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 The integration of internet of things (IoT) with unmanned aerial vehicle 

(UAV) or drone, for precision agriculture (PA) in rural tea plantations is 

required to ensure optimal outcomes. However, rural settings presents 

exceptional challenges for data transmission, particularly in maintaining 

effective communication between drone and ground control stations (GCS). 

Therefore, this research aimed to develop a payload metadata identification 

model using long range (LoRa) technology, known for robust IoT 

capabilities of the model. LoRa was used to transmit drone data packets to 

GCS, including image data computations and onboard sensor information. 

Additionally, the research proposed IoT-drone trajectory planning model, 

specifically designed for PA in rural tea plantations. This model 

incorporated LoRa technology for data transmission, leveraging the 

effectiveness of the model in remote areas. Edge computing was also 

integrated into model to classify the suitability of tea plantation picking 

areas based on image captured with drone. An important component of the 

research was trajectory planning system, which optimized drone flight paths 

by considering location data, throughput data, battery energy consumption, 

and the computation of suitable picking locations. Finally, experimental 

results showed the effectiveness of the proposed model in identifying 

payload metadata, monitoring drone trajectory, and optimizing picking 

location paths in rural tea plantations. 
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1. INTRODUCTION   

The use of internet of things (IoT) technology in the agricultural sector along with physical objects 

such as sensors and IoT communication networks is in support of potential development of precision 

agriculture (PA) technology [1], [2]. Precision monitoring aims to identify plantation areas with potential for 

high-quality tea leaves, thereby increasing tea production. Moreover, the implementation of this PA includes 

an unmanned aerial vehicle (UAV) or drone, which can be used to monitor plants from the air [1], [3]-[5]. 

Drone is capable of continuously and reliably performing environmental monitoring tasks for remote sensing. 

Additionally, the device has a camera installed and provides an image of the environment in the aimed  

areas [6]. 

https://creativecommons.org/licenses/by-sa/4.0/
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Implementation of PA on large, hilly tea plantations is typical of rural areas with agricultural 

landscape topography [7], which require network technology devices that can transmit reliable data. The 

definition of rural areas generally refers to classifications based on topography, access, or distance to (at 

least) facilities, such as urban areas and agricultural landscapes [7]. Moreover, research has proven the use of 

long range (LoRa) technology and its frequency channels for communication in rural environments, 

including hectares of tea plantations [8]. LoRa is a communication protocol that governs the transmission of 

data packets using a LoRa data frame, which has a maximum size of 256 bytes. This protocol can transmit 

data packets up to 20 km line of sight (LoS) in rural areas and 5 km in urban areas [9]-[11]. Additionally, 

data transformation is based on LoRa protocol, which limits data transmitted from drone to ground control 

station (GCS) for remote monitoring in the field. Identifying drone monitoring locations, collecting 

throughput data, and gathering information on the energy consumption of the device batteries are necessary 

to ensure the viability of tea plantation picking areas, shaped similarly to hills with plantation blocks. GCS 

receives this information from drone data package, which then informs trajectory planning of the device, a 

crucial factor to consider during PA implementation.  

Drone trajectory planning includes designing trajectory to collect data from drone sensors, 

considering specific requirements such as complete data acquisition and efficient battery energy  

consumption [12]. The device sensors will provide information on feasible tea picking location points, 

throughput data, timestamps, and drone battery usage during flights from identified location points to monitor 

the viability of tea picking in this plantation areas. In addition, the device will determine an optimal location 

by calculating the shortest distance between identified location points to gather path planning data. To 

perform this process, the device applies traveling salesman problem (TSP) method combined with simulated 

annealing (SA) algorithm, which ensures each location point is visited once, and returns to the starting  

point [13], [14]. SA algorithm is a stochastic meta-heuristic method that returns an effective solution search 

for TSP problem [13]-[15]. Following the discussion, effective calculations for drone usage during flight 

require information related to throughput data during the device data transmission to GCS, as well as the 

optimal power of battery energy consumption by the device.  

Using drone intelligence in determining the suitability of tea-picking areas requires edge computing 

system [16]. The term "edge computing" refers to a technological concept that enables computation at edge 

of a cloud service network and facilitates data transmission to IoT services [17]. A classification process 

using a machine learning method with artificial neural network (ANN) for visual computation [18] is applied 

to drone image received by OpenMV camera sensor to determine which tea plantation blocks are ready for 

harvest [19]. During this research, the classification process begins with preprocessing, which considers the 

level of vegetation (vegetation index) according to red-green-blue (RGB) data from drone image. Moreover, 

formulas that focus on RGB in regional imagery from drone are visible atmospherically resistant index 

(VARI), green leaf index (GLI), and visible atmospherically resistant indices green (VIGreen). Based on the 

performance of the three formulas in both urban and forest (rural) areas, the method sensitive to leaf 

greenness is GLI vegetation index [20]. Following this process, classification begins with a dataset derived 

from GLI calculations on each drone image pixel. Before transmitting data to GCS, drone will integrate the 

classification results from edge computing with onboard sensors. This process allows metadata identification 

necessary in forming IoT-drone payload data packets based on LoRa protocol. 

Previous investigations, which serves as the foundation for this research, focus on drone payload 

metadata and edge computing in rural tea plantation areas to meet PA requirements. The research by 

Silvagniet et al. [21], Bejiga et al. [22] used the device with infrared (IR) and thermal camera sensors to help 

with search and rescue (SAR) in mountainous rural areas. This method does not use the technology and 

cannot record GPS location data [21], [22]. PA research, which uses drone for smart city air pollution 

monitoring, has successfully transmitted sensor data, including optical camera sensors, to LoRa-based GCS. 

However, the investigation does not apply edge computing for sensor data processing [23]. Research in the 

agriculture sector focuses on crop monitoring, using drone and wireless sensor network (WSN) spectral 

cameras for data acquisition. This research succeeded in sending all the sensor data and has used edge 

computing, at edge node with a WSN connection on the ground [12]. Consequently, several research on 

drone trajectory view SAR planning [24], organizing edge terrain nodes for crop monitoring [12], and using 

the device orchestrators to design transmissions [25]. These three investigations monitored GPS sensor 

location and energy consumption but did not optimally use information from edge computing in drone with 

cheap, ordinary RGB cameras. The device trajectory planning requires precision due to the limited resources 

of IoT drone, which include computing power, energy, bandwidth, and storage [26]. In addition, limitations 

of the data transmission technology used by the device include WSN or LoRa technology.  

This research aimed to develop a mechanism that identifies metadata from IoT drone, crucial for PA 

applications affecting rural tea plantation areas, thereby improving the feasibility of LoRa-based tea picking. 

Model combines edge computing classification process with ANN machine learning method, based on GLI 
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vegetation index from tea plantation image captured by OpenMV drone camera. Following the discussion, 

this method aimed to manufacture more intelligent drone. The research focuses on the communication of the 

device payload data transmission to GCS via LoRa technology in rural tea garden areas in drone trajectory 

planning. The final output of the research is a device trajectory model specifically designed for rural areas. 

This model, known as drone flight location trajectory, is used to determine the shortest path to tea plantation 

blocks where harvesting is feasible by applying TSP method with SA algorithm. Moreover, the device 

trajectory efficiently computes throughput data and battery energy consumption of drone payload. 

 

 

2. METHOD 

The research comprised three main stages which included identifying payload metadata from LoRa-

based IoT-drone sensor data using edge computing, creating a reference dataset for tea leaf picking needs, 

and using IoT-drone payload metadata information to design trajectory planning model that located tea plants 

ready for picking. The first step in Figure 1 showed data collection or acquisition process, which started with 

capturing data from drone flying over the tea plantation [27]. The device sensors captured this data from 

image and onboard sensors specifically designed for PA in expansive rural tea plantation areas. The need for 

edge computing to improve the intelligence of drone necessitated the processing of sensor data from IoT 

drone to determine the feasibility of tea plantation harvesting. Moreover, the technology process used 

computer vision methods in OpenMV to process image based on GLI [20] of the leaves (Figure 2). The 

technology also used machine learning with a sequential ANN model from TensorFlow to sort the image 

captured by drone (Figure 3). 

 

 

 
 

Figure 1. The research stages 

 

  

 
 

Figure 2. Edge computing of drone image data to payload integration process 

 

 

 
 

Figure 3. A classification model for picking tea plants using GLI and ANN 

 

 

ANN-based classification model for drone image began with the design of a tea plantation dataset 

with GLI calculations from RGB color values [20] using (1): 

 

𝐺𝐿𝐼 =
(2𝐺−𝑅−𝐵)

(2𝐺+𝑅+𝐵)
 (1) 

 

The device payload data incorporation model in the results and discussion chapter provided a clearer 

description of combination process for designing LoRa-based drone payload metadata frames. The device 

communication protocol in tea garden of rural areas limited data frame size and space characteristics. 

Additionally, the data transformation process transmitted the information from the device to GCS via LoRa 

and generated payload metadata. 
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The process of forming path planning for drone relied on receiving LoRa-based device payload data 

packets from the monitoring server or GCS. The method served as a tool for monitoring information related 

to location, time, throughput, edge computing result of tea picking suitability, and battery energy 

consumption of the drone. This information was valuable for managing tea plantations, particularly in 

assessing the quality of picking in the rural tea plantation areas. Figure 4 showed the various stages of the 

process concerning the research. 

 

 

 
 

Figure 4. The formation process of trajectory planning 

 

 

The figure started the process of identifying feature information from telemetry data received by the 

GCS server from the drone. This process was conducted to monitor the feasibility of tea picking, focusing on 

location data, drone flight paths, timestamps, throughput, edge computing results, picking feasibility 

classification, and battery energy consumption. The steps in path tuning and pointing process included 

turning data patterns into paths based on the characteristics of trajectory data, creating the data, and finally 

finding the best results that fit the needs as well as limitations of using the data. 

In trajectory planning concerning the appropriate location for tea plantation picking, calculating the 

distance (𝑑) between location points (𝑣1, 𝑣2, … , 𝑣𝑛) to obtain trajectory was necessary. Moreover, the distance 

of each point to other points was calculated using the following haversine formula (2) [28]: 

 

𝑑 = 2 ∗ 𝑅 ∗ 𝑎𝑠𝑖𝑛 √sin2(
𝛿𝑙𝑎𝑡

2
) + cos(𝑙𝑎𝑡1) ∗ cos(𝑙𝑎𝑡2) ∗ sin2(

𝛿𝑙𝑜𝑛𝑔

2
))  (2) 

 

where: 𝑑 is distance, 𝑅 is earth radius (~6,371 km),  𝛿𝑙𝑎𝑡 = (𝑙𝑎𝑡2 − 𝑙𝑎𝑡1), and 𝛿𝑙𝑜𝑛𝑔 = (𝑙𝑜𝑛𝑔2 − 𝑙𝑜𝑛𝑔1). 

Converting degrees to radians for longitude (𝑙𝑜𝑛𝑔) and latitude (𝑙𝑎𝑡) values using (3) was important. 

 

𝑟𝑎𝑑𝑖𝑎𝑛 = 𝑑𝑒𝑔𝑟𝑒𝑒 ∗  (
𝜋

180
)  (3) 

 

Processing the number of telemetry data packets successfully transmitted by drone to GCS via LoRa 

in the transmission time limit at each drone position in bytes/s determined trajectory throughput of the 

device. Meanwhile, trajectory was related to battery energy (power) consumption by multiplying the voltage 

(V) and current (I) of the battery energy of drone at each movement location. 

Aggarwal and Kumar [26] argued that path planning method aimed to optimize the path for 

processed data, thereby generating optimum results. In this scenario, the shortest or minimum distance was 

achieved, minimized battery energy consumption, and maximized data throughput. The location trajectory 

drone was proposed to optimize the shortest distance using TSP method with (4). Additionally, SA algorithm 

was proposed to optimize the shortest distance between locations: 

 

𝑚𝑖𝑛 ∑ ∑ 𝑑(𝑖, 𝑗). 𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1   (4) 

 

where ∑ 𝑥𝑖𝑗 = 1, ∀𝑖 ∈ {1,2, … , 𝑛}𝑛
𝑗=1,𝑗≠𝑖  and ∑ 𝑥𝑖𝑗 = 1, ∀𝑖 ∈ {1,2, … , 𝑛}𝑛

𝑖=1,𝑖≠𝑗  , each point was visited once, 

𝑑(𝑖, 𝑗) = the distance between vi and vj points, and 𝑥𝑖𝑗 = 1 when the drone moved from vi to vj. 

Meanwhile, the (5) and (6) calculated minimum battery energy consumption and maximum data 

throughput, respectively: 

 
𝑚𝑖𝑛 ∑ ∑ 𝑃𝑖𝑗 . 𝑥𝑖𝑗

𝑛
𝑗=1

𝑛
𝑖=1  (5) 

 

 𝑚𝑎𝑥 ∑ ∑ 𝑡𝑖𝑗. 𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1  (6) 

 

where 𝑃𝑖𝑗  is battery energy or power consumption during the device movement  𝑥𝑖𝑗  , 𝑡𝑖𝑗 are the throughput 

between vi and vj, and 𝑥𝑖𝑗 = 1 when the drone moved from vi to vj.  
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3. RESULTS AND DISCUSSION 

Testing IoT-drone for remote sensing needed in rural environments was conducted at PPTK 

Gambung and PTPN 1 tea plantations, Ciwidey, Bandung, Indonesia. Flight pattern followed natural 

conditions and directions from partner stakeholders for ready-picked gardens (fit for picking) and already 

picked (not fit for picking). 

  

3.1.  A classification model for picking tea plants with drone edge computing 

The drone was previously trained with data from the two gardens of the partners, PPTK Gambung 

and RancaBali Gardens, Ciwidey, Bandung. During the research, the training conducted edge computing 

experiments on three flights using GLI vegetation index and sequential ANN model, as shown in Figure 2. 

Figure 3 showed the image classification model that determined the feasibility of collecting each piece of 

data received by the drone. Following this discussion, the stages during the training were described as 

follows. 

− The process of forming a dataset from image by calculating the vegetation index for each image pixel 

using (1) [20]. The level of greenness obtained from the image was a vegetation index value from -1 to 1 

which was scaled to a value range of 0 to 1 with the visualization in Figure 5. 

 

 

 
 

Figure 5. Vegetation index with GLI and a colored map 

 

 

The dataset was formed from each image data which included feasibility status of the expert label, total 

pixels, average vegetation index value, and the total value of pixels in 10 sections of vegetation index 

(0-1). 

− Data preprocessing included defining the training section as 75% of the data, namely 138 data, and the 

testing section as 25% of the data, namely 46 data. This process was shown by Python code snippet in 

Figure 6, which identified X_train as training data and y_train to be future aimed label. 

 

 

 
 

Figure 6. Definition of training data and testing part of model 

 

 

− The construction of the machine learning model in Figure 7 included implementing a sequential ANN 

model using KerasTensorflow module. This model consisted of 12 input layers, which contained feature 

information from the dataset, and one classification output layer. Model was then compiled using Adam 

optimizer, with a learning rate of 0.001 and a fit for model training with an epoch of 300. 
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Figure 7. Construction model and training model in Python code 

 

 

− The evaluation and prediction model in Figure 8 provided evaluation results with an accuracy of 82% 

and a loss of 49%. 

 

 

 
 

Figure 8. Evaluation of ANN model in Python code 

 

 

Model was saved with the command basic_model.save('my_model.keras'). Table 1 

presented a confusion matrix that tested the potential of model to produce prediction results on the given 

data. Following this process, the result showed that model can only positively predict all data, thereby 

enabling the preparation of ready-to-use predictions. 

 

 

Table 1. Confusion matrix from the predictions model obtained 
 Predicted negative (0) Predicted positive (1) 

Actual negative (0) 27 

True negative 

7 

False positive 
Actual positive (1) 0 

False negative 

12 

True positive 

 

 

The evaluation of the classification model produced precision=0.63, recall=1.0, F1 score=0.77, and 

accuracy=0.82 based on the prediction results. The image data from the ANN model method was then 

converted into drone in OpenMV memory with h5 model allowing model to run on the device when used for 

realization in the field in rural areas. The conversion model stages in this research were shown in Figure 9. 

 

 

 

 

Figure 9. The process of converting an ANN classification model to OpenMV-drone 

 

 

…… 

# define the keras model 

model = Sequential() 

model.add(Dense(units=16, input_shape=(12,), activation='relu')) 

model.add(Dense(1, activation='sigmoid')) 

 

# compile the keras model 

adam = keras.optimizers.Adam(learning_rate=0.001) 

model.compile(loss='binary_crossentropy', optimizer='adam', metrics =['accuracy']) 

# fit the keras model on the dataset 

model.fit(x_train, y_train, epochs=300) 

……. 
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3.2.  Drone payload metadata identification 

Before sending drone data to GCS, edge computing process culminated in the incorporation of 

image data processing and onboard system data from the device. This process led to the device payload data, 

as shown in Figure 10. The process of adding data from the payload included data from OpenMV camera, 

which captured image of tea plantations. The image was then processed using ANN algorithm for 

classification into two groups including blocks ready to be picked and those not suitable for picking. These 

groups were already set up in edge computing during the research. 

 

 

 
 

Figure 10. LoRa-based drone payload data integration process [29] 

 

 

Figure 11 showed the process in OpenMV_data (i), where experts and GLI vegetation index 

calculations determined whether to classify each image data identifier I as 1 (ready to pick) or 0 (not ready to 

pick) based on the results. For the data frame section 1, the onboard sensor functioned to measure several 

parameters, including GPS-based drone position (latitude, longitude, altitude), speed, direction, battery 

voltage, and current sensors. Following this discussion, sensor_data (i) captured all this sensor data during 

the research.  

 

 

 
 

Figure 11. The drone payload data frame package was formed 

 

 

The hilly nature of tea plantation block, coupled with the characteristics of rural areas, necessitates 

the use of an appropriate drone communication protocol, specifically LoRa protocol. Moreover, the device 

data payload package was designed with LoRa, and the data transformation was limited by the size of the 

data frame sent to the destination GCS server. The payload data package from the incorporation process, as 

previously shown in Figure 11, included drone package identifier information, recording time, location, 

barometer, gyroscope, battery energy, magneto, garden profile, harvest status (classification edge computing 

results), temperature, and humidity.  

Algorithm 1 showed how to transform drone data by sending drone payload data packets to GCS at 

a frequency of 425 MHz and a size of 160 bytes each, using LoRa-based communication module. The 

monitoring results in the telemetry data section of Table 2 showed the results of data processing from drone 

computing to LoRa-based GCS. Specifically, the class column represented the outcome of edge computing, 

which classified tea garden device image using ANN algorithm. When the image classification produced a 

value of 1, it showed that the tea garden at the flying location of drone was suitable for picking, while a value 

of 0 signified the garden was not yet ready to be picked. This process was determined by ANN machine 

learning using the trained GLI vegetation index. 
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Algorithm 1. Drone-GCS data transformation via LoRa 
initialization; 

//variable & function declaration 

//IO Digital Setup 

//Yahboom IMU (JY901), GPS, Current and INA219 voltage Sensor Setup 

//LoRa Ebyte 433 Module Setup and UART Communication for OpenMV Setup 

Timer = $sensor_timer  

While (Timer > 5 second} 

 do { 

 getData(Yahboom IMU,GPS, Current and INA219 voltage Sensor); 

 request(OpenMV_Data); 

 If (OpenMV_Data, Sensor_data)== true then //data valid 

  { 

  Check serial_channel to onboard; 

  If (Serial_available == True)then 

  { 

  Serial_Connection == True; 

 OpenMV_Data_Sending == True; 

  Append(Append(OpenMV_data, Sensor_data),delimeter(“,”)) ; 

  } else 

  { 

  Serial_Connection == False\; 

  } 

  }else 

 { 

  OpenMV_Data == False\; Sensor_data == False\; 

  Append(“NaN”,delimeter(“,”)) 

  } 

 } 

Data_sending_From_Lora_to_GCS(i)= +1; 

Timer=0; 

 } 

 

 

Table 2. The telemetry data review was the result of drone-GCS data transformation 

ID 
Time 

payload 
Lat Long 

Bar 

(cmdpl) 

I-Bat 

(mA) 

Vbat 

(V) 

P 

(mW) 

No. of 

Garden 

Class 

(bool) 
.. 

Hum 

(%) 

.. … .. .. .. .. .. .. .. .. .. .. 

9 13:28:47 -7.17 107.367 166513 196.3 12.23 2418 11 1 .. 64 
10 13:28:55 -7.176 107.367 166445 206.6 12.2 2488 12 1 .. 65 

11 13:29:06 -7.176 107.367 166984 208.5 11.26 2360 13 1 .. 66 

12 13:29:22 -7.1762 107.367 166896 231.7 11.06 2350 15 0 .. 68 
13 13:29:32 -7.1758 107.367 166445 224 11.04 2504 16 0 .. 68 

14 13:29:40 -7.1757 107.367 166631 230.5 10.96 2546 17 0 .. 69 

.. … … .. … … .. … .. .. .. .. 

 

 

3.3.  Monitoring internet of things-drone trajectory 

From each drone flight simulation, the monitoring results on GCS provided information on the 

device flight trajectory, based on its location points. This information aided observers in determining the 

location of the plantation areas, as shown in Figure 12(a). Moreover, Figure 12(b) showed how the drone 

trajectory uncovered battery energy consumption of the device controller module during observations in the 

tea plantation areas. 

Experimental simulations using flight data which were conducted three times with partners, led to a 

monitoring analysis on GCS as shown in Table 3. This analysis concluded that approximately 97% of drone 

payload data packets were successfully sent, including all metadata. The limited battery capacity of UAVs or 

the device affected flight time [30]. Therefore, gathering flight time information was necessary when drone 

reached all the intended locations in rural tea plantation areas. Table 3 showed that the average battery energy 

usage duration was 11.49 minutes. According to (5), the minimum drone battery energy consumption was an 

average of 0.467 Watthour (Wh), and each device flight had a maximum throughput of 16.95 bytes/s 

(average payload packet size is 149 bytes) at an altitude of 17.88 meters with (6). The location predictions of 

flight 1 were accurate for already-picked plantations, but predictions for 2 and 3 for ready-to-pick plantations 

showed an invalid prediction status due to a significant proportion of unpickable areas. Additionally, the 

uneven picking probably caused image detections of ready-to-pick plantations, or it necessitated the addition 

of training data from the same partner under identical conditions. 
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(a) 

 

 
(b) 

 

Figure 12. Trajectory of: (a) location drone and (b) battery energy  

  

 

Table 3. The results of LoRa-based drone trajectory analysis 

No. of 

Test 

Time 
flies 

(minute) 

Number of 
data packets 

sent (n) 

Throughput 

(byte/s) 

Payload 

drone battery 

energy 
(Watt) 

Payload 

energy 

consumption 
(Wh) 

Height 

(m) 

Predictions 
ready to be 

picked (%) 

Predictions 

are not ready 

to be picked 
(%) 

1 10.47 75 17.224 2.433 0.4246 12.94 4 96 

2 13.44 90 17.203 2.459 0.5509 30.28 47 53 

3 10.56 69 16.413 2.419 0.4258 10.42 39 61 
Average 11.49 78 16.947 2.437 0.4671 17.88 30 70 

 

 

4.4.  Optimizing location trajectory of the picking tea plantation in rural areas 

The marked locations of the tea plantation blocks that were ready to be picked were optimized to 

find the shortest path to be used by pickers from IoT-drone trajectory generated in rural areas, concerning the 

location trajectory using (2) and (3) to calculate the distance. This process occurred to reduce time moving to 

the tea plantation picking location using SA algorithm for TSP method with (4). This SA algorithm 

considered temperature changes and associated costs to determine the possibility of a new optimal solution 

when comparing the shortest distance results. 

Figure 13(a) showed the visualization results of GCS server monitoring, as drone movement 

trajectory results were marked with a red line. The locations of the plantation areas in greened serve as the 

basis for calculating the shortest distance between the random starting point of the picking location and  

the final location. Moreover, Figure 13(b) showed the application of TSP method, coupled with  

SA algorithm to determine the shortest distance. This process was achieved by simulating the formation of a 

new trajectory and comparing the route to the optimal shortest distance to the randomly marked picking 

location [13], [15], [31]. 
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(a) (b) 

 

Figure 13. The SA algorithm for the optimum shortest path from the picker based on location marks: (a) GCS 

visualization and (b) optimal shortest path with the SA algorithm 

 

 

4. CONCLUSION 

In conclusion, implementing smart drone in PA in rural tea plantation areas necessitated a 

mechanism for developing IoT-drone metadata, which consisted of a data incorporation process with edge 

computing results from the device image classification and onboard drone sensor data. Sequential ANN 

(keras.TensorFlow) model was successfully applied based on GLI calculation dataset on each image pixel, 

which included 12 dataset input layers, an activation function with rectified linear unit (ReLU), and one 

classification output layer in the device image classification process to determine the suitability of the tea 

plantation picking areas. During the research, LoRa-based drone payload data packets were successfully sent 

to GCS. On average, 97% of the packets contained identification information collected by the sensors of the 

device, such as flight time, location, calibration, payload drone battery energy, garden profile, temperature, 

and humidity.  

The data transformation results from LoRa-based drone to GCS provided the device trajectory that 

considered throughput, successful data transmission, identification of locations suitable for drone picking and 

tracking, as well as battery energy consumption. Moreover, TSP method, combined with SA algorithm used 

the location trajectory results to calculate the shortest distance from the position of the picker, producing a 

new location graph. The resulting trajectory showed maximum data throughput and minimum battery energy 

consumption of the drone payload. 
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