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Forest fire detection is one of the critical challenges in disaster mitigation
and environmental management. This research aims to increase the accuracy
of forest fire detection through improving the convolutional neural network
(CNN) architecture. The main focus of research is on efficient
hyperparameter tuning, which includes selecting and optimizing key
parameters in CNN architectures such as convolutional layers, kernel size,
number of neurons in hidden layers, and learning algorithms. By utilizing
grid search techniques and heuristic-based optimization algorithms, the
resulting CNN model shows significant improvements in detection accuracy
compared to previous approaches. The evaluation was carried out using a
pre-processed forest fire image dataset, and the results show that
architectural refinement and appropriate hyperparameter tuning can
substantially improve model performance. Evaluation results comparing two
models, VGG16 and the proposed method, show significant improvements
over the proposed method. The proposed method shows better capabilities
with an accuracy of 95.31% and a precision of 97.22%. This research
contributes to developing a more reliable and efficient forest fire detection
system, which is expected to be used in real applications to reduce the
impact of forest fires more effectively.
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1. INTRODUCTION

Forest fires are natural disasters that can cause major economic, ecological, and social losses [1].
The impacts are limited to loss of forest cover, increased greenhouse gas emissions, destruction of wildlife
habitats, and threats to human life and property. As the frequency and intensity of forest fires increase due to
global climate change, the need for fast and accurate early detection systems becomes increasingly urgent
[2]-[5]. Forest fire detection systems aim to identify and monitor fires quickly and accurately, enabling
immediate response to minimize losses. This system integrates various technologies and methods, including
remote sensing using satellites, drones, temperature sensors, and monitoring cameras [6], [7]. Data is
collected from satellite imagery such as moderate resolution imaging spectroradiometer (MODIS) and visible
infrared imaging radiometer suite (VIIRS), drones equipped with infrared cameras, and monitoring cameras
installed on towers or strategic points. This data is then processed using an image processing algorithm to
detect fire signs such as temperature changes, smoke and flames. Machine learning algorithms, especially
convolutional neural networks (CNN), are used to accurately analyze images and detect fires. In addition,
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predictive models are also used to estimate the spread of fires based on weather conditions and vegetation
type [8]-[10]. Once a fire is detected, the system automatically sends an alert to firefighters and relevant
authorities, including information on the fire’s location, the burned area’s size, and severity [11], [12].

Various algorithms are used in forest fire detection systems to increase accuracy and efficiency [13].
CNN is one of the main algorithms used to process image data, extracting important features such as edge
and texture detection [10], [13]-[18]. Support vector machine (SVM) is a supervised learning algorithm that
works by finding hyperplanes that separate data into different classes, which can be used to classify images
[19]-[21]. Random forest, an ensemble learning method that uses multiple decision trees, improves
classification accuracy by analyzing multi-source data such as imagery and weather data. The k-nearest
neighbors (KNN) algorithm classifies data points based on the majority of their KNN so that it can compare
unknown images with images that have been labelled [2], [22], [23]. Principal component analysis (PCA)
reduces image dimensions before being applied to fire detection algorithms such as CNN or SVM, increasing
computational efficiency. Finally, long short-term memory (LSTM), a type of recurrent neural network
(RNN) suitable for processing sequential or time-series data, is used to analyze weather data [18], [24].

Previous research by [25] compared the performance of various 3D CNN-based deep learning
architectures for hyperspectral image classification. This provides a deep understanding of the advantages
and disadvantages of each architecture in dealing with hyperspectral image classification problems. However,
it still needs to provide an in-depth analysis of the weaknesses of each architecture. In addition, this article
also needs to provide information about the limitations and obstacles that may be encountered in using this
architecture in a practical context. This article also needs to discuss the potential for developing or improving
3D CNN-based deep learning architectures for hyperspectral image classification in the future. Meanwhile,
the next study [26] This study used a deep learning approach for the automatic diagnosis of pulmonary
embolism on computed tomography pulmonary angiography (CTPA) with high sensitivity, specificity and
accuracy, namely 0.80, 0.74, and 0.76 at the scanning level, and 0.93, 0.89, and 0.89 at the scanning level.
Slice. The model also achieves area under the receiver operating characteristic curve (AUROC) of 0.85 and
0.94 at scan and slice levels, respectively. However, it has the disadvantage that the dataset used in the study
is not publicly available due to ethical restrictions and the proprietary nature of the study. This may limit the
ability of other researchers to replicate or validate research findings.

From the discussion that has been outlined, a problem can be seen. There is a need to increase the
accuracy of forest fire detection using an efficient CNN architecture through appropriate hyperparameter
tuning. Although CNNs have been proven to be effective in image analysis, the main challenge lies in
selecting and optimizing key parameters in the CNN architecture, such as the number of convolutional layers,
kernel size, and learning parameters [8], [27], [28]. With proper tuning, CNN models can avoid underfitting
or overfitting, negatively impacting fire detection performance. Therefore, this research aims to develop a
more efficient hyperparameter tuning method to achieve a more accurate and reliable model in detecting
forest fires, which is crucial for disaster mitigation and environmental protection [29], [30].

Based on the literature study that has been described, it is realized that forest fire detection
technology has developed rapidly, one of which is through satellite imagery and digital image processing.
CNN has become a popular and effective method in image analysis, including forest fire detection. However,
although CNNs have great potential, the main challenge is improving detection accuracy optimally. One
approach to overcome this challenge is through enhancing the CNN architecture and efficient hyperparameter
tuning [31]-[33]. Hyperparameters in CNNs, such as the number of layers, kernel size, and learning
parameters, greatly influence the model performance. With proper tuning, CNN models can avoid
underfitting or overfitting, negatively impacting detection accuracy. Therefore, this research focuses on the
importance of an efficient hyperparameter tuning process to achieve a more accurate and reliable model in
detecting forest fires. Through this research, it is hoped that better methods for tuning hyperparameters in
CNN architectures can be developed, which will improve detection accuracy and computational efficiency.
Thus, the resulting forest fire detection system can be widely applied and provide a fast response in
mitigating fires, reducing losses incurred, and protecting the environment and human life.

2. METHOD
2.2. Method of collecting data

In researching to obtain data and information, the methods used in the data collection process are as
follows: by using open source data from several countries, stock market data may be available for research in
an open format (open source). You can explore these resources to create a research series with relevant data.
Data from the Kaggale.com site. Image data collection: collecting image data from satellites, drones and
monitoring cameras; data pre-processing: performing normalization, noise reduction, and image
segmentation; dataset structuring: dividing the dataset into training and testing subsets and labelling the data.
CNN model development.
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2.2. Research design

This research uses a quantitative approach with experimental methods to explore the effect of
architectural improvements by improving hyperparameters. This experimental design was chosen to test the
hypothesis that there is an optimal hyperparameter architecture that can increase the accuracy of image
recognition/prediction. Figure 1 illustrates the design of this research, which aims to enhance CNN
architecture for recognizing forest fires. The research process is organized into several key stages: initially,
the dataset preparation phase involves dividing the dataset into two subsets: 70% for training and 30% for
testing. This division is performed randomly while ensuring a balanced proportion between fire and non-fire
images to prevent bias. Each image is labeled as ‘fire’ or ‘not fire’ based on visual inspection and reference
data, with experts conducting the manual labeling to guarantee accuracy and consistency. Figure 1 is the
research framework.
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Figure 1. Research design
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Next, in the CNN model development phase, the basic architecture of the CNN is designed by
considering the number of convolutional layers, kernel size, pooling layers, and fully connected layers. This
initial architecture is informed by a review of existing literature and best practices in image detection. The
selection of key hyperparameters, such as learning rate, batch size, and the number of epochs, is guided by
preliminary experiments and relevant studies.

Following this, hyperparameter tuning is conducted through a grid search, which systematically
explores various combinations of hyperparameter values to identify the optimal set based on performance in
the validation subset. Additionally, Bayesian optimization is applied to streamline the tuning process by
navigating the hyperparameter space more efficiently. This probabilistic model helps to select promising
hyperparameter combinations, reducing the number of necessary experiments. The model is then validated
using a validation subset, with performance evaluated in terms of accuracy, precision, recall, and F1-score.
This evaluation ensures the model can generalize well to new data beyond the training set.

Subsequently, during the model training and evaluation phase, the CNN model is trained using the
training subset with the optimized hyperparameters. Training is executed with backpropagation and
optimization algorithms like Adam or RMSprop. The model’s performance is assessed on the test subset to
gauge its overall accuracy and effectiveness post-training. This assessment includes a detailed analysis of
performance metrics, such as the confusion matrix, to understand error distribution and performance across
different classes.

Implementation and testing in the field mark the next step, where the trained model is integrated into
a forest fire detection system for real-world testing. This involves the integration of the model with the
hardware and software of the monitoring system. Real-time testing evaluates the system’s performance in
detecting fires under actual conditions, including trials across various locations and weather scenarios to
ensure reliability. Based on field testing outcomes, adjustments are made to enhance system reliability and
accuracy, potentially involving further tuning or adding new features.

Finally, data analysis is conducted to evaluate the overall effectiveness of the CNN architecture
improvements and hyperparameter tuning. The analysis includes comparing these results with previous
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methods and identifying key factors that contributed to improved performance. The research findings are
documented in a comprehensive report detailing the methodology, results, discussions, conclusions, and
recommendations for future research. Additionally, the report provides practical implications of the findings
and offers suggestions for implementation in the field.

2.3. Convolutional neural network algorithm

Train a CNN using different optimization optimizers to compare with different batch sizes. The
author uses a popular deep learning framework like TensorFlow for this task. We present the CNN model
optimization flowchart in Figure 2.
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Figure 2. Comparison of standard CNN model with proposed model CNN

Figure 2 outlines the CNN model training process for forest fire detection through detailed flow
diagrams, starting with the foundational steps. Initially, flowcharts conventionally begin with a “Start”
symbol, which marks the initiation of the procedure. The process then advances to the model input stage,
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where training is applied to each model, beginning with the standard CNN model and moving to the proposed
CNN model.

The training process is visually represented in Figure 2 where two distinct architectures both rooted
in the same concept are illustrated using input images measuring 512x512 pixels. For the first model
(depicted on the left), the process commences with model inputs, specifically a 512x512 pixel image with
three color channels red green blue (RGB). The training process begins with zero padding, which adds zeros
around the image border to preserve spatial dimensions. In the first convolutional block, a layer with 64
filters of size 3x3 is applied, followed by batch normalization to stabilize training and the rectified linear unit
(ReLU) activation function to introduce non-linearity. Max pooling with a 2x2 window reduces the feature
map size. Subsequent convolutional blocks increase the number of filters (e.g., 128 and 256) and are
followed by pooling operations. Before reaching the fully connected layers, average pooling is applied, and
the model incorporates a dense layer with 32 neurons, concluding with a softmax activation function for
classification. The Adam optimization algorithm updates the model weights during training.

In contrast, the second model (illustrated on the right) also utilizes a 512x512 pixel image with RGB
channels as input. The training process follows a similar structure, starting with zero padding and progressing
through convolutional and pooling layers. However, this model integrates an identity block implementation
with shortcut connections, enhancing the training process by speeding up convergence and mitigating the
vanishing gradient problem. Like the first model, it employs average pooling before the fully connected
layers and includes a dense layer with 32 neurons followed by a softmax layer. The RMSprop optimization
algorithm is used to update the model weights.

A comparison of the two models reveals that both are based on the VGG16 architecture, featuring
multiple convolutional and pooling layers. The primary distinction lies in the optimizer and the use of an
identity block; the first model utilizes Adam without an identity block, while the second model employs
RMSprop and incorporates an identity block with shortcut connections. Both models use average pooling before
the fully connected layer and feature a dense layer with 32 neurons preceding the softmax layer for the final
classification step. This figure shows how two VGG16-based CNN models are applied for forest fire detection,
with some differences in optimization and the use of identity blocks. The results of this comparison will
determine which model is more efficient and accurate in detecting forest fires based on the configuration used.

3. RESULTS AND DISCUSSION

At this stage, we explain the results obtained from research on improving the VGG16 CNN
architecture for forest fire detection with hyperparameter optimization. The discussion will include an
evaluation of model performance, a comparison between the two models tested, and an analysis of
implementation and testing results in the field.

3.1. Research dataset

This test uses an image showing two images that will be trained to recognize and detect forest fires by
improving the CNN architecture. In this test, two images train a CNN model to detect forest fires through
architectural improvements (Figure 3). The first image shows a burning forest with clear flames, while the
second image shows an unburned forest with lush green trees. These two images were resized to 512x512 pixels
and normalized before being used in model training. Data augmentation techniques such as rotation and flipping
are applied to increase dataset diversity and reduce overfitting. The model was then tested with a separate
dataset to evaluate its performance in detecting forest fires, using accuracy, precision, recall and F1-score
metrics. The results of this test aim to assess the effectiveness of CNN architecture improvements in increasing
the accuracy and stability of forest fire detection. Figure 3 is a sample of 2 class data, namely burnt and unburnt
forests.

Figure 3. Example of an image that will be practiced with 2 classes
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3.2. Results

At this stage, image classification is carried out separately using the VGG16 architecture with
VGG16+SMOTE data model and ResNet50+class weighted approach+SMOTE data. Figure 3 compares the
accuracy results obtained by each architecture on training and validation data. The blue line shows the
accuracy value for training data, while the orange line is for validation data. The Figure 4 classification
training processes. In Figure 4, the accuracy and loss graph of the forest classification training process can be
seen.

Figures 4(a) to (d) shows four line graphs representing the performance of the two methods over
several periods during the training and testing phases for the CNN model. Each graph is labelled with the
method and metric it represents. The graph shows the cost and score trends for the “proposed method” and
“VGG16” methods. This method avoids averting using early stopping so that training does not exceed the
training limit. This test uses two activations: the ReLU activation function with a learning rate of 0.001 for
the proposed method and the Sigmoid learning rate activation function of 0.01 for the VGG16 model with
parameters, namely batch size 128 for ReLU and 64 for the proposed model. For epoch, here we use early
stop, where the process automatically stops when the model can’t get any more accuracy and losses. The
performance metrics obtained from evaluating the ReLU and sigmoid models are critically analyzed.
Comparative analysis revealed potential differences in the model’s ability to classify animal images
accurately. Statistical tests were performed to determine the significance of these differences, thereby
providing strong evidence to support the findings. The proposed method shows more stable and consistent
cost and score metrics performance throughout the period compared to the VGG16 method.
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Figure 4. Accuracy and loss graph of forest classification training process; (a) cost propose method, (b) cost
VGG16, (c) score propose method, and (d) score VGG16

3.2.1. Confusion matrix

Analysis of the confusion matrix can help in decision making to further refine the model. For
example, if the model often makes false negative errors (fails to detect fires), then it may be necessary to
adjust the threshold or use data augmentation techniques to improve fire detection. Confusion matrix is a
very useful tool in evaluating and understanding the performance of classification models. By providing
detailed insight into model prediction results, confusion matrices enable identification of specific errors,
calculation of important evaluation metrics, and provide direction for further refinement. In the context of
forest fire detection, the use of a confusion matrix helps ensure that the model is not only accurate but also
reliable in detecting actual fires, so that it can provide a fast and effective response in emergency situations.
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The confusion matrix in the training of the two models tested. In Figure 5, we can see the results of the
confusion matrix. In Figure 5 the confusion matrix of the two methods tested.

Figure 5 contains two confusion matrix charts labelled “Figure 5(a) CM propose method” and
“Figure 5(b) CM VGG16”. This matrix is used to evaluate the performance of the classification model. Each
matrix has two rows and two columns, with the rows representing the actual labels and the columns
representing the predicted labels. The actual labels are “fire images” and “non_fire images”. The colour
coding of the boxes most likely indicates the number of images, with darker colours representing a greater
number. The chart is used to visually compare the performance of two methods for classifying images as
containing fire. In Figure 6, we can see the results of the classification report. Figures 6(a) and (b) shows the
classification report of the two models being compared.
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Figure 5. Confusion matrix; (a) CM propose method and (b) CM VGG16
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Figure 6. Classification report; (a) CM propose method and (b) CM VGG16

Of the two CMs, the proposed model has a better prediction level than the VGG16 model. You can
see the results from precision, recall, F1 score, and accuracy. The prediction result image can be seen in
Figures 7(a) and (b).

< <
' :
T :

g E

i

RS

L d 1
4 4 - I

Figure 7. Prediction results; (a) propose prediction method and (b) VGG16 prediction

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 1202-1211



Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 1209

Figure 7 shows that the actual label will be compared with the predicted label. Where if the actual
label and predicted label show the same class, they will be coloured green, in other words, true positive, and
if the actual and predicted labels show different classes, it will be false positive in red. Prediction errors can
occur due to image factors such as test data, in this case in the form of unclear images, background influences
such as nature, the similarity of colour and shape.

3.2.2. Model performance evaluation

The model evaluation results based on accuracy and loss during training and testing are explained.
Table 1 compares the model performance of VGG16 and the proposed method (propose method) based on
various evaluation metrics. VGG16 shows 92.97% accuracy, 82.93% precision, 94.44% recall, 88.31% F1-
score, 84.35% FBeta, 83.67% Matthews correlation coefficient (MCC), 86.83% BM, and 80.63% marking
coefficient (MK). Meanwhile, the proposed method has a higher accuracy of 95.31%, precision of 97.22%,
recall of 87.50%, F1-score 92.10%, FBeta 95.75%, MCC 89.03%, BM 86.36%, and MK 91.79%. Although
the recall of the proposed method is slightly lower, other metrics show superior performance compared to
VGG16. With higher accuracy, precision, F1-score, FBeta, MCC, and MK, the proposed Method is more
effective and reliable in detecting forest fires, balancing the reduction of false alarms with the detection of
actual fire events. From the Table 1, the proposed method (propose method) performs better than the standard
VGG16 model overall. Although the recall of the proposed Method is slightly lower, other metrics such as
accuracy, precision, Fl-score, FBeta, MCC, and MK show that the proposed method has superior
performance. This means the proposed Method is more effective and reliable in detecting forest fires, with a
better balance between reducing false alarms and detecting real fire events.

Table 1. Test results of the two CNN models
Method Accuracy  Precision Recall Fl-score FBeta MCC BM MK
VGG16 0.9297 0.8293 0.9444 0.8831 0.8435 0.8367 0.8683 0.8063
Propose method 0.9531 0.9722 0.8750 0.9210 0.9575 0.8903 0.8636 0.9179

3.3. Discussion

Hyperparameter optimization, through grid search and Bayesian optimization, significantly
enhances model performance by identifying the best values for learning rate, batch size, and number of
epochs, which are crucial for achieving optimal results. In comparing the VGG16 model with the proposed
method, both models demonstrate effectiveness in detecting forest fires, yet the proposed method
outperforms the standard VGG16. It achieves higher accuracy, precision, F1-score, FBeta, MCC, and MK,
making it more effective and reliable, although it shows a slight decrease in recall values. This advantage is
particularly important in real-world applications where minimizing false alarms is as critical as detecting fire
events. Thus, the proposed method holds great promise for deployment in more efficient and dependable
forest fire detection systems, emphasizing its potential for practical applications where precision and
reliability are paramount.

4. CONCLUSION

This research aims to improve forest fire detection performance by enhancing the CNN architecture
using efficient hyperparameter tuning. Evaluation results comparing two models, VGG16 and the proposed
method, show significant improvements over the proposed method. With an accuracy of 95.31% and a
precision of 97.22%, the proposed method shows a better ability to reduce false alarms than VGG16, which
only achieved 92.97% and 82.93%, respectively. Although the recall is slightly lower, the F1-score of the
proposed method remains higher, indicating a better balance between precision and recall. Other evaluation
metrics such as FBeta, MCC, and MK also show significant improvements over the proposed method,
making it a more reliable and efficient choice for forest fire detection with faster and more accurate response.
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