approach uses adders, SNRC, and
multiples for fast signal summation, and signal processing which increases speed, power efficiency, and area
utilization. However, the FPGA-SNRC has hardware constraints due to finite available resources in FPGA.
In the overall analysis, it is indicated that existing methods have limitations like higher resource utilization
due to simultaneous processing, static nature of power, and increased memory usage. To overcome this issue,
the CMC-AFF is proposed to achieve low area and low power consumption by effectively compressing
memory requirements.

The main contribution of this research is as follows: i) the CMC technique utilizes a 2’s
complement, Barrel shift, and addition module to efficiently minimize memory size which reduces area and
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power consumption; ii) an AFF minimizes noise like baseline noise, muscle contraction noise, and low-
frequency noise to achieve effective noise reduction; and iii) the main goal of the CMC-AFF is to evaluate
with Virtex 7 xc7vx485t FPGA device for designing the 16-tap AFF. Additionally, CMF-AFF is evaluated
with 2 FPGA devices such as Zed Board Zynq7000 AP SoC and Artix 7 XC7A100T.

The overall structure of the paper is as follows: section 2 contains the proposed method. Section 3
discusses a coefficient memory compression with adaptive finite impulse response filter. Section 4 indicates
the results and discussion of the proposed method. Section 5 provides the conclusion.

2. METHOD

In this research, the CMC-AFF is proposed to reduce memory requirements which achieves low
consumption of power and area. The obtained ECG signal is converted using analog to digital for the filtering
process. The AFF is employed to remove noise like baseline noise, muscle contraction noise, and
low-frequency noise. By using CMC technique, memory requirements are reduced with low power and
power consumption by performing 2’s complement, Barrel shift, and addition module. The QRS peaks are
identified from filtered ECG signals and then features are extracted using a statistical analysis technique.
Finally, naive Bayes (NB) is developed to classify the heartbeat as normal or abnormal. Figure 1 represents
the block diagram for the proposed approach.
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Figure 1. Block diagram for the proposed method

The process of the proposed CMC-AFF is presented as follows: i) initially, the ECG signal is
obtained from MIT-BIH dataset to evaluate the proposed technique, and obtained signals are converted into
analog to digital representation for filtering; ii) then, the AFF effectively minimizes noise like baseline noise,
muscle contraction noise, and low-frequency noise by dynamically adjusting it is filter coefficients; iii) CMC
technique utilizes a 2°s complement, Barrel shift, and addition module to efficiently minimize memory size
which reduces area and power consumption; iii) bandpass filtering is utilized to remove unwanted noise
followed by QRS complex detection using PAT technique which analyzes ECG waveforms; iv) after
detecting the QRS complex, the T and P waves are delineated depending on adaptive search windows with
adaptive thresholds (ASW-AT) for distinguishing T and P peaks accurately from noise peaks; v) the final
delineated waves are extracted using a statistical analysis approach. It extracts 7 features from ECG signals
and forms them together to build a unique set; and vi) finally, the NB is utilized to classify the arrhythmia as
abnormal or normal.
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2.1. Electrocardiogram signal

In this research, the input ECG signals obtained from the standard Massachusetts Institute of
Technology-Boston’s Beth Israel Hospital (MIT-BIH) arrhythmia dataset [21] are utilized to evaluate the
proposed approach. There are a total of 48 ECG records each has 30-minute durations. Every data employed
here is sampled at a rate of 360 samples per second per channel with a resolution of 11-bit over a 10 mv
range. These obtained signals are fed into the ADC converter to convert the signal into analog to digital.
Table 1 provides data characteristics description for MIT-BIH dataset.

Table 1. Data characteristics description for MIT-BIH dataset
Characteristics Description
Number of patients 47
Number of recordings 48 half-hour ECG recordings

Resolution 11-bit

Sampling rate 360 Hz

Channels 2 channels

Data format Standard ECG format with labeled beat annotations

Annotation Detailed beat classification and arrhythmia occurrences

Noise level Baseline noise, muscle contraction noise, and low-frequency noise

2.2. Analog-to-digital converter

After obtaining the ECG signal from MIH-BIT, an ADC converter is utilized for converting
continuous analog signals into digital representations for filtering that can be analyzed, processed, and
manipulated by a microcontroller or microprocessor. This permits the FPGA to interface with analog and
makes it interact with actuators, sensors, and other analog devices. The user program initializes the process of
ADC conversion and it takes numerous microseconds to complete the conversion effectively. After converting
an analog signal to digital, these signals are passed to an adaptive FIR filter to reduce noise effectively.

3. COEFFICIENT MEMORY COMPRESSION WITH ADAPTIVE FINITE IMPULSE RESPONSE
FILTER

3.1. Adaptive FIR filter

Once ADC is performed, the digital signals are fed into an AFF which reduces noise like baseline
noise, muscle contraction noise, and low-frequency noise. An adaptive filter is a filter with non-constant
coefficients. Normally digital filters are constructed by multiplying the coefficients which requires more
power and area. To solve these issues, an adaptive FIR filter is employed to reduce the consumption of power
and area. The AFF filter doesn’t need a multiplier, which uses only a shifting process, adder and 2’s
complement which minimizes the power consumption and area. The filter module effectively eliminates
unwanted noise and frequency using a 64-tab MAC. Buffer stores the samples of ECG after digital
conversion from ADC. Figure 2 shows the overall structure of the filter.

Memory

Buffer (+» Filter |+
Compressor

Figure 2. Structure of filter

3.1.1. Memory compressor

The memory compressor contains four modules: address generator, memory module, 2°s
complement module, and barrel shift and addition module. The memory compressor generates the address in
16-bit by using 2°s complement module. It has 0-15 addresses with a depth of 16-bit size. Normally, each bit
requires an address for reading the data and then multiplying it with a coefficient for filtering operation
which leads to computational overhead and increased processing time. To overcome this issue, 2’s
complement is used which eliminates the need for two memory locations. By using this, one location can
effectively handle two data addresses. This research performs with coefficient compression utilizing 2’s
complement, Barrel shift, and addition module. This integrated technique generates a reduction in memory
size to one-fourth of the windowing method. By input operand decomposition, this compression technique is
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employed for the effective implementation of high-precision multiplication. It is determined that the ECG
processor exhibits low area and time complexity for 16-bit word size. However, for higher word sizes, it has
significantly less area and shorter multiplication time compared to canonical-signed-digit (CSD)-based
multipliers. By using a memory compressor module, low power and area are effectively achieved. Figure 3
indicates the structure of the memory compressor module. The memory compressor with AFF is fed into the
ECG pre-processing stage to reduce noise, to detect QRS, and T and P wave delineation.

. Barrel shift
Add Memory 2's d
Tess |y i »complement |—, a'.]. —»| Coefficient
Generator module addition
module
module

Figure 3. Structure of memory compressor module

3.2. ECG-preprocessing

After compressing the memory module, the pre-preprocessing phase is performed which contains
three stages: filtering, detecting QRS, and delineation of T and P waves. Bandpass filtering is used to remove
the unwanted noise from ECG signals. QRS detection is performed utilizing PAT technigue to analyze ECG
waveforms. The T and P waves are described depending on ASW-AT for distinguishing T and P peaks
accurately from noise peaks.

3.2.1. Filtering and QRS detection

Here, bandpass filtering [22] is utilized to remove the unwanted noise from the ECG signal which
allows a certain range of frequencies to pass through blocking frequencies outside the range. This filter
isolates relevant QRS energy at 10 Hz and attenuates the characteristics of a low frequency of P and T waves.
By isolating the relevant frequency elements, the band pass filter eliminates both noises like low and high
frequency noise. This results in a cleaner ECG signal which makes it easier to interpret and evaluate the
underlying cardiac activity. The primary advantage is that it preserves data contained within an ECG signal
even after filtering. QRS complex detection was performed once the unwanted noises were removed by using
a bandpass filter. Accurate detection of QRS complex in ECG signals provides evaluation of heart rate and
rhythm abnormalities which leads to an accurate diagnosis of arrhythmia. Here, the PAT technique is used to
detect the QRS complex.

PAT is effective due to its adaptability to different ECG characteristics of a signal which generates
robust performances and is suitable for accurate and effective arrhythmia analysis. It depends on amplitude
threshold approach which exploits fact that the R peak has greater amplitude compared to other peaks in the
ECG waveform. With appropriate signal filtering, this approach greatly detects the R peak in each heartbeat by
utilizing two threshold levels. PAT approach contains four phases after filtering. Filtered signal differentiation
is utilized to distinguish the complexities of QRS [23] from another wave by determining high slopes. Next,
non-linear transformation is established via point-to-point squaring of ECG-filtered signal. This transformation
is significant in highlighting high-frequency signals acquired from the prior phase which represents QRS’s
complex characteristics. Then, the integration is performed by moving the time window for extracting extra
features like QRS width. At last, adaptive threshold amplitude is employed to average signal for detecting R
peaks. Both average and bandpass filtered signals are stored in individual SRAM for further evaluation.

3.2.2. T and P wave delineation

After detecting the QRS complex, the T and P waves are delineated depending on ASW-AT for
distinguishing T and P peaks accurately from noise peaks. This approach can dynamically adjust to variations
in ECG morphology which enhances robustness. QRS is utilized as reference to detect T and P waves in each
heartbeat in that two regions are confined to R peaks. Then, these regions are employed to establish
backward and forward search windows for T and P waves. Consider, that a forward search window has a T
wave, and its boundary is increased from QRS offset to 2/3 of the priorly detected RR interval. Likewise, the
P wave is determined and increased in a backward search window from QRS onset to 1/3 of prior RR
interval. A position of T and P peaks are determined with associating search windows by evaluating local
maxima/minima using corresponding thresholds which are expressed in (1) and (2).

Twave _Tpeakt (1)
th Rpeak threshiy
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Ppeak (2)

waveth=g Pthreshi,

peak

WhEre tipresn;, and Denresn,, indicates the T and P peak which is set between 0.1 and 0.2 depending on
distinguished values in the window processing.

3.2.3. Delineation of onset and offset point

ASW-AT hints a value of onset and offsets for P-QRS-T waves by determining sample that is
associated with the ECG signal’s zero slopes. A sample points have a former and zero slope to a peak which
is recognized as an onset point. Likewise, an offset is identified by another peak side. Moreover, the change
of derivative sign has occurred which represents a false indicator. To address this, adaptive search windows
and threshold techniques incorporate other criteria to accurately delineate wave boundaries depending on
fiducial points. These criteria are often combined with isoelectric lines. The line of isoelectric is
approximated as the beat signal’s average value after eliminating QRS complex. It is established and
integrated with zero slopes to reliable and fiducial point accurate delineation. Before pre-processing, the ECG
signal has significant noise which makes 30%-50% of the overall signal including baseline noise, muscle
contraction noise, and low-frequency noise. After pre-processing, the noise level is minimized by 70-90%
using filtering approaches leaving only 5-15% of signal affected by noise. After point delineation, feature
extraction is performed to choose the best discriminative ECG features. Table 2 determines the data
characteristics after pre-processing

Table 2. Characteristics for after pre-processing

Characteristics After pre-processing
Number of patients remains same-47
Number of recordings  remains same-48 half-hour ECG recordings
Resolution remains same-11-bit
Sampling rate remains same-360 Hz
Channels remains same-2 channels
Data format Same format with minimized noise and enhanced signal quality
Annotation Detailed beat classification and arrhythmia occurrences
Noise level Significantly minimizes noise after filtering

3.3. Feature extraction

After performing onset and offset point delineation, a statistical analysis approach is employed to
extract the features by considering complexity for arrhythmia classification. A statistical analysis approach is
utilized to provide a balance for complexity and generate interpretable features that capture the variations and
patterns in ECG signals with high efficiency and robustness. This approach extracts 7 features from ECG
signals and forms them together to build a unique set. Every feature indicates various intervals from these
signals, they are PQ, PS, RR, QP, TR, RT, and SP intervals. However, various features are required to
increase the model’s robustness. Hence, this unique set of ECG intervals is established. Finally, these unique
feature sets are fed as input to a classification phase.

3.4. Classification

After extracting features, NB [24], [25] is utilized to determine the signal that is susceptible to
ventricular arrhythmia. Compared to other techniques like support vector machine (SVM) and decision tree
(DT), NB has a high potential with a p-value <0.001 in arrhythmia classification whether the heartbeat is
normal or abnormal in ECG features. It determines the system performance without establishing significant
bias in classification. NB is the simplest classification technique, requiring no complex estimation of iterative
parameters. This enables it particularly helpful for the implementation of hardware. It considers strong naive
independent distributions among feature vectors, and these considerations are met since every extracted
feature of ECG is independently assessed and analyzed from the starting stage. Bayesian classifier employs
Bayes to determine data possibility for a specific class. Bayes theorem is expressed in (3) for a feature set
vector d and class c;.

P(d|c;)P(c;
P (cild) = LD 3)

Assigning data in the best class increases the probability of condition out of every class which are
indicated in (4) and (5). Due to the risk of floating-point underflow, while calculating the product of the
above probabilities, the point evaluation is transmitted into summation using logarithms. Instead of selecting
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a class with the greatest probability, one with greatest log score is selected. Consider that log function is
monotonic and decisions are identical which is formulated in (6). According to Gaussian, every feature
vector value is connected with each distributed class. Therefore, the given value’s conditional probability of
v from vector x has a class of ¢;, P (v|c;) is expressed in (7)-(9).

¢ = argmax P(c;|d) 4)
¢ = argmax P(c;) [1, P(x| c;) ®)
¢ = argmax [log(P(¢)) + Xxlog(P (x]c;))] (6)
P(x=vc) = wlﬁe—w—mz/z«rz ()
1= X1 (x) (8)
0% = 30— ) ©)

Where u and 2 are mean and variance of x connected with class c;. Figure 4 represents a schematic diagram
of three stages: pre-processing, feature extraction, and classification.

Stage 1: ECG pre-processing

QRS T and P wave
—

Filterin — . . .
8 detection delineation

Stage 2: Feature extraction

Unique set of 7 ECG features

Stage 3: Classification

Naive Bayes

Figure 4. Schematic diagram of three stages

The probability log is computed by utilizing a LUT those entries are w-bit and 2“-bit deep. The
LUT entries are indicated in 2°s complement format. The Gaussian technique is constructed by calculating
the above equations from each class training data for unclassified new values. This approach provides
real-time processing with low power consumption and effective area utilization which enables it a significant
solution for the effective arrhythmia classification diagnosis in FPGA. CMC effectively minimizes memory
with the help of 2°s complement, Barrel shift, and addition module which reduces low power consumption
and area. AFF minimizes noise like muscle contraction noise, low-frequency noise, and baseline noise and
achieves effective noise reduction. Therefore, the CMC-AFF technique reduces area utilization and power
consumption by minimizing memory requirements and providing an effective filter design.

4, RESULTS AND DISCUSSION

The proposed CMC-AFF is simulated using Xilinx ISE 14.2 software. In this research, the
Modelsim simulator is utilized to evaluate the adaptive FIR filter functional simulations. The main goal of
the proposed technique is to utilize with Virtex 7 xc7vx485t FPGA device to design a 16-tap AFF.
Additionally, CMC-AFF is evaluated with 2 FPGA devices Zed Board ZYNQ7000 and Artix 7 XC7A100T.
The proposed memory compressor with 2°s complement requires only one memory location instead of two
different memory locations which assists in acquiring data from two different addresses. The AFF filter
doesn’t need a multiplier which uses only a shifting process and it contains an adder in a filter. Accordingly,
the proposed memory compressor minimizes hardware utilization. The performance and hardware utilization
are presented in the following subsections.
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4.1. Performance analysis

The performance of CMC-AFF is evaluated using three different FPGA devices. The proposed
technique is evaluated to LUT, FF, DSP, 1/O, global buffer (BUFG), and power (mW). Figures 5 and 6
determine the abnormal or normal performances for arrhythmia classification. ECG signals from the
MIT-BIH dataset undergo a filtering process that removes the noise from it. Then, the QRS complex is
detected and extracted utilizing a statistical analysis. At last, arrhythmia classification is performed utilizing
NB to classify the heartbeat as abnormal or normal which is shown in Figure 5.

Figure 5. Abnormal signal for arrhythmia classification

-
-
- o
-
-
-
-
w o
-

Figure 6. Normal signal for arrhythmia classification

Figure 7 represents the hardware utilization of conventional digital filter performance for Virtex 7
Xc7vx485t FPGA device without compressing memory coefficient. From this evaluation, it is concluded that
the conventional digital filter performance of LUT, FF, DSP, 1/0, and BUFG are employed between 0.20%
to 85.83% of resources in the overall analysis. Figure 8 indicates the hardware utilization of CMC-AFF for
the Virtex 7 xc7vx485t FPGA device. CMC-AFF occupies resource utilization between 0.01 to 17.83%
which achieves less performance because of compressing memory coefficient compared to conventional
digital filter performance.

Arrhythmia classification using CMF-AFF based on electrocardiogram in field ... (Nalavade Revanth)
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Utilization Post-Synthesis | Postimplementation Utilization Post-Synthesis | Post-implementation
Graph | Table Graph | Table
Resource Utilization Available Utilization % Resource Utilization Available Utilization %
LUT 1485 303600 0.49 LuT 112 303600 0.04
FF 1228 607200 0.20 FF 42 607200 0.01
DSP 24 2800 0.86 DSP 16 2800 057
10 515 600 85.83 10 107 600 17.83
BUFG 2 32 6.25 BUFG 1 32 313

Figure 7. Hardware utilization of conventional digital
filter for Virtex 7 xc7vx485t FPGA device

Figure 8. Hardware utilization of CMC-AFF for
Virtex 7 xc7vx485t FPGA device

Figures 9 and 10 illustrate the conventional power and proposed power consumption for the Virtex 7
Xc7vx485t FPGA device. This analysis, shows that CMC-AFF has a less static power consumption of
1.587 W compared to conventional static power consumption of 6.632 W respectively. The proposed
technique achieves less power because of compressing memory coefficient using 2’s complement, Barrel
shift, and addition module which reduces memory size and achieves low power consumption.
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Figure 9. Power consumption of conventional digital filter for Virtex 7 xc7vx485t FPGA device
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Figure 10. Power consumption of CMC-AFF for Virtex 7 xc7vx485t FPGA device
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Tables 3 and 4 show hardware utilization of conventional digital filter performance and proposed
CMC-AFF for Zed Board ZYNQ7000 FPGA devices. This analysis, clearly demonstrates that conventional
digital filter performance utilizes between 0.795% to 37.500% of LUT, FF, DSP, 1/0, and BUFG resources
respectively. The proposed approach employs resource utilization between 0.287% to 23% which achieves
less performance compared to conventional digital filter performances due to memory compression.

Table 3. Hardware utilization of conventional digital ~ Table 4. Hardware utilization of CMC-AFF for Zed

filter for Zed Board ZYNQ7000 FPGA device Board ZYNQ7000 FPGA device
Resources  Utilization  Awvailable  Utilization (%) Resources  Utilization  Awvailable  Utilization (%)
LUT 628 53,200 1.180 LUT 410 53,200 0.770
FF 847 106,440 0.795 FF 306 106,440 0.287
DSP 35 220 15.909 DSP 12 220 5.454
110 150 400 37.500 1/10 92 400 23
BUFG 2 26 7.692 BUFG 1 26 3.846

Table 5 represents hardware utilization of conventional digital filter performances for Artix 7
XC7A100T FPGA device. From this analysis, hardware utilization of conventional digital filter performances
employs between 1.041% to 19.230% of LUT, FF, DSP, /O, and BUFG resources. Table 6 indicates the
hardware utilization of CMC-AFF for the Artix 7 XC7A100T FPGA device. CMC-AFF obtains less resource
utilization between 0.615% to 11.538% compared to conventional digital filter performances because of the
memory COmpressor.

Table 5. Hardware utilization of conventional digital ~ Table 6. Hardware utilization of CMC-AFF for Artix

filter for Artix 7 XC7A100T FPGA device 7 XC7A100T FPGA device
Resources  Utilization  Awvailable  Utilization (%) Resources  Utilization  Awvailable  Utilization (%)
LUT 1,057 101,440 1.041 LUT 650 101,440 0.640
FF 1,123 106,440 1.055 FF 655 106,440 0.615
DSP 35 220 15.909 DSP 9 220 4.090
1/0 40 400 10 1/10 32 400 8
BUFG 5 26 19.230 BUFG 3 26 11.538

Table 7 indicates power analysis for conventional digital filters and CMC-AFF using Zed Board
ZYNQ7000 and Artix 7 XC7A100T. It shows that CMC-AFF achieves less power consumption of 0.012W
and 45 mW compared to conventional digital filters for Zed Board ZYNQ7000 and Artix 7 XC7A100T
FPGA devices. Because to AFF filter does not require a multiplier which uses only a shifting process, adder,
and 2’s complement operations, it significantly minimizes the power consumption.

Table 7. Analysis of power for conventional and CMC-AFF using two FPGA devices

FPGA devices Conventional digital filter  Proposed CMC-AFF
Zed Board ZYNQ7000 0.234 W 0.012 W
Artix 7 XC7A100T 90 mW 45 mW

4.2. Comparative analysis

Table 8 indicates the comparative analysis with existing methods for ZYNQ7000 FPGA device. The
existing techniques like collateral and sequence approaches using Bartlett filter [16], and low-power ECG
pre-processor using the Bartlett filter [18] are compared with a proposed technique for the Zed Board
Zynq7000 AP SoC FPGA device. Compared to these existing techniques, CMC-AFF achieves a better LUT
of 410, register of 850, DSP of 12, and power consumption of 0.012 W because of compressing memory
coefficient. Table 9 represents the comparative analysis with existing methods for Artix 7 XC7A100T. SNRC
with cumulative mean filter [20] is considered for the Artix 7 XC7A100T device. The proposed CMC-AFF is
analyzed with and without pre-processing with the existing method [20]. When compared to this existing
technique, the proposed CMC-AFF achieves 105 registers, 650 LUT, 3 BUFG, 9 DSP, and a power
consumption of 45 mW respectively. Due developed AFF filter does not require a multiplier which uses only
the shifting process in a filter which minimizes hardware utilization.
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Table 8. Comparative analysis with an existing technique for Zed Board Zyng7000 AP SoC FPGA device

Methods LUT Register DSP  Power (W)
Collateral and sequence approaches using Bartlett filter [16] 462 894 18 0.136
Low-power ECG pre-processor using Bartlett filter [18] 462 894 18 0.140
Proposed CMC-AFF 410 850 12 0.012

Table 9. Comparative analysis with the existing technique for Artix 7 XC7A100T FPGA device

Methods Pre-processing Register LUT BUFG DSP  Power (mW)
SNRC with cumulative mean filter [20] ~ Without pre-processing N/A N/A N/A N/A N/A
With pre-processing 131 2938 1 12 82
Proposed CMC-AFF Without pre-processing 128 1356 4 11 79
With pre-processing 105 650 3 9 45

4.3. Discussion

In this section, the advantages of the proposed technique and the limitations of existing techniques
are discussed. The existing techniques have limitations like Collateral and sequence approaches using Bartlett
[16] suffer from higher resource utilization due to the simultaneous processing of multiple windows and
wavelets. Low-power ECG pre-processor using Bartlett [18] has constraints like ringing effects during the
initial stage of signal processing, static power consumption, and increased memory usage. FPGA-based
SNRC using cumulative mean filter [20] has hardware constraints due to finite available resources in FPGA.
The proposed CMC-AFF overcomes these existing techniques’ limitations by compressing memory. The
Bartlett filter and cumulative mean filter are static filters with fixed coefficients that have limited adaptability
in varying noise. The proposed AFF filter doesn’t need a multiplier, which uses only a shifting process,
adder, and 2’s complement which minimizes the power consumption. Hence, the CMC-AFF achieves less
power consumption of 0.012 W for Zed Board Zynq7000 AP SoC FPGA devices compared to existing
techniques respectively.

5. CONCLUSION

In this research, the CMC-AFF is proposed to achieve less power consumption and area during the
filtering process. The memory coefficient with 2’s complement eliminates the need for two memory locations
that require only one location which effectively handles two data addresses. AFF reduces noises like baseline
noise, muscle contraction noise, and low-frequency noise to achieve noise reduction. The filter doesn’t need a
multiplier which uses only a shifting process and incorporates an adder which minimizes hardware
utilization. By performing these operations, the CMC-AFF achieves less power consumption of 0.112 W in
Zed Board Zynq7000 AP SoC FPGA device compared to existing techniques like collateral and sequence
approaches using Bartlet filter and low-power ECG processor using Bartlet filter respectively. In the future,
an advanced filter architecture will be constructed to enhance the model performance.

REFERENCES

[1]  Y.-H. Chen, S.-W. Chen, P.-J. Chang, H.-T. Hua, S.-Y. Lin, and R.-S. Chen, “A VLSI chip for the abnormal heart beat detection
using convolutional neural network,” Sensors, vol. 22, no. 3, pp. 1-12, Jan. 2022, doi: 10.3390/s22030796.

[2] H. Tesfai et al., “Lightweight shufflenet based CNN for arrhythmia classification,” IEEE Access, vol. 10, pp. 111842-111854,
2022, doi: 10.1109/ACCESS.2022.3215665.

[3] A.K.Jameil and H. Al-Raweshidy, “Efficient CNN architecture on FPGA using high level module for healthcare devices,” IEEE
Access, vol. 10, pp. 60486-60495, 2022, doi: 10.1109/ACCESS.2022.3180829.

[4] X. Tang, S. Liu, P. Reviriego, F. Lombardi, and W. Tang, “A near-sensor ECG delineation and arrhythmia classification system,”
IEEE Sensors Journal, vol. 22, no. 14, pp. 14217-14227, Jul. 2022, doi: 10.1109/JSEN.2022.3183136.

[5] M. M. Farag, “A self-contained STFT CNN for ECG classification and arrhythmia detection at the edge,” IEEE Access, vol. 10,
pp. 94469-94486, 2022, doi: 10.1109/ACCESS.2022.3204703.

[6] W. Caesarendra et al., “An embedded system using convolutional neural network model for online and real-time ECG signal
classification and prediction,” Diagnostics, vol. 12, no. 4, Mar. 2022, doi: 10.3390/diagnostics12040795.

[71 R. Dekimpe and D. Bol, "ECG Arrhythmia Classification on an Ultra-Low-Power Microcontroller," in IEEE Transactions on
Biomedical Circuits and Systems, vol. 16, no. 3, pp. 456-466, June 2022, doi: 10.1109/TBCAS.2022.3182159.

[8] K. Inadagbo, B. Arig, N. Alici, and M. Isik, “Exploiting FPGA capabilities for accelerated biomedical computing,” Signal
Processing-Algorithms, Architectures, Arrangements, and Applications Conference Proceedings, SPA, pp. 48-53, 2023, doi:
10.23919/SPA59660.2023.10274450.

[91 A. Giorgio, C. Guaragnella, and M. Rizzi, “FPGA-based decision support system for ECG analysis,” Journal of Low Power
Electronics and Applications, vol. 13, no. 1, Jan. 2023, doi: 10.3390/jlpea13010006.

[10] H. H. Thannoon and 1. A. Hashim, “Efficient enhanced recursive least square algorithm adaptive filtering scheme for artifacts
removal in ECG signals,” e-Prime-Advances in Electrical Engineering, Electronics and Energy, vol. 6, Dec. 2023, doi:
10.1016/j.prime.2023.100318.

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 1190-1201



Bulletin of Electr Eng & Inf ISSN: 2302-9285 g 1201

[11] F. Karatas, I. Koyuncu, M. Tuna, M. Algin, E. Avcioglu, and A. Akgul, “Design and implementation of arrhythmic ECG signals
for biomedical engineering applications on FPGA,” The European Physical Journal Special Topics, vol. 231, no. 5, pp. 869-884,
Jun. 2022, doi: 10.1140/epjs/s11734-021-00334-3.

[12] R. Srivastava, B. Kumar, F. Alenezi, A. Alhudhaif, S. A. Althubiti, and K. Polat, “Automatic arrhythmia detection based on the
probabilistic neural network with FPGA implementation,” Mathematical Problems in Engineering, vol. 2022, pp. 1-11, Mar.
2022, doi: 10.1155/2022/7564036.

[13] T.-H. Tsai, N.-C. Tung, and D.-B. Lin, “VLSI implementation of multi-channel ECG lossless compression system,” |IEEE
Transactions on Circuits and Systems |l: Express Briefs, vol. 68, no. 8, pp. 2962-2966, Aug. 2021, doi:
10.1109/TCSII.2021.3071757.

[14] V. B. K. L. Aruna and E. Chitra, “An ECG signal compression technique using fast normalised least mean square algorithm,”
Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, vol. 11, no. 5, pp. 1831-1838, Sep.
2023, doi: 10.1080/21681163.2023.2192833.

[15] D. L. T. Wong, Y. Li, D. John, W. K. Ho, and C.-H. Heng, “An energy efficient ECG ventricular ectopic beat classifier using
binarized CNN for edge Al devices,” IEEE Transactions on Biomedical Circuits and Systems, vol. 16, no. 2, pp. 222-232, Apr.
2022, doi: 10.1109/TBCAS.2022.3152623.

[16] Kirti, H. Sohal, and S. Jain, “FPGA implementation of collateral and sequence pre-processing modules for low power ECG
denoising module,” Informatics in Medicine Unlocked, vol. 28, 2022, doi: 10.1016/j.imu.2021.100838.

[17] F. Ahmad and S. Zafar, “SoC-based implementation of 1D convolutional neural network for 3-channel ECG arrhythmia
classification via HLS4ML,” IEEE Embedded Systems Letters, pp. 1-1, 2024, doi: 10.1109/LES.2024.3354081.

[18] K. Tripathi, H. Sohal, and S. Jain, “Design and implementation of robust low power ECG pre-processing module,” IETE Journal
of Research, vol. 68, no. 4, pp. 2716-2722, Jul. 2022, doi: 10.1080/03772063.2020.1725660.

[19] X. Tang, M. Renteria-Pinon, and W. Tang, “Second-order level-crossing sampling analog to digital converter for
electrocardiogram delineation and premature ventricular contraction detection,” IEEE Transactions on Biomedical Circuits and
Systems, vol. 17, no. 6, pp. 1342-1354, Dec. 2023, doi: 10.1109/TBCAS.2023.3296529.

[20] A. N. Elbedwehy, A. M. EI-Mohandes, A. Elnakib, and M. E. Abou-Elsoud, “FPGA-based reservoir computing system for ECG
denoising,” Microprocessors and Microsystems, vol. 91, Jun. 2022, doi: 10.1016/j.micpro.2022.104549.

[21] T. Yoon, “MIT-BIH arrhythmia database.” [Online]. Available: https://www.kaggle.com/datasets/mondejar/mitbih-database.
(Accessed: Nov. 08, 2024).

[22] L. Hu, L. Wang, Y. Chen, N. Hu, and Y. Jiang, “Bearing fault diagnosis using piecewise aggregate approximation and complete
ensemble empirical mode decomposition with adaptive noise,” Sensors, vol. 22, no. 17, Sep. 2022, doi: 10.3390/522176599.

[23] Y.-H. Chen, C.-W. Lu, S.-W. Chen, M.-H. Tsai, S.-Y. Lin, and R.-S. Chen, “VLSI implementation of QRS complex detector
based on wavelet decomposition,” IEEE Access, vol. 10, pp. 134758-134768, 2022, doi: 10.1109/ACCESS.2022.3231267.

[24] D. van Herwerden, J. W. O’Brien, P. M. Choi, K. V. Thomas, P. J. Schoenmakers, and S. Samanipour, “Naive Bayes
classification model for isotopologue detection in LC-HRMS data,” Chemometrics and Intelligent Laboratory Systems, vol. 223,
Apr. 2022, doi: 10.1016/j.chemolab.2022.104515.

[25] S. Wang, J. Ren, and R. Bai, “A semi-supervised adaptive discriminative discretization method improving discrimination power
of regularized naive Bayes,” Expert Systems with Applications, vol. 225, Sep. 2023, doi: 10.1016/j.eswa.2023.120094.

BIOGRAPHIES OF AUTHORS

Nalavade Revanth g 2 received the B.Tech. degree in Electronics and
Communication Engineering and the M.Tech. degree in VLSI system design from Kottam
College of Engineering, Kurnool, INTUA University, Andhra Pradesh, where he is currently
working toward the Ph.D. degree from the Department of Electronics and Communication
Engineering, Veltech University, Avadi, Chennai, Tamil Nadu. He is currently an Assistant
Professor in the Department of Electronics and Communication Engineering in Ashoka
College of Engineering for Women, JNTUA University. His research interests include VLSI.
He can be contacted at email: nrevanth90@gmail.com.

Maria Anto Bennet () E:J B8 2 (Member, IEEE) received the B.E. degree in electronics and
communication engineering from the National Engineering College, Manonmaniam
Sundaranar University, Tirunelveli, India, in 2000, the M.E. degree in applied electronics from
the Mohammed Sathak Engineering College, Madurai Kamaraj University, Madurai, India, in
December 2001, and the Ph.D. degree in information and communication from Anna
University, Chennai, India, in February 2014. He is a Professor with the Department of
Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D
Institute of Science and Technology, Chennai. His research interests include signal processing,
communication, and antenna design. He can be contacted at email:
drmantobenet@veltech.edu.in.

Arrhythmia classification using CMF-AFF based on electrocardiogram in field ... (Nalavade Revanth)


https://orcid.org/0009-0006-5295-6532
https://scholar.google.com/citations?user=1yQ-2-EAAAAJ&hl=en&source=sh/x/srp/wr/m1/1&kgs=07037fde33c0be38
https://www.webofscience.com/wos/author/record/KMX-7877-2024
https://orcid.org/0000-0002-0234-4873
https://scholar.google.com/citations?hl=en&user=ufpWLdsAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57210316009
https://www.webofscience.com/wos/author/record/HPF-0548-2023

