Bulletin of Electrical Engineering and Informatics
Vol. 14, No. 2, April 2025, pp. 1456~1467
ISSN: 2302-9285, DOI: 10.11591/eei.v14i2.8834 O 1456

Enhancing SDN security with a feature-based approach using
multiple k-means, Word2Vec, and neural network

Hicham Yzzogh, Hafssa Benaboud

Intelligent Processing Systems and Security (IPSS), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco

Article Info

ABSTRACT

Article history:

Received Jun 9, 2024
Revised Oct 15, 2024
Accepted Nov 19, 2024

Keywords:

Classification algorithms
Clustering algorithms
K-means

Neural network
Software-defined networking
Software-defined networking
security

Word2Vec

In the rapidly evolving landscape of network management, software-defined
networking (SDN) stands out as a transformative technology. It
revolutionizes network management by decoupling the control and data
planes, enhancing both flexibility and operational efficiency. However, this
separation introduces significant security challenges, such as data
interception, manipulation, and unauthorized access. To address these issues,
this paper investigates the application of advanced clustering and
classification algorithms for anomaly detection and traffic analysis in SDN
environments. We present a novel approach that integrates multiple k-means
clustering models with Word2Vec for feature extraction, followed by
classification using a neural network (NN). Our method is rigorously
benchmarked against a traditional NN model to comprehensively evaluate
performance. Experimental results indicate that our approach outperforms
the NN model, achieving an accuracy of 99.97% on the InSDN dataset and
98.65% on the CIC-DD0S2019 dataset, showcasing its effectiveness in
detecting anomalies without relying on feature selection. These findings
suggest that integrating clustering techniques with feature extraction

algorithms can significantly enhance the security of SDN infrastructures.

This is an open access article under the CC BY-SA license.

©00

Corresponding Author:

Hicham Yzzogh

Intelligent Processing Systems and Security (IPSS), Faculty of Sciences
Mohammed V University in Rabat

Avenue Ibn Battouta B.P. 1014 RP, Rabat, Morocco

Email: Hicham_yzzogh@umb5.ac.ma

1. INTRODUCTION

Software-defined networking (SDN) (RFC7426 [1] and RFC7276 [2]) has revolutionized network
management by decoupling the control plane from the data plane, offering enhanced flexibility and
scalability in network operations. However, this shift has introduced new security challenges that traditional
networking approaches are ill-equipped to address. The centralized control plane in SDNs becomes a critical
point of wvulnerability, susceptible to unauthorized access, control plane attacks, and data breaches.
Additionally, the abstraction of network intelligence from hardware introduces risks such as data interception
and manipulation.

To address these challenges, advanced algorithms for clustering and classification are emerging as
promising solutions. Clustering algorithms like k-means are useful for behavioral profiling, traffic
segmentation, and anomaly detection within SDN networks. They enable the identification of normal
behavior patterns and deviations, serving as an early warning system against potential threats. Classification
algorithms, such as decision trees (DT) and neural networks (NNs), are crucial for traffic analysis and
security policy enforcement. They enhance the ability to implement targeted security measures by
distinguishing between legitimate and malicious activities.

Journal homepage: http://beei.org

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 1457

Recent studies have significantly advanced SDN security through various clustering and
classification algorithms for anomaly detection and traffic analysis. For instance, Zheng et al. [3] improve
packet classification efficiency in SDNs with the range supported bit vector (RSBV) algorithm. Tan et al. [4]
increase DDoS detection accuracy by combining k-means with k-nearest neighbors (KNN). Xu et al. [5]
enhance detection efficiency using k-means++ and fast k-nearest neighbors (K-FKNN). In feature-based
approaches, Jafarian et al. [6] integrates the NetFlow protocol with feature selection and C-support vector
classification, achieving respectable accuracy, while Garg et al. [7] use an enhanced restricted Boltzmann
machine (RBM) and a gradient descent-based support vector machine (SVM) for detecting suspicious flows.
Deep learning methods are also explored. Tang et al. [8] employs a fully connected deep neural network
(DNN) in conjunction with gated recurrent unit-recurrent neural network (GRU-RNN) on the NSL-KDD
dataset [9] to identify abnormal activities in SDN networks. Meanwhile, Shaji et al. [10] introduce deep-
discovery IDS, which uses multi-layer perceptrons (MLP) and feedforward (FF) ANN for attack detection in
SDN, achieving 98.81% accuracy. Additionally, Staden and Brown [11] evaluate random forest (RF), KNN,
and DT for traffic classification in SDN environments within the context of the internet of things (10T), with
RF demonstrating notable performance.

Despite these advancements, a gap remains in effectively integrating feature-based approaches that
combine clustering techniques with feature extraction algorithms. For instance, Tan et al. [4] improves
accuracy using k-means with KNN, and Xu et al. [5] achieves better results with k-means++ and K-FKNN.
However, neither study explores the integration of k-means or k-means++ with feature extraction techniques.
Additionally, Jafarian et al. [6] achieves respectable accuracy through feature selection but does not employ
clustering or feature extraction methods.

Our work addresses this gap by proposing a novel method that integrates multiple k-means
clustering models with Word2Vec for feature extraction, and then employs a NN for classification. Unlike
traditional methods that cluster the entire dataset collectively [12], [13], our approach analyzes individual
features independently using k-means, providing a more detailed representation of the data. We evaluate our
proposed approach alongside a baseline NN model using the InSDN dataset [14], [15], demonstrating that
our method achieves high detection accuracy. Additionally, we assess its performance on the CIC-DD0S2019
dataset [16], highlighting its high accuracy in distinguishing between normal traffic and various types of
DDosS attacks.

This paper is structured as follows: section 2 presents the datasets used and describes the proposed
approach. Section 3 evaluates and discusses the experimental results. Finally, section 4 concludes the paper.

2. METHOD

In this section, we present a novel approach for traffic analysis that leverages k-means clustering,
Word2Vec, and NN models. This method aims to enhance the accuracy of anomaly detection and traffic
classification within SDN environments. Additionally, we will detail the datasets used in our experiments,
including the INSDN dataset, which focuses on SDN attacks, and the CIC-DD0S2019 dataset for multi-class
traffic classification.

2.1. Datasets

In our research, we use the InSDN dataset, which focuses on SDN attacks, to test our model. This
dataset is offering a comprehensive collection of attack scenarios specifically designed for SDN networks.
It’s crucial to use an SDN-specific dataset when evaluating SDN attack detection methods, as generic
datasets may not accurately reflect the unique architecture and attack vectors of SDN networks.

The INSDN dataset is available in. PCAP and .CSV formats and is divided into three groups:
Normal, OVS, and Metasploitable-2. The Normal group represents typical user traffic, while the OVS group
simulates various attacks, including brute force attacks (BFAs), BotNet attacks, denial-of-service (DoS),
DDoS, Probes, and Web Attacks. To ensure a comprehensive representation of both regular network traffic
and various types of attacks, we merge the Normal and OVS datasets in .CSV format.

Given that the BotNet and Web-Attack classes comprise 164 and 192 instances respectively in the
merged dataset, we chose to exclude these classes from our experimental data. Figure 1 illustrates the
distribution of instances for each class in our experimental dataset. Predominant occurrences are observed in
Normal, DDoS, DoS, and Probe classes, while BFA contains only 1,110 instances. We retain only the
relevant features and manually discard the irrelevant ones. Features such as "Flow ID’ and *Timestamp’ are
discarded as they do not add any valuable information for addressing the problem. Additionally, we omit ’Src
Port’, ’Dst IP’, and ’Dst Port’ to prevent potential overfitting of the model. Consequently, our
experimentation is conducted using the dataset identified as INSDN traffic analysis [17].

To further evaluate our proposed model, we utilize the CIC-DD0S2019 dataset. We create our
experimental dataset with the distribution of instances illustrated in Figure 2. Our analysis focuses on

Enhancing SDN security with a feature-based approach using multiple k-means ... (Hicham Yzzogh)

1458 O ISSN: 2302-9285

classifying traffic, encompassing five types of DDoS attacks as well as benign traffic. We manually remove
the following features: *Unnamed: 0°, ’Flow ID’, *Timestamp’, *Source IP’, *Source Port’, ’Destination IP’,
and ’Destination Port’. Therefore, we conduct our experiments using the dataset labeled CIC-DD0S2019
traffic analysis [18]. Both datasets used in our experiments are split into two subsets: 80% for training and
20% for testing. The testing set is utilized to assess the model’s performance on entirely new, unseen data,
providing a reliable estimate of its real-world effectiveness.

Number of Instances for Each Class Number of Instances for Each Class
70000 { 684 24 63472
60000
60000 +
34 4 50000
£ so000 9
©]
] + 40000
£ 40000 =
- =
° © 30000
i5 30000 5
£ £
E 20000 El 20000
=
10000 10000
0 Ny . 4]
& <* < Q@"z & = s £ & 2 &
S S ® R & &
N &
Class Label Class Label

Figure 1. Within our experimental INSDN dataset Figure 2. Within our experimental CIC-DD0S2019
dataset

2.2. Experimental setup

We conduct all our experiments using the Python programming language. These experiments are
executed on a machine equipped with an Intel® Core™ i7-6820HQ CPU running at 2.70 GHz and 32 GB of
RAM, operating on the Windows 10 operating system. Our analysis focuses on utilizing the InSDN
benchmark dataset for performing multi-class traffic classification, as well as the CIC-DD0S2019 dataset for
the same purpose.

2.3. Method for model construction and selection

This section outlines our approach for constructing our model and selecting the optimal one. Each
model incorporates multiple trained k-means models, as well as trained Word2Vec and NN models. Figure 3
illustrates our method.

‘ Split the dataset into training and testing sets |

|

‘ Initialize the desired number of clusters k, with Ky, |

v

Train multiple K-Means models, as well as Word2Vec and Neural k< kyu?

Network models using the training set Yes o
Compute the testing accuracy using both the trained K-Means models and Increment the
the trained Word2Vec and Neural Network models. value of k by 1

‘{ Learning process

‘ The highest accuracy? ‘
Yes

Save the ensemble of the trained K-Means models, alongside the
Word2Vec and Neural Network models, as the best model

Figure 3. Flow diagram of the proposed method

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 1456-1467

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 1459

For each k value within a specified range, we build a model and evaluate its accuracy using the

testing set. The model with the highest testing accuracy is selected as optimal. The steps for constructing a
model using our approach are as follows:

Step 1: k-means models are trained using the training dataset. K-means [19], [20] is a fundamental
clustering algorithm widely used in unsupervised learning to organize data into cohesive groups. In our
method, k-means models are applied at the column level for all features except the target variable *Label’.
The number of k-means models matches the number of features our model utilizes. The Algorithm 1
partitions the data within each feature into up to k cohesive clusters. This approach treats each feature
independently, allowing the algorithm to identify patterns and groups within each feature separately,
without being influenced by relationships between different features. To expedite the training time of k-
means models, parallel processing is employed using the parallel function from the joblib library. After
this step, we assign a cluster to each data point within every column using its corresponding k-means
model. Subsequently, the data in each column is converted into discrete categories labeled as
’Attribute_ClusterX’, where "X’ represents the assigned cluster ID, and ’Attribute’ denotes the feature’s
name with spaces replaced by underscores. This transformation aims to convert numerical data into
categorical data.

Algorithm 1. Proposed traffic classification approach

Input: Training set and Testing set

Output: best K Means models, best Word2Vec model, and best NN model
Initialize best accuracy = 0;

Initialize best KMeans models;

Initialize best Word2Vec model;

Initialize best NN _model;

Define X as the matrix of feature values and y as the vector of target values;
for each k in a predefined range do

Step 1: Train K-Means models KMeans modelsx using Parallel Processing and Assign

Discrete

Categories
for each column in Xtrain do
Train a K-Means model KMeans modelx, column ON Xerain[column];
Append KMeans modelg,coiumn to KMeans modelsy;
end for
Assign clusters to Xtrain using KMeans modelsy;
Label each column’s data with ’"Attribute ClusterX’, where ’'X’ denotes the cluster ID

flrom

KMeans_modelsx and ’'Attribute’ represents the feature name with spaces replaced by

ynderscores;

Step 2: Create Text Feature
Add a new column named ’'text’ to the dataset containing the categorical data. Each

vialue in this

column is a list of string representations of the discrete groups;
Step 3: Train Word2Vec Model
Train a Word2Vec model Word2Vec_modelx on the text feature with vector size=300 and

parallel

processing;

Step 4: Generate Word Embeddings

for each text entry do
Extract word vectors for valid words in the vocabulary of Word2Vec modely;
Calculate the mean of these word vectors to obtain a single vector

representation;

Append a zero vector if no valid word vectors are found;
end for
Step 5: Train Neural Network Model
Define the Neural Network architecture: two hidden layers (64 units each, RelLU
activation) and an output layer (softmax activation);
Compile the model with Adam optimizer and sparse categorical cross-entropy loss;
Train the Neural Network Model NN modelx using word embeddings from Word2Vec modelx
as input features. Use early stopping to prevent overfitting during training;
Step 6: Evaluate on Testing Set
Compute testing accuracy accuracyk;
if accuracyx > best accuracy then
Update best accuracy to accuracyk;
Update best KMeans_models to KMeans _modelsk;
Update best Word2Vec model to Word2Vec modelx;
Update best NN model to NN_modelk;
end if

end for
return best KMeans models, best Word2Vec model, and best NN model;

Enhancing SDN security with a feature-based approach using multiple k-means ... (Hicham Yzzogh)

1460 O ISSN: 2302-9285

— Step 2: we create a text feature to serve as input for the Word2Vec model. This involves adding a new
column named ’text’ to the dataset obtained in the previous step, which contains the categorical data,
except the last column that contains the labels. In this new ’text’ column, each entry is generated by
converting the categorical data (excluding the last column containing labels) from each row into strings
and combining them into a list. This list represents each row of categorical data as a list of strings, which
can then be processed by the Word2Vec model.

— Step 3: train a Word2Vec model using the text feature. The Word2Vec technique is widely used in natural
language processing for textual analysis [21], [22]. This model learns continuous vector representations of
words within the text data, capturing semantic relationships among words in a specified context. The
vector_size parameter determines the dimensionality of the dense vectors used to represent each word.
We chose a dimension of 300 based on previous research, which has indicated its effectiveness [23], [24].
During training, the model analyzes a window of five words before and after each target word to
understand its context. Parallel processing with four threads is employed to expedite the training process.

— Step 4: we generate word embeddings from text data using the trained Word2Vec model. We iterate
through each text in the input data, extracting word vectors for valid words found in the Word2Vec
model’s vocabulary. For each text, we calculate the mean of these word vectors to obtain a single vector
representation of the text. If no valid word vectors are found for a text, we append a zero vector.

— Step 5: the resulting word embeddings are stored in a numpy array and utilized as input features for
training the NN model. Our NN architecture consists of three dense layers: two hidden layers, each
containing 64 units with ReLU activation functions, and an output layer with units equal to the number of
unique classes in the target variable. The output layer uses softmax activation to generate class
probabilities. We utilize the Adam optimizer and sparse categorical cross-entropy loss function for model
compilation, with accuracy as the evaluation metric. The stochastic nature of the Adam optimization
algorithm can result in variability in the accuracy of the NN model across iterations. Adam updates model
parameters based on gradients computed from training data batches, introducing randomness into the
optimization process and resulting in performance fluctuations. During training, early stopping is
incorporated to prevent overfitting, with validation data used to monitor performance. This approach
ensures the robustness of our NN architecture by effectively mitigating overfitting risks.

3. RESULTS AND DISCUSSION

This section outlines the evaluation process used to assess the effectiveness of the proposed
approach. We explain the method and procedures employed during experimentation. Furthermore, we present
the results from these experiments, offering valuable insights into the method’s performance and capabilities.

3.1. Evaluation process and criteria

The evaluation process of our approach consists of three distinct experiments, each repeated 20 to
25 times. In each iteration, we modify the desired number of clusters (represented by k) and train our model
using the specified k value. In contrast, the NN model remains unchanged across all iterations.

For all experiments, both our model and the NN model are trained using the same training dataset.
The NN model shares the same architecture as ours for classification. Each model’s performance is evaluated
on the same testing set, using standard measures including accuracy, precision, recall, and F1-score. The first
experiment, conducted on the InSDN dataset, is performed without feature selection to assess whether
clustering using k-means and feature extraction using Word2Vec enhance the performance of the NN model.
The second experiment, also conducted on the INSDN dataset, is similar to the first one, but we used only the
relevant features (detailed in Table 1). We utilized SelectKBest, a feature selection module from the scikit-
learn library, to determine the optimal number of features. The third experiment, conducted using the CIC-
DD0S2019 dataset, aims to evaluate the adaptability of our method to environments beyond SDN. It is
carried out without feature selection.

3.2. Experimental results

This section presents the results obtained from the experiments conducted with the proposed
method. Firstly, by varying the value of k, we compare the accuracy achieved by the NN model and our
proposed model. We then compare the best proposed model with the best NN model, both evaluated at their
highest accuracy, using precision, recall, and F1-score. Finally, we analyze the training time for each model
trained with our approach on the InSDN dataset. Figures 4 and 5 depict the performance on our InSDN
dataset without feature selection. Figure 4 illustrates accuracy across iterations with varying k values, while
Figure 5 compares classification reports. Figures 6 and 7 show the impact of feature selection on our INSDN
dataset, with Figure 6 displaying accuracy and Figure 7 providing comparison details. Finally,

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 1456-1467

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 1461

Figures 8 and 9 present the performance on our CIC-DD0S2019 dataset without feature selection. Figure 8
showcases accuracy trends, and Figure 9 compares classification reports.

Table 1. Extracted subset features from our experimental InSDN dataset

No. Feature No. Feature No. Feature

1 Protocol 15 Fwd IAT Max 29 SYN Flag Cnt

2 Flow Duration 16 Bwd IAT Tot 30 PSH Flag Cnt

3 Fwd Pkt Len Max 17 Bwd IAT Mean 31 ACK Flag Cnt

4 Fwd Pkt Len Min 18 Bwd IAT Std 32 URG Flag Cnt
5 Bwd Pkt Len Max 19 Bwd IAT Max 33 Down/Up Ratio
6
7
8
9

Bwd Pkt Len Min Bwd PSH Flags 34 Pkt Size Avg
Bwd Pkt Len Mean Bwd URG Flags 35 Fwd Seg Size Avg
Bwd Pkt Len Std Fwd Pkts/s 36 Bwd Seg Size Avg
Flow Pkts/s Bwd Pkts/s 37 Init Bwd Win Byts
10 Flow IAT Std Pkt Len Min 38 Idle Mean
11 Flow IAT Max Pkt Len Max 39 Idle Std
12 Fwd IAT Tot Pkt Len Mean 40 Idle Max
13 Fwd IAT Mean Pkt Len Std 41 Idle Min
14 Fwd IAT Std FIN Flag Cnt
n o n 8 8 = 2 &
e 0o n 88 RU8FTTTTITIT G
100.00 R VR T ¥
99.75
__ 99.50
X
>, 99.25
Q
o
2 99.00
[}
<
98.75
98.50 —&— Our Proposed Model
Neural Network Model
98.25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Run times

Figure 4. Accuracy in our InNSDN dataset (no feature selection)

Scores

7
7
7
7
7
7

Precision (Proposed)
Recall (Proposed)
F1l-score (Proposed)
“# Precision (Neural Net)
Recall (Neural Net)
Fl-score (Neural Net)

1N H

R Y
AAIIIIIIIIUIIIIUUUINUINNNNNNNNe2
R R

1
5
/
/
/
/
/
/
/
/
/
?
4

DDoS DoS Norma Probe

Figure 5. Classification reports comparison in our INSDN dataset (no feature selection)

Enhancing SDN security with a feature-based approach using multiple k-means ... (Hicham Yzzogh)

1462 O ISSN: 2302-9285

3 n Q 8
2 o8 § g 228y @
99.0 g4 7T 4 U
a8 B g
98.5 ﬁ RN
oo
98.0 .
—_)
K975
z
m© 97.0
A
3
Q 96.5
<
96.0
95.5 4 —m®— Our Proposed Model
95.0 Neural Network Model

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Run times

Figure 6. Accuracy in our INSDN dataset (with feature selection)

Scores

Precision (Proposed)
Recall (Proposed)
Fl-score (Proposed)
Precision (Neural Net)
Recall (Neural Net)
Fl-score (Neural Net)

AN

AN

BFA DDoS DoS Norma

Probe

Figure 7. Classification reports comparison in our INSDN dataset (with feature selection)

[=}
o o o o ©
=) {2 7 a a0]
g BRF _ofellcs
Il i = |~ ¥ 8RR & ~ AL
98.6 ~ x
98.4
< 98.2
&
5 98.0
©
A
0978
[v]
<
97.6
97.4 —#— Our Proposed Model
Neural Network Model
97.2

1 2 3 45 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25
Run times

Figure 8. Accuracy in our CIC-DD0S2019 dataset (no feature selection)

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 1456-1467

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 1463

.0
0.99
0.98
.99

AULILLILIUII N 59

08

06

Scores

04

Precision (Proposed)
Recall (Proposed)
F1-score (Proposed)
Precision (Neural Net)
Recall (Neural Net)
Fl-score (Neural Net)

02

AUUIUIUUIUITUIUIIUIUUNUONUNOINNIN0Y -;'ew
AOUIUIIIMIIISIIISIUENIOEUNNUNNN

1IN

00 -

=z

MSSQ

=

Syn ubp UDPLag

Figure 9. Classification reports comparison in our CIC-DD0S2019 dataset (no feature selection)

3.2.1. Evaluation on our experimental INSDN dataset without feature selection

As depicted in Figure 4, once surpassing the approximate threshold of k=40, two key observations
become evident: firstly, our proposed model demonstrates superior accuracy compared to the NN model.
Furthermore, its accuracy continues to improve, notably, it reaches its peak around k=115, achieving
exceptional accuracy. Additionally, starting from around k=65 onwards, the accuracy appears to stabilize,
indicating consistent performance of our proposed model even with varying values of k. For this reason,
we’ll next focus our model comparison from run time 8, corresponding to k=65.

According to Table 2, our model achieves a higher maximum accuracy of 99.97% compared to the
NN model’s maximum accuracy of 99.77%. Additionally, our model exhibits a higher mean accuracy of
99.95% compared to the NN model’s mean accuracy of 99.70%. Moreover, our model demonstrates a
smaller variance of 0.0003, indicating more consistent performance, while the NN model has a variance of
0.0067, suggesting greater variability in accuracy. This pronounced superiority underscores the effectiveness
and robustness of our proposed approach, which offers superior accuracy and stability across a wide range of
desired number of clusters compared to the NN model.

Table 2. Accuracy of our model and NN model over iterations (%) for our INSDN without feature selection
Iteration number Our model NN model Iteration number Our model NN model

1 98.3074 99.6421 11 99.9322 99.7751
2 99.1537 99.7122 12 99.9637 99.7412
3 99.8404 99.6880 13 99.9588 99.6711
4 99.8645 99.7485 14 99.9637 99.7461
5 99.8597 99.7243 15 99.9588 99.7146
6 99.8694 98.5250 16 99.9540 99.7654
7 99.9226 99.6977 17 99.9443 99.6373
8 99.9443 99.7267 18 99.9685 99.7074
9 99.9226 99.7582 19 99.9685 99.4632
10 99.9347 99.7098 20 99.9153 99.7461

Analysis of the classification report for our model with k=115, as depicted in Figure 5, reveals
superior performance in precision, recall, and F1-score across all classes. Notably, our model achieves a
precision of 1 for classifying DoS attacks, ensuring accurate identification. Similarly, for the Normal traffic
class, our model demonstrates precision, recall, and F1-score values of 1, underscoring its proficiency in
detecting normal network behavior. On the other hand, the NN model demonstrates comparable performance,
with a marginal difference in precision for the DoS class and lower precision and recall values for the BFA
class, decreasing to 0.94 and 0.84 respectively. This suggests challenges in accurately identifying instances of
BFA attacks. These comparisons underscore the robustness and effectiveness of our proposed model in
accurately classifying network traffic, encompassing various attack types as well as normal traffic.

Enhancing SDN security with a feature-based approach using multiple k-means ... (Hicham Yzzogh)

1464 O ISSN: 2302-9285

3.2.2. Evaluation on our experimental INSDN dataset with feature selection

Figure 6 illustrates the superior accuracy of our model compared to the NN model, evident from
approximately k=20 onwards. Beyond k=45, the accuracy exhibits marginal deviations without significant
improvement. Therefore, we focus our analysis starting from run time 9, corresponding to k=45.

From Table 3, our model achieves a maximum accuracy of 98,92%, with a mean accuracy of
approximately 98,82% and a variance of approximately 0,0027. In the other hand, the NN model reaches a
maximum accuracy of 98,05%, with a mean accuracy of approximately 97,92% and a variance of
approximately 0,0237. These results highlight that our model not only achieves a higher maximum accuracy
but also demonstrates a more consistent and stable performance compared to the NN model, as evidenced by
its notably lower variance.

Table 3. Accuracy of our model and NN model over iterations (%) for our INSDN with feature selection
Iteration number Our model NN model Iteration number Our model NN model

1 95.0795 97.9979 11 98.8128 98.0221
2 97.5699 97.9399 12 98.9216 98.0028
3 97.8069 97.9955 13 98.7668 97.9858
4 98.0898 97.9737 14 98.7982 97.4974
5 98.2349 97.7392 15 98.8611 97.8867
6 98.2905 97.8383 16 98.8248 97.9665
7 98.2857 97.1323 17 98.8128 98.0148
8 98.5782 98.0294 18 98.8998 97.9858
9 98.7910 98.0463 19 98.7958 97.9544
10 98.7426 97.7585 20 98.8539 97.9036

As depicted in Figure 7, our model with k=60 demonstrates superior precision across all classes
compared to the NN model. With precision scores ranging from 0.95 to 1.00, our model showcases its ability
to accurately classify instances, even for the BFA class, which contains a small number of instances.
Additionally, our model exhibits consistently higher recall rates, ranging from 0.96 to 1.00 across different
classes. This difference is particularly evident in the BFA class, where it achieves a recall of 1, compared to
the NN model’s 0.5. Furthermore, the balanced performance across precision and recall is reflected in the F1-
scores, consistently favoring our model over the NN model, with F1-scores ranging from 0.97 to 1.00 across
all classes. These findings underscore the robustness of our proposed model in accurately classifying network
traffic types, crucial for effective cybersecurity measures in real-world scenarios.

3.2.3. Evaluation on our experimental CIC-DD0S2019 dataset

The results depicted in Figure 8 highlight the promising performance of our proposed model on the
CIC-DD0S2019 dataset. Across the range of experiments conducted with varying desired numbers of
clusters, our model began to outperform the NN model in accuracy from around k=90 onwards. The accuracy
demonstrated greater stability and consistently remained above 98.4% from approximately k=190,
corresponding to run time 14. Consequently, we’ll conduct our comparison only from iteration number 14.

Based on Table 4, our model exhibits a variance of 0.0056, a mean accuracy of 98.54%, and a
maximum accuracy of 98.65%. In contrast, the NN model shows a higher variance of 0.0556, a mean
accuracy of 97.72%, and a maximum accuracy of 98.01%. These results confirm our model’s superior
accuracy compared to the NN model and underscore our model’s enhanced stability.

Table 4. Accuracy of our model and NN model over iterations (%) for our CIC-DD0S2019 without feature

selection
Iteration number Our model NN model Iteration number Our model NN model

1 97.5003 97.8066 14 98.5429 97.7629
2 97.6367 97.3201 15 98.5892 97.9044
3 97.5672 98.0048 16 98.5841 98.0126
4 98.2726 97.4874 17 98.4219 97.7371
5 98.1928 97.2531 18 98.4296 97.9353
6 98.2880 97.7654 19 98.4914 97.9019
7 98.2443 97.5904 20 98.5944 97.8504
8 98.2751 97.9431 21 98.4888 97.6933
9 98.5300 97.8633 22 98.6098 97.3716
10 98.2391 97.9122 23 98.6536 97.2377
11 98.5043 97.9250 24 98.4682 97.7551
12 98.4656 97.2480 25 98.5660 97.5260
13 98.3550 97.6830

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 1456-1467

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 1465

Figure 9 illustrates a comparison between the classification reports of our model with k=280 and the
NN model, revealing significant differences in their performance metrics. Notably, our model demonstrates
superior precision, recall, and F1-score across multiple classes, indicating its effectiveness in accurately
classifying network traffic. Classes such as BENIGN, LDAP, MSSQL, Syn, and UDP consistently exhibit
higher performance metrics in our model compared to the NN model. Even within the UDPLag class, where
instances are fewer in number, our model consistently exhibits superior precision, recall, and F1-score
compared to the NN model. Overall, our model demonstrates more robust performance across all classes,
confirming its effectiveness in network traffic classification.

3.2.4. Computational overhead on our experimental INSDN dataset

The multi-step process of our proposed approach might introduce significant computational
overhead. This is because, for each k value, we construct a model that combines multiple k-means models,
Word2Vec model, and a NN classifier to identify the one with the highest accuracy. As depicted in
Figures 10 and 11, the training times show considerable variability and generally increase with the desired
number of clusters. Without feature selection, the proposed model exhibits significantly higher training times,
ranging from approximately 328.79 seconds to 841.08 seconds. In contrast, when feature selection is applied,
the proposed model experiences reduced training times, decreasing to a range of 158.40 seconds to
449,53 seconds. Overall, feature selection has a substantial positive impact, effectively reducing training
times and enhancing the efficiency of the proposed method.

900

=)
=3
S

Training Time (Seconds)

40 60 80 100 120
Desired Number of Clusters

Figure 10. Training time comparison without feature selection

450

Training Time (Seconds)
w IS
(=3 (=3
o o

o
o
S

150

20 40 60 80 100
Desired Number of Clusters

Figure 11. Training time comparison with feature selection

3.3. Analysis and discussion

The experimental results show that our approach excels in both accuracy and stability compared to
traditional NN models across various datasets. On the InSDN dataset, our method achieves a superior
accuracy of 99.97% without feature selection when the desired number of clusters exceeds approximately 40,
outperforming robust approaches such as the deep learning method in paper [25], the GRU model in paper
[26], and the stacked auto-encoder multi-layer perceptron (SAE-MLP) classifier used in paper [27], which
achieved accuracy rates of 96%, 99.65%, and 99.75%, respectively. It also maintains higher accuracy with

Enhancing SDN security with a feature-based approach using multiple k-means ... (Hicham Yzzogh)

1466 O ISSN: 2302-9285

feature selection, especially after k=45. Similarly, on the CIC-DD0S2019 dataset, our approach demonstrates
strong accuracy, with a stable performance trend from approximately k=190 onwards, averaging around
98.54%. This stability, along with high precision, recall, and F1-scores across various traffic types, highlights
the method’s effectiveness in handling complex network conditions, even with limited sample sizes.

The multi-step process of training multiple k-means models, along with training Word2Vec and NN
models, introduces significant computational overhead that increases with the desired number of clusters.
However, feature selection reduces some of this overhead and enhances efficiency. Future improvements
should focus on addressing this computational overhead by utilizing advanced parallel processing, cloud-
based computing resources, and optimizing system architecture. These enhancements will improve the
model’s scalability and efficiency, making it more suitable for real-world applications.

The techniques developed in this study have potential benefits for other fields requiring high
classification accuracy, particularly where dealing with imbalanced datasets is challenging. Such techniques
could be valuable in areas like medical diagnostics or fraud detection, where precise classification is crucial
despite uneven data distributions.

4. CONCLUSION

This study underscores the critical importance of feature-based approaches in enhancing SDN
security through advanced clustering algorithms and feature extraction techniques. Starting from a specific
desired number of clusters, our model, which integrates multiple k-means models for clustering, Word2Vec
for feature extraction, and NN for traffic classification, consistently achieves superior accuracy and stability
across diverse traffic classes, including those with limited sample sizes. These findings highlight the potential
of our approach to effectively capture and categorize intricate patterns within SDN environments, surpassing
the performance of traditional NN model. However, the computational demands associated with employing
multiple k-means models and Word2Vec emphasize the need for efficient parallelization and robust
infrastructure to ensure scalability and practical deployment in real-world scenarios. Looking ahead, our
future research will focus on optimizing our approach to enhance the model’s effectiveness and applicability.
We plan to evaluate the model’s performance in real-world networks, providing insight into its operational
capabilities. Additionally, we will explore alternative feature extraction methods beyond Word2Vec,
investigate different clustering algorithms to optimize performance further, and experiment with additional
machine learning techniques for classification. By refining these aspects, we aim to make our approach more
versatile and capable of addressing the evolving security needs of SDN environments.

ACKNOWLEDGEMENTS
This research received no specific grant from any funding agency in the public, commercial, or not-
for-profit sectors.

REFERENCES

[1] E. Haleplidis, E. K. Pentikousis, S. Denazis, J. H. Salim, D. Meyer, and O. Koufopavlou, “Software-Defined Networking (SDN):
Layers and Architecture Terminology,” Internet Research Task Force (IRTF), pp. 1-35, Jan. 2015.

[2] T. Mizrahi, N. Sprecher, E. Bellagamba, and Y. Weingarten, “An Overview of Operations, Administration, and Maintenance
(OAM) Tools,” RFC 7276, 2014, doi: 10.17487/rfc7276.

[3] L. Zheng, J. Jiang, W. Pan, and H. Liu, “High-performance and range-supported packet classification algorithm for network
security systems in SDN,” in 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin,
Ireland, 2020, pp. 1-6, doi: 10.1109/ICCWorkshops49005.2020.9145461.

[4] L. Tan, Y. Pan, J. Wu, J. Zhou, H. Jiang, and Y. Deng, “A New Framework for DDoS Attack Detection and Defense in SDN
Environment,” IEEE Access, vol. 8, pp. 161908-161919, 2020, doi: 10.1109/ACCESS.2020.3021435.

[5] Y. Xu, H. Sun, F. Xiang, and Z. Sun, “Efficient DDoS Detection Based on K-FKNN in Software Defined Networks,” |IEEE
Access, vol. 7, pp. 160536-160545, 2019, doi: 10.1109/ACCESS.2019.2950945.

[6] T.Jafarian, M. Masdari, A. Ghaffari, and K. Majidzadeh, “SADM-SDNC: security anomaly detection and mitigation in software-
defined networking using C-support vector classification,” Computing, vol. 103, no. 4, pp. 641-673, Apr. 2021, doi:
10.1007/s00607-020-00866-x.

[7] S. Garg, K. Kaur, N. Kumar, and J. J. P. C. Rodrigues, “Hybrid deep-learning-based anomaly detection scheme for suspicious
flow detection in SDN: A social multimedia perspective,” IEEE Transactions on Multimedia, vol. 21, no. 3, pp. 566-578, Mar.
2019, doi: 10.1109/TMM.2019.2893549.

[8] T.A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, M. Ghogho, and F. El Moussa, “DeepIDS: Deep learning approach for
intrusion detection in software defined networking,” Electronics, vol. 9, no. 9, pp. 1-18, Sep. 2020, doi:
10.3390/electronics9091533.

[91 M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD CUP 99 data set,” in 2009 IEEE
Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 2009, pp. 1-6, doi:
10.1109/CISDA.2009.5356528.

[10] N. S. Shaji, T. Jain, R. Muthalagu, and P. M. Pawar, “Deep-discovery: Anomaly discovery in software-defined networks using

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 1456-1467

Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 1467

artificial neural networks,” Computers and Security, vol. 132, p. 103320, Sep. 2023, doi: 10.1016/j.cose.2023.103320.

[11] J. V. Staden and D. Brown, “An Evaluation of Machine Learning Methods for Classifying Bot Traffic in Software Defined
Networks,” in Proceedings of Third International Conference on Sustainable Expert Systems: ICSES 2022, Singapore: Springer
Nature Singapore, 2023, pp. 979-991, doi: 10.1007/978-981-19-7874-6 72.

[12] M. N. Jasim and M. T. Gaata, “K-Means clustering-based semi-supervised for DDoS attacks classification,” Bulletin of Electrical
Engineering and Informatics, vol. 11, no. 6, pp. 3570-3576, Dec. 2022, doi: 10.11591/eei.v11i6.4353.

[13] 1. Cui, J. Zhang, J. He, H. Zhong, and Y. Lu, “DDoS detection and defense mechanism for SDN controllers with K-Means,” in
2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC), Leicester, UK, 2020, pp. 394-401, doi:
10.1109/UCC48980.2020.00062.

[14] M. S. Elsayed, N. A. Le-Khac, and A. D. Jurcut, “InSDN: A novel SDN intrusion dataset,” IEEE Access, vol. 8, pp. 165263—
165284, 2020, doi: 10.1109/ACCESS.2020.3022633.

[15] “M. S. Elsayed, N.-A. Le-Khac, A. Jurcut, 2020, ‘InSDN: SDN Intrusion Dataset,” UCD School of Computer Science,
ASEADOS Lab. Available: http://aseados.ucd.ie/datasets/SDN/.

[16] 1. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “DDoS evaluation dataset (CIC-DD0S2019),” 2019. [Online].
Available: https://www.unb.ca/cic/datasets/ddos-2019.html.

[17] H. Yzzogh, “InSDN_Traffic_Analysis.rar,” GitHub, Available: https://github.com/Yzzogh/Traffic-Analysis. (Accessed: Feb. 03,
2024).

[18] H. Yzzogh, “CIC-DD0S2019_Traffic_Analysis.rar,” Github, Auvailable: https://github.com/Yzzogh/Traffic-
Analysis/blob/main/CIC-DD0S2019_Traffic_Analysis.rar, (Accessed: Feb. 04, 2024).

[19] M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A comprehensive survey and performance evaluation,”
Electronics, vol. 9, no. 8, pp. 1-12, Aug. 2020, doi: 10.3390/electronics9081295.

[20] T. M. Ghazal et al., “Performances of k-means clustering algorithm with different distance metrics,” Intelligent Automation and
Soft Computing, vol. 30, no. 2, pp. 735-742, 2021, doi: 10.32604/iasc.2021.019067.

[21] K. W. Church, “Word2Vec,” Natural Language Engineering, vol. 23, no. 1, pp. 155-162, Jan. 2017, doi:
10.1017/S1351324916000334.

[22] D. E. Cahyani and I. Patasik, “Performance comparison of tf-idf and word2vec models for emotion text classification,” Bulletin of
Electrical Engineering and Informatics, vol. 10, no. 5, pp. 27802788, Oct. 2021, doi: 10.11591/eei.v10i5.3157.

[23] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv, 2013, doi:
10.48550/arXiv.1301.3781.

[24] G. Rao, W. Huang, Z. Feng, and Q. Cong, “LSTM with sentence representations for document-level sentiment classification,”
Neurocomputing, vol. 308, pp. 49-57, Sep. 2018, doi: 10.1016/j.neucom.2018.04.045.

[25] A. Malik, R. De Frein, M. Al-Zeyadi, and J. Andreu-Perez, “Intelligent SDN Traffic Classification Using Deep Learning: Deep-
SDN,” in 2020 2nd International Conference on Computer Communication and the Internet (ICCCI), Nagoya, Japan, 2020, pp.
184-189, doi: 10.1109/ICCC149374.2020.9145971.

[26] D. Nufiez-Agurto, W. Fuertes, L. Marrone, E. Benavides-Astudillo, C. Coronel-Guerrero, and F. Perez, “A Novel Traffic
Classification Approach by Employing Deep Learning on Software-Defined Networking,” Future Internet, vol. 16, no. 5, pp. 1-
23, Apr. 2024, doi: 10.3390/fi16050153.

[27] N. Ahuja, G. Singal, and D. Mukhopadhyay, “DLSDN: Deep learning for DDOS attack detection in software defined
networking,” in 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida,
India, 2021, pp. 683-688, doi: 10.1109/Confluence51648.2021.9376879.

BIOGRAPHIES OF AUTHORS

Hicham Yzzogh FJ B9 © received the engineering degree in telecommunications from
INPT, Morocco, in 2005. With over 18 years of experience at Nokia, he has worked across
diverse core network environments and possesses strong skills in coding and machine
learning algorithms. He is certified as an Azure Solutions Architect Expert and is currently
pursuing a Ph.D. at Mohammed V University in Rabat, Morocco. His research interests
include network security, SDN, natural language processing, and image processing. He can
be contacted at email: hicham_yzzogh@umb5.ac.ma.

Hafssa Benaboud ke 12 received her Ph.D. degree in Computer Sciences from
. Burgundy University Dijon-France in 2004. In 2005, she joined as an Assistant Professor at
Applied Sciences National School (ENSA) of Tangier, Morocco, and has been working as a
Full Professor since 2011 in the Department of Computer Sciences at Mohammed V
fl University in Rabat, Morocco. She has authored more than 30 articles published in
international journals and international conference proceedings. Her research interests
include network protocols, network security, internet of things, traffic analysis and quality of
services. She can be contacted at email: hafssa.benaboud@fsr.um5.ac.ma.

Enhancing SDN security with a feature-based approach using multiple k-means ... (Hicham Yzzogh)

https://orcid.org/0009-0009-8532-7371
https://scholar.google.com/citations?hl=fr&user=r51_T6QAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58816402600
https://www.webofscience.com/wos/author/record/61608654
https://orcid.org/0000-0002-5027-8217
https://scholar.google.com/citations?hl=fr&user=v3qJ33sAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=6505969183
https://www.webofscience.com/wos/author/record/V-6866-2019

