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ABSTRACT

Data clustering can find similarities and hidden patterns within data. Given a
predefined number of groups, most partitional clustering algorithms use repre-
sentative centers to determine their corresponding clusters. These algorithms,
such as K-means and optimization-based algorithms, create and update cen-
troids to give (hyper) spherical shape clusters. This research proposes a non-
centroid-based discrete differential evolution (NCDDE) algorithm to solve clus-
tering problems and provide non-spherical shape clusters. The algorithm directs
the population of discrete vectors to search for data group labels. It uses a novel
discrete mutation strategy analogous to the continuous mutation in classical dif-
ferential evolution. It also combines a sorting mutation to enhance convergence
speed. The algorithm adaptively selects crossover rates in high and low ranges.
We use the UCI datasets to compare the NCDDE with other continuous centroid-
based algorithms by intra-cluster distance and clustering accuracy. The results
show that NCDDE outperforms the compared algorithms overall by intra-cluster
distance and achieves the best accuracy for several datasets.
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1. INTRODUCTION
The rapid growth of the internet, social media, and digital technologies has generated vast amounts of

data that require data analysis tools to uncover hidden patterns and identify similar groups based on their at-
tributes. Clustering algorithms are often employed to explore and categorize datasets, dividing data points
into clusters or groups where the data within each group are more similar than those from other groups.
These algorithms have been extensively applied in various fields, including image processing, data analy-
sis, and pattern recognition [1], [2], as well as natural language processing, text mining [3], [4], and social
network analysis and community detection [5], [6]. This research focuses on partitional clustering methods,
which determine groups by optimizing similarity measures and transforming the task into an optimization
problem. Most of these methods are centroid-based, using centroids or representative centers to define clusters.
Examples include K-means [7] and population-based approaches such as genetic algorithms (GA) [8], particle
swarm optimization (PSO) [9], differential evolution (DE) [10], artificial bee colony (ABC) [11], and ant colony
optimization (ACO) [12]. These algorithms create and update centroids to minimize the distance between data
points and their corresponding cluster centers and give spherical-shaped clusters.
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We propose a non-centroid-based discrete differential evolution (NCDDE) algorithm for data cluster-
ing. The algorithm does not use centroids. It directly searches for the group labels for each data point, which
allows the discovery of non-spherical clusters. The NCDDE employs a novel discrete mutation that interprets
the continuous mutation of DE to the discrete space of integer labels. It adaptively combines the sorting mu-
tation with the classic mutation to enhance convergence speed and select crossover rates from high and low
ranges to suit the problems. This research’s main contribution is a non-centroid-based discrete method that is
competitive in giving the best intra-cluster distance and clustering accuracy for several datasets and providing
non-spherical shape clustering results.

The remainder of the paper is organized as follows: section 2 provides the background knowledge, re-
views the centroid-based optimization algorithms for data clustering, and presents the UCI datasets.
Section 3 describes the proposed NCDDE algorithm. Section 4 performs the preliminary experiment to find
a suitable mutation strategy for the NCDDE and the comparison experiments with other methods on the UCI
datasets using intra-cluster distance and clustering accuracy. Section 5 provides insight discussion. Finally, we
provide a conclusion in the last section.

2. LITERATURE REVIEW
This section provides backgrounds on the similarity measure, clustering accuracy, and the classical DE

algorithms, as well as an overview of centroid-based optimization methods for data clustering on UCI datasets.

2.1. Similarity measure and intra-cluster distance
We use a similarity measure to calculate the similarity of a clustering result, considering the similarity

of data points in each cluster through a distance function. This research employs the Euclidean distance to
calculate the distance between two points, as (1):

Dist(xi, xj) =

√√√√ D∑
m=1

(xim − xjm)2 (1)

where xi and xj are data points and D is the dimension of each data point.
Let Q = {Q1, Q2, . . . , QK} be a clustering result consisting of clusters Q1 to QK and c1, c2, . . . , cK

be the representative centers where ci is the center of the cluster Qi. To measure the similarity of Q, we use the
intra-cluster distance (f ), which calculates the sum of distances between data points and their corresponding
centers by (2):

f(Q) =

K∑
i=1

∑
x∈Qi

Dist(ci, x) (2)

where x is a data point. The low value of f(Q) indicates a suitable clustering result.

2.2. Clustering accuracy
Clustering accuracy assesses the results of different clustering methods to a real-world benchmark

dataset that includes the original group labels for each data point. A clustering method does not know these la-
bels or the underlying data structure, and we categorize it as an unsupervised learning technique.
Thus, different clustering methods may produce varying levels of accuracy. Clustering accuracy is the percent-
age of matches between the original group labels and those assigned by the clustering method. Its calculation
uses (3):

Clustering accuracy =
Number of matched data points

Number of all data points
× 100 (3)

2.3. Classical differential evolution algorithm
The DE algorithm is an efficient population-based algorithm introduced by Storn and Price [10] for

continuous optimization. The algorithm consists of initialization, mutation, crossover, and selection steps. The
algorithm randomly generates vectors xi = [xij ] where i = 1, 2, 3, ..., NP and j = 1, 2, 3, ..., D, and finds the
best vector xbest and its fitness function value fbest. The mutation step selects three random population vectors
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xr1, xr2, xr3 and creates a mutant vector xm by adding the difference between two of them to a third vector
by (4):

xm = xr1 + F (xr2 − xr3) (4)

where F is a scaling factor in a range of [0, 1]. The crossover operation constructs a trial vector xc by exchang-
ing components of the target xi and the mutant vectors as (5):

xcj =

{
xmj if randj < CR or j = I

xij otherwise
(5)

where randj is a uniform random number in a range of [0, 1], j = 1, 2, 3, ..., D, and I is a randomly fixed index
from 1 to D. Then, the selection step compares the trial vector with the target vector. If the fitness of the trial
vector is better, it replaces the target vector. Otherwise, the target vector remains. The algorithm terminates
when a stopping criterion is met, such as reaching the maximum number of iterations. DE requires suitable
control parameters (F and CR) to solve different problems. Many adaptive variants of DE have been proposed
to manage the control parameters [13], [14].

2.4. Centroid-based optimization algorithms for clustering
Many researchers have proposed centroid-based algorithms to solve clustering problems using the

DE algorithm and other population-based methods. Xiang et al. [15] presented a centroid-based differential
algorithm with a shuffled strategy (DSDE) to solve clustering problems. It separates the population into two
subgroups and merges them at the end of each generation. DSDE outperforms ACO, ABC, PSO, and PSOAG
regarding intra-cluster distance and clustering accuracy on UCI datasets. Nayak et al. [16] proposed the cross-
mutation-based differential evolution (CMDE), which hybridizes two mutation strategies for data clustering.
By using weights to reduce the influence of the best vector and rearranging centroids, CMDE improves clus-
tering results, offering better intra-cluster distances and accuracy on UCI datasets than the DE using a single
mutation strategy. Mustafa et al. [17] combined a memetic algorithm and adaptive differential evolution mu-
tation (AMADE) to identify candidate centroids for clustering. Utilizing the DEcurrent-to-best1 strategy for
faster convergence, along with a restart phase to prevent premature convergence, AMADE outperforms GA,
DE, HyGA, and HyDE algorithms on UCI datasets. The authors also provided the solutions of cluster cen-
ters for each dataset. Next, Tarkhaneh and Moser [18] introduced the archimedean spiral and neighborhood
search-based mutation approach (ADENS) to solve clustering problems. The algorithm creates a spiral vector
for mutation operation and uses neighborhood search to generate solutions for replacing poorly performing in-
dividuals. ADENS shows superior results on UCI datasets in minimizing intra-cluster distance and improving
clustering accuracy compared to ICSK, DE-KM, and DSDE algorithms. Poonthong et al. [19] presented an
adaptive differential evolution with archive strategy (ADEAS) for solving clustering problems. It finds can-
didate centroids and minimizes the intra-cluster distance. The algorithm employs an archive to store inferior
solutions for enhancing population diversity. The result shows that ADEAS outperforms PSOPC, ACODE,
ADEANS, VDEO, CMDE, and DSDE methods on UCI datasets.

Other population-based methods and their hybrids can potentially solve clustering problems.
Abualigah et al. [20] combined two well-known optimization techniques, Harris Hawks optimization and
differential evolution (H-HHO), to balance global and local searches. Experimental results on the UCI dataset
show that the algorithm outperforms K-means, TLBO, GSA, ITGO, and classical DE algorithms regarding
intra-cluster distance and cluster accuracies. The authors also provided optimal centroids. Sight et al. [21]
proposed a moth-flame optimization algorithm (MFO) for data clustering. It uses a logarithmic spiral func-
tion to control the search. Experiments on UCI datasets demonstrate that MFO can achieve better intra-cluster
distances than BHA, MVO, HHO, GWO, and K-means and identify the centroids generated by the proposed
algorithm. Sharma and Chhabra [22] developed a clustering solution by integrating PSO with a polygamous
approach and crossover (PSOPC). The algorithm sets up each particle with cluster centroids chosen from the
dataset. It generates offspring particles by merging the best particles with random ones to enhance exploration
and exploitation. The PSOPC achieves better intra-cluster distance and data clustering accuracy than PSO, GA,
DE, FA, and GWO. More recently, Singh et al. [23] proposed an opposition learning-based Harris Hawks op-
timizer (OHHO) for solving the data clustering problem, which incorporates the opposition learning technique
into the exploration phase of the Harris Hawks optimizer algorithm. Experiments on UCI datasets show that
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the proposed OHHO method outperforms MVO, BOA, SCA, HHO, SSA, and GWO algorithms by intra-cluster
distance. The authors also provided optimal centroids for each dataset.

2.5. UCI datasets

The UCI machine learning repository [24] is a data resource that provides a wide range of datasets for
data clustering. This research uses the Iris, Wine, Glass, Thyroid, Haberman, Liver, Cancer, Vowel, and CMC
datasets. Table 1 lists their names, numbers of instances, attributes, and classes.

Table 1. The description of UCI datasets
Name Instances Attributes Classes

Iris 150 4 3
Wine 178 13 3
Glass 214 9 6
Thyroid 215 5 3
Haberman 306 3 2
Liver 345 6 2
Cancer 683 9 2
Vowel 871 3 6
CMC 1473 9 3

3. THE PROPOSED NON-CENTROID-BASED DISCRETE DIFFERENTIAL EVOLUTION AL-
GORITHM

We present a NCDDE algorithm to solve clustering problems. It operates on a population of discrete
vectors where the number of components equals the number of data (D). Components are integer labels of data
groups ranging from 1 to a total number of clusters (K). Data corresponding to components with this group
label can be used to calculate a group centroid or other representative center. The algorithm implements a new
discrete mutation that follows the concept of continuous mutation of classical DE but does not use a scaling
factor. Like DEASC [25], the NCDDE uses a crossover rate CR in the low range [0,0.1] and high range [0.9,1].
It also combines the sorting mutation to improve convergence speed. The details of NCDDE are as follows:

3.1. Discrete mutation

The discrete mutation selects three population vectors xr1, xr2 and xr3 where r1, r2, and r3 are
random distinct indices and also different from i. The algorithm considers xr1 as the base vector and creates
the mutant vector xm where xmj is the same as xr1,j when the components xr2,j and xr3,j are the same.
Otherwise, xmj is randomized from 1 to K when xr2,j and xr3,j are different. The discrete mutation is (6):

xmi,j =

{
xr1,j if xr2,j = xr3,j

Irand if xr2,j ̸= xr3,j

(6)

where j = 1, 2, 3, . . . , D and Irand is a random integer from 1 to K.

Figure 1 illustrates the discrete mutation for the following three xr1, xr2 and xr3 vectors of integer
labels where the number of cluster K = 3 and the dataset comprises 9 data points. The components ∗ of xm
are random integers from 1 to K. At the beginning period of generations, the mutant vectors are diversified.
When the search progresses, the population vectors will have better fitness values through the selection and
become more similar. The mutation process will create mutant vectors that are more intensified and converge
toward an optimal solution. They will gradually and indirectly keep the components that are good among them.
It happens when the corresponding components of xr1, xr2 and xr3 are the same. The crossover operation
plays a role in mixing the contents of a target vector and a mutant one to obtain a trial vector (to compare and
compete with the target).
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Figure 1. Discrete mutation to generate xm from vectors xr1, xr2, and xr3

3.2. Sorting mutation
The sorting mutation selects x∗

r1 with the lowest fitness values from the randomly selected vectors
xr1, xr2, and xr3. Let x∗

r2 and x∗
r3 be the remaining vectors. The algorithm considers x∗

r1 as the base vector
and creates the mutant vector xm from x∗

r1, x∗
r2, and x∗

r3 using the discrete mutation.

3.3. The combination of discrete and sorting mutations
NCDDE adaptively combines discrete and sorting mutations according to the corresponding proba-

bilities pm1 and pm2 calculated from their success in selection. The probabilities are initialized to 0.5 and
updated by the counters nm1 and nm2. If a randomly generated number is less than pm1, the algorithm selects
the discrete mutation to generate xm; otherwise, it selects the sorting mutation. The probabilities are updated
by these counters.

3.4. Adaptive control parameter CR
The algorithm employs the crossover rate CR values within the ranges of [0, 0.1] and [0.9,1] to gener-

ate a trial vector based on the corresponding probabilities pc1 and pc2, which are calculated from their success
in selection. The probabilities are initialized to 0.5 and updated by the counters nc1 and nc2. A trial vector xc
is generated by (7):

xcj =

{
xmj if randj < CR or j = I

xij otherwise
(7)

where randj is a uniform random number in a range of [0, 1], j = 1, 2, 3, ..., D, and I is a randomly fixed index
from 1 to D. The pseudo-code of NCDDE is presented in Algorithm 1.

4. EXPERIMENTAL DESIGN
We design three experiments. The first preliminary experiment finds a suitable mutation strategy for

NCDDE. The second experiment compares the NCDDE method with five compared methods using intra-cluster
distance. In the third experiment, we compare the performance of the NCDDE method with five compared
methods using clustering accuracy.

4.1. Finding a suitable mutation strategy for the NCDDE algorithm
This preliminary experiment compares the performance of NCDDE algorithms using three different

mutation strategies: discrete mutation (DM), sorting mutation (SM), and adaptive mutation (AM). DM is a
simple discrete mutation. SM positions the best vector by fitness function from three random vectors as the
base vector. AM adaptively uses discrete and sorting mutations based on their success in creating a better so-
lution in the selection. Each algorithm runs on the Iris, Wine, Glass, Thyroid, Haberman, and Cancer datasets.
We set the population size NP=50 and the maximum number of generations maxGen = 200000. The algo-
rithm terminates when it reaches maxGen, or fbest is the same for nimp = 1000 consecutive generations.

Table 2 shows the mean and the percentage of the standard deviation of the obtained intra-cluster dis-
tances and the number of function evaluations on 30 runs and highlights the best value in boldface.
The NCDDE algorithm with AM gives the lowest mean values for all datasets except for Thyroid, where
the DM gives a slightly lower mean than SM and AM. Thus, we choose NCDDE with the adaptive mutation
as our proposed algorithm. Figure 2 shows the convergence graphs of the NCDDE with discrete, sorting, and
adaptive mutations.
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Algorithm 1 NCDDE algorithm

1: Set the number of clusters K and dimension D = the number of data
2: Set the control parameters CR, pm1, nm1, nm2, pc1, nc1, nc2, nimp
3: Set the maximum number of generations maxGen
4: Initialize the population P of NP D-dimensional integer vectors xi where each xi,j is from 1 to K.
5: Find the best vector xbest and its best fitness value fbest
6: for g=1:maxGen do
7: for i=1:NP do
8: if rand(0, 1) < pm1 then
9: Create a mutant vector xm using discrete mutation by eq. (6)

10: else
11: Create a mutant vector xm using sorting mutation
12: end if
13: Apply the crossover operation eq. (7) to get a trial vector xc
14: Calculate f(xc) and nf = nf + 1
15: if f(xc) < f(xi) then
16: xi = xc and f(xi) = f(xc)
17: if xm is created by eq. (6) then
18: Increase nm1 = nm1 + 1
19: else
20: Increase nm2 = nm2 + 1;
21: end if
22: if nm1 + nm2 ≥ 100 then
23: Adjust nm1 = nm1 + 10 and nm2 = nm2 + 10
24: Update pm1 = 0.9pm1 + 0.1nm1/(nm1 + nm2)
25: Set nm1 = 0 and nm2 = 0
26: end if
27: if CR in range [0, 0.1] then
28: Increase nc1 = nc1 + 1
29: else
30: Increase nc2 = nc2 + 1

31: end if
32: if nc1 + nc2 ≥ 100 then
33: Adjust nc1 = nc1 + 10 and nc2 = nc2 + 10
34: Update pc1 = 0.9pc1 + 0.1nc1/(nc1 + nc2)
35: Set nc1 = 0 and nc2 = 0
36: end if
37: if f(xc) < fbest then
38: Update xbest and fbest

39: end if
40: end if
41: end for
42: if fbest remains unchanged for nimp generations then
43: Stop
44: end if
45: end for
46: Report xbest, fbest, and nf
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Table 2. Performance comparison of NCDDE with discrete, sorting, and adaptive mutations
Datasets Statistics DM SM AM

Iris

Mean fb 97.27 97.30 97.27
SD 0.08 0.12 0.09
Mean nf 250402.17 75532.77 132506.13
%SD 32.09 38.76 41.88

Wine

Mean fb 16578.44 16542.41 16539.73
SD 1.12 0.10 0.06
Mean nf 271041.53 68561.17 131980.70
%SD 30.33 40.61 42.59

Glass

Mean fb 248.38 248.91 247.65
SD 3.46 4.19 2.90
Mean nf 814838.27 749808.34 791164.30
%SD 38.63 35.85 33.65

Thyroid

Mean fb 1997.07 2004.50 2001.06
SD 0.78 0.29 0.43
Mean nf 336957.13 116094.21 173266.17
%SD 44.60 41.35 66.14

Haberman

Mean fb 2625.11 2625.16 2625.11
SD 0.00 0.01 0.00
Mean nf 34931.55 20382.72 23668.03
%SD 40.78 7.13 13.12

Cancer

Mean fb 2984.13 2985.28 2984.12
SD 0.01 0.15 0.01
Mean nf 62734.14 41432.64 43969.60
%SD 42.70 3.59 3.72
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Figure 2. Convergence graphs of NCDDE with DM, SM, and AM on six UCI datasets

Bulletin of Electr Eng & Inf, Vol. 14, No. 1, February 2025: 596–605



Bulletin of Electr Eng & Inf ISSN: 2302-9285 ❒ 603

4.2. Performance comparison of the NCDDE with other continuous centroid-based algorithms by intra-
cluster distance

The second experiment compares the intra-cluster distance achieved by NCDDE with ADEAS, HHO,
AMADE, ADENS, and DSDE algorithms on the Iris, Wine, Glass, Vowel, Cancer, CMC, Thyroid, and Liver
datasets. The NCDDE generates candidate cluster solutions without using centroid. It obtains centroids from
data corresponding to components with each group label and calculates the intra-cluster distances. We use
the centroid results from the compared algorithm’s original papers to calculate the intra-cluster distances. The
NCDDE performs 30 independent runs. Table 3 highlights the obtained lowest best intra-cluster distances for
each dataset in bold text. The unavailable results of some algorithms on some datasets are indicated by “ - ”.

NCDDE, ADEAS, AMADE, and DSDE give the same lowest intra-cluster distance for Iris. ADEAS,
AMADE, and DSDE achieve the lowest values for Vowel. ADEAS and DSDE give the lowest values for Liver.
ADEAS achieves the lowest value for Glass. NCDDE is the only algorithm that gives the best values for the
remaining datasets: Wine, Cancer, CMC, and Thyroid. Consequently, NCDDE outperforms the compared
algorithms overall.

Table 3. Intra-cluster distances obtained by NNCDE and the compared algorithms
Datasets ADEAS H-HHO AMADE ADENS DSDE NCDDE
Iris 97.22 97.72 97.22 97.33 97.22 97.22
Wine 16555.07 16544.17 16555.07 17871.92 16555.07 16530.54
Glass 215.47 310.94 215.50 - 215.49 236.94
Thyroid 1986.72 - - - 1986.72 1981.91
Liver 9982.95 - - 10332.15 9982.95 10037.78
Cancer 2984.90 3001.62 2984.90 3010.76 2984.90 2984.07
Vowel 149331.28 - 149331.28 - 149331.28 245965.46
CMC 5541.65 5546.51 5541.65 5561.39 5541.65 5541.64

4.3. Performance comparison of the NCDDE with other algorithms by clustering accuracy
Using the results from the previous experiment, we compare the clustering accuracy of NCDDE with

ADEAS, H-HHO, AMADE, ADENS, and DSDE. Each UCI dataset defines the original group labels for all
data points. Clustering accuracy is the percentage of the number of data points that are assigned by an algorithm
to their correct groups. Table 4 highlights the highest clustering accuracy obtained for each dataset in bold text.

Table 4. Clustering accuracies obtained by NNCDE and the compared algorithms
Datasets ADEAS HHO AMADE ADENS DSDE NCDDE
Iris 90.00 94.00 90.00 89.33 90.00 90.00
Wine 71.91 71.35 71.91 62.92 71.91 70.79
Glass 52.80 43.93 52.34 - 52.34 43.46
Thyroid 58.14 - - - 58.14 71.63
Liver 50.43 - - 55.36 50.43 50.43
Cancer 96.49 95.61 96.49 95.02 96.49 96.78
Vowel 48.91 - 48.91 - 48.91 42.94
CMC 39.44 39.31 39.44 39.10 39.44 39.51

ADEAS, AMADE, and DSDE give the highest clustering accuracy for Wine and Vowel datasets.
HHO achieves the highest clustering accuracy for Iris. ADEAS gives the highest clustering accuracy for Glass.
ADENS achieves the highest clustering accuracy for Liver, and NCDDE gives the highest accuracy for Cancer,
CMC, and Thyroid. We can observe that ADEAS and NCDDE can provide the best accuracy for three different
datasets, whereas HHO and ADENS provide the best accuracy for one dataset. The result indicates that different
algorithms can achieve the best accuracy for different datasets.

5. DISCUSSION
In subsection 4.1, we compare the performance of NCDDE using three different mutation strategies:

DM, SM, and AM that adaptively uses both discrete and sorting mutations. The discrete mutation requires
more function evaluations, while the sorting mutation provides the smallest number of function evaluations
but cannot provide the best intra-cluster distance. The adaptive mutation can achieve the best intra-cluster dis-
tance with the number of function evaluations between those used by the discrete and the sorting mutations.

Non-centroid-based discrete differential evolution for data clustering (Tanapon poonthong)
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Subsection 4.2 presents a performance comparison of the NCDDE algorithm with ADEAS, HHO, AMADE,
ADEANS, and DSDE algorithms by intra-cluster distance on eight datasets. The NCDDE algorithm is com-
petitive and can provide the lowest intra-cluster distance for four datasets. In subsection 4.3, we compare
the NCDDE algorithm’s performance with the other algorithms in clustering accuracy. The NCDDE has the
highest clustering accuracy for three datasets, and each of the compared algorithms has the highest clustering
accuracy on some datasets.

The NCDDE searches for cluster labels without using centroids and can provide non-spherical shape
clusters. Figure 3 shows the clustering results obtained by the non-centroid-based NCDDE algorithm and
the centroid-based ADEAS algorithm on the dataset of 36 data points. They divide the data into 4 clusters
represented by different colors and the centroid markers “ x ”. NCDDE gives the elliptic-liked shape clusters
and intra-cluster distance equal to 43.68, lower than the 43.76 of ADEAS.
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Figure 3. Clustering results of non-centroid-based and centroid-based algorithms

6. CONCLUSION
We have presented a NCDDE for data clustering. The algorithm directly searches for the group la-

bels for each data and uses no representative centers. It combines discrete and sorting mutations and adap-
tively chooses high and low ranges crossover rates. Comparison experiments of NCDDE with ADEAS, HHO,
AMADE, ADEANS, and DSDE show that NCDDE can provide lower intra-cluster distances on several UCI
datasets and achieves the best clustering accuracy for Cancer, CMC, and Thyroid. In addition, the proposed
algorithm is flexible and can give non-spherical clusters. For future work, we will apply NCDDE to real-world,
large-scale datasets and explore its effectiveness in computer vision applications such as image segmentation
and medical image analysis.
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