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The integration of internet of things (IoT) with unmanned aerial vehicle
(UAV) or drone, for precision agriculture (PA) in rural tea plantations is
required to ensure optimal outcomes. However, rural settings presents
exceptional challenges for data transmission, particularly in maintaining
effective communication between drone and ground control stations (GCS).
Therefore, this research aimed to develop a payload metadata identification
model using long range (LoRa) technology, known for robust loT
capabilities of the model. LoRa was used to transmit drone data packets to
GCS, including image data computations and onboard sensor information.
Additionally, the research proposed loT-drone trajectory planning model,
specifically designed for PA in rural tea plantations. This model
incorporated LoRa technology for data transmission, leveraging the
effectiveness of the model in remote areas. Edge computing was also
integrated into model to classify the suitability of tea plantation picking
areas based on image captured with drone. An important component of the
research was trajectory planning system, which optimized drone flight paths
by considering location data, throughput data, battery energy consumption,
and the computation of suitable picking locations. Finally, experimental
results showed the effectiveness of the proposed model in identifying
payload metadata, monitoring drone trajectory, and optimizing picking
location paths in rural tea plantations.
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1. INTRODUCTION

The use of internet of things (10T) technology in the agricultural sector along with physical objects
such as sensors and loT communication networks is in support of potential development of precision
agriculture (PA) technology [1], [2]. Precision monitoring aims to identify plantation areas with potential for
high-quality tea leaves, thereby increasing tea production. Moreover, the implementation of this PA includes
an unmanned aerial vehicle (UAV) or drone, which can be used to monitor plants from the air [1], [3]-[5].
Drone is capable of continuously and reliably performing environmental monitoring tasks for remote sensing.
Additionally, the device has a camera installed and provides an image of the environment in the aimed

areas [6].
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Implementation of PA on large, hilly tea plantations is typical of rural areas with agricultural
landscape topography [7], which require network technology devices that can transmit reliable data. The
definition of rural areas generally refers to classifications based on topography, access, or distance to (at
least) facilities, such as urban areas and agricultural landscapes [7]. Moreover, research has proven the use of
long range (LoRa) technology and its frequency channels for communication in rural environments,
including hectares of tea plantations [8]. LoRa is a communication protocol that governs the transmission of
data packets using a LoRa data frame, which has a maximum size of 256 bytes. This protocol can transmit
data packets up to 20 km line of sight (LoS) in rural areas and 5 km in urban areas [9]-[11]. Additionally,
data transformation is based on LoRa protocol, which limits data transmitted from drone to ground control
station (GCS) for remote monitoring in the field. Identifying drone monitoring locations, collecting
throughput data, and gathering information on the energy consumption of the device batteries are necessary
to ensure the viability of tea plantation picking areas, shaped similarly to hills with plantation blocks. GCS
receives this information from drone data package, which then informs trajectory planning of the device, a
crucial factor to consider during PA implementation.

Drone trajectory planning includes designing trajectory to collect data from drone sensors,
considering specific requirements such as complete data acquisition and efficient battery energy
consumption [12]. The device sensors will provide information on feasible tea picking location points,
throughput data, timestamps, and drone battery usage during flights from identified location points to monitor
the viability of tea picking in this plantation areas. In addition, the device will determine an optimal location
by calculating the shortest distance between identified location points to gather path planning data. To
perform this process, the device applies traveling salesman problem (TSP) method combined with simulated
annealing (SA) algorithm, which ensures each location point is visited once, and returns to the starting
point [13], [14]. SA algorithm is a stochastic meta-heuristic method that returns an effective solution search
for TSP problem [13]-[15]. Following the discussion, effective calculations for drone usage during flight
require information related to throughput data during the device data transmission to GCS, as well as the
optimal power of battery energy consumption by the device.

Using drone intelligence in determining the suitability of tea-picking areas requires edge computing
system [16]. The term "edge computing” refers to a technological concept that enables computation at edge
of a cloud service network and facilitates data transmission to 10T services [17]. A classification process
using a machine learning method with artificial neural network (ANN) for visual computation [18] is applied
to drone image received by OpenMV camera sensor to determine which tea plantation blocks are ready for
harvest [19]. During this research, the classification process begins with preprocessing, which considers the
level of vegetation (vegetation index) according to red-green-blue (RGB) data from drone image. Moreover,
formulas that focus on RGB in regional imagery from drone are visible atmospherically resistant index
(VARI), green leaf index (GLI), and visible atmospherically resistant indices green (VIGreen). Based on the
performance of the three formulas in both urban and forest (rural) areas, the method sensitive to leaf
greenness is GLI vegetation index [20]. Following this process, classification begins with a dataset derived
from GLI calculations on each drone image pixel. Before transmitting data to GCS, drone will integrate the
classification results from edge computing with onboard sensors. This process allows metadata identification
necessary in forming loT-drone payload data packets based on LoRa protocol.

Previous investigations, which serves as the foundation for this research, focus on drone payload
metadata and edge computing in rural tea plantation areas to meet PA requirements. The research by
Silvagniet et al. [21], Bejiga et al. [22] used the device with infrared (IR) and thermal camera sensors to help
with search and rescue (SAR) in mountainous rural areas. This method does not use the technology and
cannot record GPS location data [21], [22]. PA research, which uses drone for smart city air pollution
monitoring, has successfully transmitted sensor data, including optical camera sensors, to LoRa-based GCS.
However, the investigation does not apply edge computing for sensor data processing [23]. Research in the
agriculture sector focuses on crop monitoring, using drone and wireless sensor network (WSN) spectral
cameras for data acquisition. This research succeeded in sending all the sensor data and has used edge
computing, at edge node with a WSN connection on the ground [12]. Consequently, several research on
drone trajectory view SAR planning [24], organizing edge terrain nodes for crop monitoring [12], and using
the device orchestrators to design transmissions [25]. These three investigations monitored GPS sensor
location and energy consumption but did not optimally use information from edge computing in drone with
cheap, ordinary RGB cameras. The device trajectory planning requires precision due to the limited resources
of 10T drone, which include computing power, energy, bandwidth, and storage [26]. In addition, limitations
of the data transmission technology used by the device include WSN or LoRa technology.

This research aimed to develop a mechanism that identifies metadata from IoT drone, crucial for PA
applications affecting rural tea plantation areas, thereby improving the feasibility of LoRa-based tea picking.
Model combines edge computing classification process with ANN machine learning method, based on GLI
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vegetation index from tea plantation image captured by OpenMV drone camera. Following the discussion,
this method aimed to manufacture more intelligent drone. The research focuses on the communication of the
device payload data transmission to GCS via LoRa technology in rural tea garden areas in drone trajectory
planning. The final output of the research is a device trajectory model specifically designed for rural areas.
This model, known as drone flight location trajectory, is used to determine the shortest path to tea plantation
blocks where harvesting is feasible by applying TSP method with SA algorithm. Moreover, the device
trajectory efficiently computes throughput data and battery energy consumption of drone payload.

2. METHOD

The research comprised three main stages which included identifying payload metadata from LoRa-
based loT-drone sensor data using edge computing, creating a reference dataset for tea leaf picking needs,
and using loT-drone payload metadata information to design trajectory planning model that located tea plants
ready for picking. The first step in Figure 1 showed data collection or acquisition process, which started with
capturing data from drone flying over the tea plantation [27]. The device sensors captured this data from
image and onboard sensors specifically designed for PA in expansive rural tea plantation areas. The need for
edge computing to improve the intelligence of drone necessitated the processing of sensor data from loT
drone to determine the feasibility of tea plantation harvesting. Moreover, the technology process used
computer vision methods in OpenMV to process image based on GLI [20] of the leaves (Figure 2). The
technology also used machine learning with a sequential ANN model from TensorFlow to sort the image
captured by drone (Figure 3).
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Figure 2. Edge computing of drone image data to payload integration process
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Figure 3. A classification model for picking tea plants using GLI and ANN

ANN-based classification model for drone image began with the design of a tea plantation dataset
with GLI calculations from RGB color values [20] using (1):

_ (26-R-B)
GLI = (2G+R+B) ()

The device payload data incorporation model in the results and discussion chapter provided a clearer
description of combination process for designing LoRa-based drone payload metadata frames. The device
communication protocol in tea garden of rural areas limited data frame size and space characteristics.
Additionally, the data transformation process transmitted the information from the device to GCS via LoRa
and generated payload metadata.
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The process of forming path planning for drone relied on receiving LoRa-based device payload data
packets from the monitoring server or GCS. The method served as a tool for monitoring information related
to location, time, throughput, edge computing result of tea picking suitability, and battery energy
consumption of the drone. This information was valuable for managing tea plantations, particularly in
assessing the quality of picking in the rural tea plantation areas. Figure 4 showed the various stages of the
process concerning the research.

Feature Path Tuning & Path
Infortmation  |—» Pointing (Path Trajectory
Identification Planning)

Figure 4. The formation process of trajectory planning

The figure started the process of identifying feature information from telemetry data received by the
GCS server from the drone. This process was conducted to monitor the feasibility of tea picking, focusing on
location data, drone flight paths, timestamps, throughput, edge computing results, picking feasibility
classification, and battery energy consumption. The steps in path tuning and pointing process included
turning data patterns into paths based on the characteristics of trajectory data, creating the data, and finally
finding the best results that fit the needs as well as limitations of using the data.

In trajectory planning concerning the appropriate location for tea plantation picking, calculating the
distance (d) between location points (v1,v2, ..., vn) to obtain trajectory was necessary. Moreover, the distance
of each point to other points was calculated using the following haversine formula (2) [28]:

d=2xR=*asin \[sinz (@) + cos(latl) * cos(lat2) * sin? &(;ng)) 2

where: d is distance, R is earth radius (~6,371 km), élat = (lat2 — lat1), and slong = (long2 — long1).
Converting degrees to radians for longitude (long) and latitude (lat) values using (3) was important.

. T
radian = degree * (Tw) 3)

Processing the number of telemetry data packets successfully transmitted by drone to GCS via LoRa
in the transmission time limit at each drone position in bytes/s determined trajectory throughput of the
device. Meanwhile, trajectory was related to battery energy (power) consumption by multiplying the voltage
(V) and current (1) of the battery energy of drone at each movement location.

Aggarwal and Kumar [26] argued that path planning method aimed to optimize the path for
processed data, thereby generating optimum results. In this scenario, the shortest or minimum distance was
achieved, minimized battery energy consumption, and maximized data throughput. The location trajectory
drone was proposed to optimize the shortest distance using TSP method with (4). Additionally, SA algorithm
was proposed to optimize the shortest distance between locations:

min Z?:l Z?:l d(ll])xll (4)

where Y7, i x;; = 1L,Vi € {1,2,..,n} and ¥, ;. x;; = 1,Vi € {1,2,...,n} , each point was visited once,
d(i,j) = the distance between vi and vj points, and x;; = 1 when the drone moved from vi to vj.

Meanwhile, the (5) and (6) calculated minimum battery energy consumption and maximum data
throughput, respectively:

min Yz, Yioq Pijxij )
max Y, Xig ty Xy (6)

where P;; is battery energy or power consumption during the device movement x;; , t;; are the throughput
between vi and vj, and x;; = 1 when the drone moved from vi to vj.
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3. RESULTS AND DISCUSSION

Testing loT-drone for remote sensing needed in rural environments was conducted at PPTK
Gambung and PTPN 1 tea plantations, Ciwidey, Bandung, Indonesia. Flight pattern followed natural
conditions and directions from partner stakeholders for ready-picked gardens (fit for picking) and already
picked (not fit for picking).

3.1. A classification model for picking tea plants with drone edge computing
The drone was previously trained with data from the two gardens of the partners, PPTK Gambung
and RancaBali Gardens, Ciwidey, Bandung. During the research, the training conducted edge computing
experiments on three flights using GLI vegetation index and sequential ANN model, as shown in Figure 2.
Figure 3 showed the image classification model that determined the feasibility of collecting each piece of
data received by the drone. Following this discussion, the stages during the training were described as
follows.
— The process of forming a dataset from image by calculating the vegetation index for each image pixel
using (1) [20]. The level of greenness obtained from the image was a vegetation index value from -1 to 1
which was scaled to a value range of 0 to 1 with the visualization in Figure 5.
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Figure 5. Vegetation index with GLI and a colored map

The dataset was formed from each image data which included feasibility status of the expert label, total
pixels, average vegetation index value, and the total value of pixels in 10 sections of vegetation index
(0-1).

— Data preprocessing included defining the training section as 75% of the data, namely 138 data, and the
testing section as 25% of the data, namely 46 data. This process was shown by Python code snippet in
Figure 6, which identified X_train as training data and y_train to be future aimed label.

X train, X test, vy train, y test = train test split(df, output rows, test size=0.25,
random state= 0)

output:
X train: (138, 12)
y:train: (138,)
X test: (46, 12)
y:test: (46,)

Figure 6. Definition of training data and testing part of model

— The construction of the machine learning model in Figure 7 included implementing a sequential ANN
model using KerasTensorflow module. This model consisted of 12 input layers, which contained feature
information from the dataset, and one classification output layer. Model was then compiled using Adam
optimizer, with a learning rate of 0.001 and a fit for model training with an epoch of 300.
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# define the keras model

model = Sequential ()

model.add (Dense (units=16, input shape=(12,), activation='relu'))
model.add (Dense (1, activation='sigmoid'))

# compile the keras model

adam = keras.optimizers.Adam(learning rate=0.001)

model.compile (loss='binary crossentropy', optimizer='adam',6 metrics =['accuracy'])
# fit the keras model on the dataset

model.fit (x_train, y train, epochs=300)

Figure 7. Construction model and training model in Python code

— The evaluation and prediction model in Figure 8 provided evaluation results with an accuracy of 82%
and a loss of 49%.

[ 1 # Evaluate the restored model
loss, acc = new_model.evaluate(X test, y_test)
print(*Restored model, accuracy: {:5.2f}%'.format(1e@ * acc))
2/2 [==============================] - @5 Bms/step - loss: 8.4896 - accuracy: 8.8158
Restored model, accuracy: 81.58%

Figure 8. Evaluation of ANN model in Python code

Model was saved with the command basic model.save ('my model.keras'). Table 1
presented a confusion matrix that tested the potential of model to produce prediction results on the given
data. Following this process, the result showed that model can only positively predict all data, thereby
enabling the preparation of ready-to-use predictions.

Table 1. Confusion matrix from the predictions model obtained
Predicted negative (0)  Predicted positive (1)

Actual negative (0) 27 7
True negative False positive
Actual positive (1) 0 12
False negative True positive

The evaluation of the classification model produced precision=0.63, recall=1.0, F1 score=0.77, and
accuracy=0.82 based on the prediction results. The image data from the ANN model method was then
converted into drone in OpenMV memory with h5 model allowing model to run on the device when used for
realization in the field in rural areas. The conversion model stages in this research were shown in Figure 9.

The Conversion Process of ANN Classification Model to Tensorflowlite
Result: model.tflite

Train model dalam Tensorflow;

Save (model.h5) ;

Tf.lite.TFliteConverter from keras model (model); // Convert the model to

Tenscrflow lite
Save (model.tflite)
ModelopenMV = model.tflite;
Test (ModelCpenMy) ;

Figure 9. The process of converting an ANN classification model to OpenMV-drone
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3.2. Drone payload metadata identification

Before sending drone data to GCS, edge computing process culminated in the incorporation of
image data processing and onboard system data from the device. This process led to the device payload data,
as shown in Figure 10. The process of adding data from the payload included data from OpenMV camera,
which captured image of tea plantations. The image was then processed using ANN algorithm for
classification into two groups including blocks ready to be picked and those not suitable for picking. These
groups were already set up in edge computing during the research.

Drone Payload

¥
OpentV Camera” Onboard Sensor System

Camera Modul Edge Computing with embedded

machine learming Microcontroller | Sensors LoRa

Figure 10. LoRa-based drone payload data integration process [29]

Figure 11 showed the process in OpenMV _data (i), where experts and GLI vegetation index
calculations determined whether to classify each image data identifier 1 as 1 (ready to pick) or 0 (not ready to
pick) based on the results. For the data frame section 1, the onboard sensor functioned to measure several
parameters, including GPS-based drone position (latitude, longitude, altitude), speed, direction, battery
voltage, and current sensors. Following this discussion, sensor_data (i) captured all this sensor data during
the research.

o Image + 1D | Time GPS barometer | ewros mpe Power e | Temperature
classification FPayload | Info Battery B Humidity
result with AN
Openht’ data SensorData
1o Time GFPS barometer | ewros mpe | Power Image Temperature
Faylnad Info Battery classification B Humidity
res ult with ANMN

Data Payload Drone

Figure 11. The drone payload data frame package was formed

The hilly nature of tea plantation block, coupled with the characteristics of rural areas, necessitates
the use of an appropriate drone communication protocol, specifically LoRa protocol. Moreover, the device
data payload package was designed with LoRa, and the data transformation was limited by the size of the
data frame sent to the destination GCS server. The payload data package from the incorporation process, as
previously shown in Figure 11, included drone package identifier information, recording time, location,
barometer, gyroscope, battery energy, magneto, garden profile, harvest status (classification edge computing
results), temperature, and humidity.

Algorithm 1 showed how to transform drone data by sending drone payload data packets to GCS at
a frequency of 425 MHz and a size of 160 bytes each, using LoRa-based communication module. The
monitoring results in the telemetry data section of Table 2 showed the results of data processing from drone
computing to LoRa-based GCS. Specifically, the class column represented the outcome of edge computing,
which classified tea garden device image using ANN algorithm. When the image classification produced a
value of 1, it showed that the tea garden at the flying location of drone was suitable for picking, while a value
of 0 signified the garden was not yet ready to be picked. This process was determined by ANN machine
learning using the trained GLI vegetation index.
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Algorithm 1. Drone-GCS data transformation via LoRa
initialization;
//variable & function declaration
//I0 Digital Setup
//Yahboom IMU (JY901), GPS, Current and INA219 voltage Sensor Setup
//LoRa Ebyte 433 Module Setup and UART Communication for OpenMV Setup
Timer = S$sensor timer
While (Timer > 5 second}
do {
getData (Yahboom IMU,GPS, Current and INA219 voltage Sensor);
request (OpenMV_Data) ;
If (OpenMV Data, Sensor data)== true then //data valid
{
Check serial channel to onboard;

If (Serial available == True)then
{
Serial Connection == True;
OpenMV_Data Sending == True;
Append (Append (OpenMV_data, Sensor data),delimeter(“,”)) ;
} else
{
Serial Connection == False\;
}
lelse
{
OpenMV_Data == False\; Sensor data == False\;

Append (“NaN”,delimeter (%, "))
}

}
Data sending From Lora to GCS(i)= +1;

Timer=0;
}
Table 2. The telemetry data review was the result of drone-GCS data transformation

D Time Lat Long Bar |-Bat Vbat P No. of Class ) Hum

payload (cmdpl) (mA) V) (mW)  Garden  (bool) (%)
9 132847 747 107367 166513 1963 1223 2418 1 1 i 64
10 13:28:55  -7.176  107.367 166445 206.6 12.2 2488 12 1 65
11 13:29:06  -7.176  107.367 166984 208.5 11.26 2360 13 1 66
12 13:29:22 -7.1762 107.367 166896 231.7 11.06 2350 15 0 68
13 13:29:32  -7.1758 107.367 166445 224 11.04 2504 16 0 68
14 13:29:40 -7.1757 107.367 166631 230.5 1096 2546 17 0 69

3.3. Monitoring internet of things-drone trajectory

From each drone flight simulation, the monitoring results on GCS provided information on the
device flight trajectory, based on its location points. This information aided observers in determining the
location of the plantation areas, as shown in Figure 12(a). Moreover, Figure 12(b) showed how the drone
trajectory uncovered battery energy consumption of the device controller module during observations in the
tea plantation areas.

Experimental simulations using flight data which were conducted three times with partners, led to a
monitoring analysis on GCS as shown in Table 3. This analysis concluded that approximately 97% of drone
payload data packets were successfully sent, including all metadata. The limited battery capacity of UAVs or
the device affected flight time [30]. Therefore, gathering flight time information was necessary when drone
reached all the intended locations in rural tea plantation areas. Table 3 showed that the average battery energy
usage duration was 11.49 minutes. According to (5), the minimum drone battery energy consumption was an
average of 0.467 Watthour (Wh), and each device flight had a maximum throughput of 16.95 bytes/s
(average payload packet size is 149 bytes) at an altitude of 17.88 meters with (6). The location predictions of
flight 1 were accurate for already-picked plantations, but predictions for 2 and 3 for ready-to-pick plantations
showed an invalid prediction status due to a significant proportion of unpickable areas. Additionally, the
uneven picking probably caused image detections of ready-to-pick plantations, or it necessitated the addition
of training data from the same partner under identical conditions.

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 1251-1262



Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 1259

3rd Flight Path Tracking Drone

1073808
1073807
107.3806
1073805
1073804
107.3803
1073802
1073801
107.38
1073799
1073798
1073797
-7.1509  -7.1508  -7.1507  -7.1506 71505  -7.1504 71503  -7.1502

Longitude

Latitude

(@)

Comparison of Voltage and Time

VOLTAGE
= = =
S Pl M
(5] - o =] (5]

[y
(=]

8.5

]
MO T OV HNY NN DI REMOR®MDWYNEW
ddngdaoodeduadddndgonannd
CR N DO T AN NS mo OO~
goaaadaeedaddddadadaddadadddd
T e e e e e e e e T S e e S e o
L I e B e e e e e e e e e B B e B B I e ]

TIME

Figure 12. Trajectory of: (a) location drone and (b) battery energy

Table 3. The results of LoRa-based drone trajectory analysis

Time Number of Payload Payload ) Predictions Predictions

No. of flies data pack Throughput  drone battery energy Height are not ready
packets . ready to be .

Test (minute) sent (n) (bytels) energy consumption (m) picked (%) to be picked
(Watt) (Wh) (%)
1 10.47 75 17.224 2433 0.4246 12.94 4 96
2 13.44 90 17.203 2.459 0.5509 30.28 47 53
3 10.56 69 16.413 2.419 0.4258 10.42 39 61
Average 11.49 78 16.947 2.437 0.4671 17.88 30 70

4.4. Optimizing location trajectory of the picking tea plantation in rural areas

The marked locations of the tea plantation blocks that were ready to be picked were optimized to
find the shortest path to be used by pickers from loT-drone trajectory generated in rural areas, concerning the
location trajectory using (2) and (3) to calculate the distance. This process occurred to reduce time moving to
the tea plantation picking location using SA algorithm for TSP method with (4). This SA algorithm
considered temperature changes and associated costs to determine the possibility of a new optimal solution
when comparing the shortest distance results.

Figure 13(a) showed the visualization results of GCS server monitoring, as drone movement
trajectory results were marked with a red line. The locations of the plantation areas in greened serve as the
basis for calculating the shortest distance between the random starting point of the picking location and
the final location. Moreover, Figure 13(b) showed the application of TSP method, coupled with
SA algorithm to determine the shortest distance. This process was achieved by simulating the formation of a
new trajectory and comparing the route to the optimal shortest distance to the randomly marked picking
location [13], [15], [31].
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Figure 13. The SA algorithm for the optimum shortest path from the picker based on location marks: (a) GCS
visualization and (b) optimal shortest path with the SA algorithm

4. CONCLUSION

In conclusion, implementing smart drone in PA in rural tea plantation areas necessitated a
mechanism for developing loT-drone metadata, which consisted of a data incorporation process with edge
computing results from the device image classification and onboard drone sensor data. Sequential ANN
(keras.TensorFlow) model was successfully applied based on GLI calculation dataset on each image pixel,
which included 12 dataset input layers, an activation function with rectified linear unit (ReLU), and one
classification output layer in the device image classification process to determine the suitability of the tea
plantation picking areas. During the research, LoRa-based drone payload data packets were successfully sent
to GCS. On average, 97% of the packets contained identification information collected by the sensors of the
device, such as flight time, location, calibration, payload drone battery energy, garden profile, temperature,
and humidity.

The data transformation results from LoRa-based drone to GCS provided the device trajectory that
considered throughput, successful data transmission, identification of locations suitable for drone picking and
tracking, as well as battery energy consumption. Moreover, TSP method, combined with SA algorithm used
the location trajectory results to calculate the shortest distance from the position of the picker, producing a
new location graph. The resulting trajectory showed maximum data throughput and minimum battery energy
consumption of the drone payload.
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