
Bulletin of Electrical Engineering and Informatics 

Vol. 14, No. 2, April 2025, pp. 1456~1467 

ISSN: 2302-9285, DOI: 10.11591/eei.v14i2.8834      1456  

 

Journal homepage: http://beei.org 

Enhancing SDN security with a feature-based approach using 

multiple k-means, Word2Vec, and neural network 
  

 

Hicham Yzzogh, Hafssa Benaboud 

Intelligent Processing Systems and Security (IPSS), Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jun 9, 2024 

Revised Oct 15, 2024 

Accepted Nov 19, 2024 

 

 In the rapidly evolving landscape of network management, software-defined 

networking (SDN) stands out as a transformative technology. It 

revolutionizes network management by decoupling the control and data 

planes, enhancing both flexibility and operational efficiency. However, this 

separation introduces significant security challenges, such as data 

interception, manipulation, and unauthorized access. To address these issues, 

this paper investigates the application of advanced clustering and 

classification algorithms for anomaly detection and traffic analysis in SDN 

environments. We present a novel approach that integrates multiple k-means 

clustering models with Word2Vec for feature extraction, followed by 

classification using a neural network (NN). Our method is rigorously 

benchmarked against a traditional NN model to comprehensively evaluate 

performance. Experimental results indicate that our approach outperforms 

the NN model, achieving an accuracy of 99.97% on the InSDN dataset and 

98.65% on the CIC-DDoS2019 dataset, showcasing its effectiveness in 

detecting anomalies without relying on feature selection. These findings 

suggest that integrating clustering techniques with feature extraction 

algorithms can significantly enhance the security of SDN infrastructures. 
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1. INTRODUCTION 

Software-defined networking (SDN) (RFC7426 [1] and RFC7276 [2]) has revolutionized network 

management by decoupling the control plane from the data plane, offering enhanced flexibility and 

scalability in network operations. However, this shift has introduced new security challenges that traditional 

networking approaches are ill-equipped to address. The centralized control plane in SDNs becomes a critical 

point of vulnerability, susceptible to unauthorized access, control plane attacks, and data breaches. 

Additionally, the abstraction of network intelligence from hardware introduces risks such as data interception 

and manipulation. 

To address these challenges, advanced algorithms for clustering and classification are emerging as 

promising solutions. Clustering algorithms like k-means are useful for behavioral profiling, traffic 

segmentation, and anomaly detection within SDN networks. They enable the identification of normal 

behavior patterns and deviations, serving as an early warning system against potential threats. Classification 

algorithms, such as decision trees (DT) and neural networks (NNs), are crucial for traffic analysis and 

security policy enforcement. They enhance the ability to implement targeted security measures by 

distinguishing between legitimate and malicious activities. 

https://creativecommons.org/licenses/by-sa/4.0/
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Recent studies have significantly advanced SDN security through various clustering and 

classification algorithms for anomaly detection and traffic analysis. For instance, Zheng et al. [3] improve 

packet classification efficiency in SDNs with the range supported bit vector (RSBV) algorithm. Tan et al. [4] 

increase DDoS detection accuracy by combining k-means with k-nearest neighbors (KNN). Xu et al. [5] 

enhance detection efficiency using k-means++ and fast k-nearest neighbors (K-FKNN). In feature-based 

approaches, Jafarian et al. [6] integrates the NetFlow protocol with feature selection and C-support vector 

classification, achieving respectable accuracy, while Garg et al. [7] use an enhanced restricted Boltzmann 

machine (RBM) and a gradient descent-based support vector machine (SVM) for detecting suspicious flows. 

Deep learning methods are also explored. Tang et al. [8] employs a fully connected deep neural network 

(DNN) in conjunction with gated recurrent unit-recurrent neural network (GRU-RNN) on the NSL-KDD 

dataset [9] to identify abnormal activities in SDN networks. Meanwhile, Shaji et al. [10] introduce deep-

discovery IDS, which uses multi-layer perceptrons (MLP) and feedforward (FF) ANN for attack detection in 

SDN, achieving 98.81% accuracy. Additionally, Staden and Brown [11] evaluate random forest (RF), KNN, 

and DT for traffic classification in SDN environments within the context of the internet of things (IoT), with 

RF demonstrating notable performance. 

Despite these advancements, a gap remains in effectively integrating feature-based approaches that 

combine clustering techniques with feature extraction algorithms. For instance, Tan et al. [4] improves 

accuracy using k-means with KNN, and Xu et al. [5] achieves better results with k-means++ and K-FKNN. 

However, neither study explores the integration of k-means or k-means++ with feature extraction techniques. 

Additionally, Jafarian et al. [6] achieves respectable accuracy through feature selection but does not employ 

clustering or feature extraction methods. 

Our work addresses this gap by proposing a novel method that integrates multiple k-means 

clustering models with Word2Vec for feature extraction, and then employs a NN for classification. Unlike 

traditional methods that cluster the entire dataset collectively [12], [13], our approach analyzes individual 

features independently using k-means, providing a more detailed representation of the data. We evaluate our 

proposed approach alongside a baseline NN model using the InSDN dataset [14], [15], demonstrating that 

our method achieves high detection accuracy. Additionally, we assess its performance on the CIC-DDoS2019 

dataset [16], highlighting its high accuracy in distinguishing between normal traffic and various types of 

DDoS attacks. 

This paper is structured as follows: section 2 presents the datasets used and describes the proposed 

approach. Section 3 evaluates and discusses the experimental results. Finally, section 4 concludes the paper. 

 

 

2. METHOD 

In this section, we present a novel approach for traffic analysis that leverages k-means clustering, 

Word2Vec, and NN models. This method aims to enhance the accuracy of anomaly detection and traffic 

classification within SDN environments. Additionally, we will detail the datasets used in our experiments, 

including the InSDN dataset, which focuses on SDN attacks, and the CIC-DDoS2019 dataset for multi-class 

traffic classification. 

 

2.1.  Datasets 

In our research, we use the InSDN dataset, which focuses on SDN attacks, to test our model. This 

dataset is offering a comprehensive collection of attack scenarios specifically designed for SDN networks. 

It’s crucial to use an SDN-specific dataset when evaluating SDN attack detection methods, as generic 

datasets may not accurately reflect the unique architecture and attack vectors of SDN networks. 

The InSDN dataset is available in. PCAP and .CSV formats and is divided into three groups: 

Normal, OVS, and Metasploitable-2. The Normal group represents typical user traffic, while the OVS group 

simulates various attacks, including brute force attacks (BFAs), BotNet attacks, denial-of-service (DoS), 

DDoS, Probes, and Web Attacks. To ensure a comprehensive representation of both regular network traffic 

and various types of attacks, we merge the Normal and OVS datasets in .CSV format. 

Given that the BotNet and Web-Attack classes comprise 164 and 192 instances respectively in the 

merged dataset, we chose to exclude these classes from our experimental data. Figure 1 illustrates the 

distribution of instances for each class in our experimental dataset. Predominant occurrences are observed in 

Normal, DDoS, DoS, and Probe classes, while BFA contains only 1,110 instances. We retain only the 

relevant features and manually discard the irrelevant ones. Features such as ’Flow ID’ and ’Timestamp’ are 

discarded as they do not add any valuable information for addressing the problem. Additionally, we omit ’Src 

Port’, ’Dst IP’, and ’Dst Port’ to prevent potential overfitting of the model. Consequently, our 

experimentation is conducted using the dataset identified as InSDN traffic analysis [17]. 

To further evaluate our proposed model, we utilize the CIC-DDoS2019 dataset. We create our 

experimental dataset with the distribution of instances illustrated in Figure 2. Our analysis focuses on 
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classifying traffic, encompassing five types of DDoS attacks as well as benign traffic. We manually remove 

the following features: ’Unnamed: 0’, ’Flow ID’, ’Timestamp’, ’Source IP’, ’Source Port’, ’Destination IP’, 

and ’Destination Port’. Therefore, we conduct our experiments using the dataset labeled CIC-DDoS2019 

traffic analysis [18]. Both datasets used in our experiments are split into two subsets: 80% for training and 

20% for testing. The testing set is utilized to assess the model’s performance on entirely new, unseen data, 

providing a reliable estimate of its real-world effectiveness. 

  

 

 
 

Figure 1. Within our experimental InSDN dataset 

 
 

Figure 2. Within our experimental CIC-DDoS2019 

dataset 

 

 

2.2.  Experimental setup 

We conduct all our experiments using the Python programming language. These experiments are 

executed on a machine equipped with an Intel® Core™ i7-6820HQ CPU running at 2.70 GHz and 32 GB of 

RAM, operating on the Windows 10 operating system. Our analysis focuses on utilizing the InSDN 

benchmark dataset for performing multi-class traffic classification, as well as the CIC-DDoS2019 dataset for 

the same purpose. 

 

2.3.  Method for model construction and selection 

This section outlines our approach for constructing our model and selecting the optimal one. Each 

model incorporates multiple trained k-means models, as well as trained Word2Vec and NN models. Figure 3 

illustrates our method.  
 
 

 
 

Figure 3. Flow diagram of the proposed method 
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For each k value within a specified range, we build a model and evaluate its accuracy using the 

testing set. The model with the highest testing accuracy is selected as optimal. The steps for constructing a 

model using our approach are as follows: 

− Step 1: k-means models are trained using the training dataset. K-means [19], [20] is a fundamental 

clustering algorithm widely used in unsupervised learning to organize data into cohesive groups. In our 

method, k-means models are applied at the column level for all features except the target variable ’Label’. 

The number of k-means models matches the number of features our model utilizes. The Algorithm 1 

partitions the data within each feature into up to k cohesive clusters. This approach treats each feature 

independently, allowing the algorithm to identify patterns and groups within each feature separately, 

without being influenced by relationships between different features. To expedite the training time of k-

means models, parallel processing is employed using the parallel function from the joblib library. After 

this step, we assign a cluster to each data point within every column using its corresponding k-means 

model. Subsequently, the data in each column is converted into discrete categories labeled as 

’Attribute_ClusterX’, where ’X’ represents the assigned cluster ID, and ’Attribute’ denotes the feature’s 

name with spaces replaced by underscores. This transformation aims to convert numerical data into 

categorical data. 

 

Algorithm 1. Proposed traffic classification approach 
Input: Training set and Testing set 

Output: best K_Means_models, best_Word2Vec_model, and best_NN_model 

Initialize best_accuracy = 0;  

Initialize best_KMeans_models;  

Initialize best_Word2Vec_model;  

Initialize best_NN_model; 

Define X as the matrix of feature values and y as the vector of target values; 

for each k in a predefined range do 

      Step 1: Train K-Means models KMeans_modelsk using Parallel Processing and Assign          

Discrete    

      Categories 

      for each column in Xtrain do 

           Train a K-Means model KMeans_modelk,column on Xtrain[column]; 

           Append KMeans_modelk,column to KMeans_modelsk; 

      end for 

      Assign clusters to Xtrain using KMeans_modelsk; 

      Label each column’s data with ’Attribute_ClusterX’, where ’X’ denotes the cluster ID 

from     

      KMeans_modelsk and ’Attribute’ represents the feature name with spaces replaced by 

underscores; 

      Step 2: Create Text Feature  

      Add a new column named ’text’ to the dataset containing the categorical data. Each 

value in this   

      column is a list of string representations of the discrete groups; 

      Step 3: Train Word2Vec Model  

      Train a Word2Vec model Word2Vec_modelk on the text feature with vector size=300 and 

parallel    

      processing; 

      Step 4: Generate Word Embeddings  

      for each text entry do  

           Extract word vectors for valid words in the vocabulary of Word2Vec_modelk;  

           Calculate the mean of these word vectors to obtain a single vector 

representation;  

           Append a zero vector if no valid word vectors are found;  

      end for 

      Step 5: Train Neural Network Model  

      Define the Neural Network architecture: two hidden layers (64 units each, ReLU 

activation) and an output layer (softmax activation);  

      Compile the model with Adam optimizer and sparse categorical cross-entropy loss;  

      Train the Neural Network Model NN_modelk using word embeddings from Word2Vec_modelk 

as input features. Use early stopping to prevent overfitting during training; 

      Step 6: Evaluate on Testing Set  

      Compute testing accuracy accuracyk;  

      if accuracyk > best_accuracy then  

         Update best_accuracy to accuracyk;  

         Update best_KMeans_models to KMeans_modelsk;  

         Update best_Word2Vec_model to Word2Vec_modelk;  

         Update best_NN_model to NN_modelk; 

      end if 

end for  

return best_KMeans_models, best_Word2Vec_model, and best_NN_model; 
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− Step 2: we create a text feature to serve as input for the Word2Vec model. This involves adding a new 

column named ’text’ to the dataset obtained in the previous step, which contains the categorical data, 

except the last column that contains the labels. In this new ’text’ column, each entry is generated by 

converting the categorical data (excluding the last column containing labels) from each row into strings 

and combining them into a list. This list represents each row of categorical data as a list of strings, which 

can then be processed by the Word2Vec model. 

− Step 3: train a Word2Vec model using the text feature. The Word2Vec technique is widely used in natural 

language processing for textual analysis [21], [22]. This model learns continuous vector representations of 

words within the text data, capturing semantic relationships among words in a specified context. The 

vector_size parameter determines the dimensionality of the dense vectors used to represent each word. 

We chose a dimension of 300 based on previous research, which has indicated its effectiveness [23], [24]. 

During training, the model analyzes a window of five words before and after each target word to 

understand its context. Parallel processing with four threads is employed to expedite the training process. 

− Step 4: we generate word embeddings from text data using the trained Word2Vec model. We iterate 

through each text in the input data, extracting word vectors for valid words found in the Word2Vec 

model’s vocabulary. For each text, we calculate the mean of these word vectors to obtain a single vector 

representation of the text. If no valid word vectors are found for a text, we append a zero vector. 

− Step 5: the resulting word embeddings are stored in a numpy array and utilized as input features for 

training the NN model. Our NN architecture consists of three dense layers: two hidden layers, each 

containing 64 units with ReLU activation functions, and an output layer with units equal to the number of 

unique classes in the target variable. The output layer uses softmax activation to generate class 

probabilities. We utilize the Adam optimizer and sparse categorical cross-entropy loss function for model 

compilation, with accuracy as the evaluation metric. The stochastic nature of the Adam optimization 

algorithm can result in variability in the accuracy of the NN model across iterations. Adam updates model 

parameters based on gradients computed from training data batches, introducing randomness into the 

optimization process and resulting in performance fluctuations. During training, early stopping is 

incorporated to prevent overfitting, with validation data used to monitor performance. This approach 

ensures the robustness of our NN architecture by effectively mitigating overfitting risks. 

 

 

3. RESULTS AND DISCUSSION 

This section outlines the evaluation process used to assess the effectiveness of the proposed 

approach. We explain the method and procedures employed during experimentation. Furthermore, we present 

the results from these experiments, offering valuable insights into the method’s performance and capabilities. 

 

3.1.  Evaluation process and criteria 

The evaluation process of our approach consists of three distinct experiments, each repeated 20 to 

25 times. In each iteration, we modify the desired number of clusters (represented by k) and train our model 

using the specified k value. In contrast, the NN model remains unchanged across all iterations. 

For all experiments, both our model and the NN model are trained using the same training dataset. 

The NN model shares the same architecture as ours for classification. Each model’s performance is evaluated 

on the same testing set, using standard measures including accuracy, precision, recall, and F1-score. The first 

experiment, conducted on the InSDN dataset, is performed without feature selection to assess whether 

clustering using k-means and feature extraction using Word2Vec enhance the performance of the NN model. 

The second experiment, also conducted on the InSDN dataset, is similar to the first one, but we used only the 

relevant features (detailed in Table 1). We utilized SelectKBest, a feature selection module from the scikit-

learn library, to determine the optimal number of features. The third experiment, conducted using the CIC-

DDoS2019 dataset, aims to evaluate the adaptability of our method to environments beyond SDN. It is 

carried out without feature selection. 

 

3.2.  Experimental results 

This section presents the results obtained from the experiments conducted with the proposed 

method. Firstly, by varying the value of k, we compare the accuracy achieved by the NN model and our 

proposed model. We then compare the best proposed model with the best NN model, both evaluated at their 

highest accuracy, using precision, recall, and F1-score. Finally, we analyze the training time for each model 

trained with our approach on the InSDN dataset. Figures 4 and 5 depict the performance on our InSDN 

dataset without feature selection. Figure 4 illustrates accuracy across iterations with varying k values, while 

Figure 5 compares classification reports. Figures 6 and 7 show the impact of feature selection on our InSDN 

dataset, with Figure 6 displaying accuracy and Figure 7 providing comparison details. Finally,  
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Figures 8 and 9 present the performance on our CIC-DDoS2019 dataset without feature selection. Figure 8 

showcases accuracy trends, and Figure 9 compares classification reports. 

 

 

Table 1. Extracted subset features from our experimental InSDN dataset 
No. Feature No. Feature No. Feature 

1 Protocol 15 Fwd IAT Max 29 SYN Flag Cnt 

2 Flow Duration 16 Bwd IAT Tot 30 PSH Flag Cnt 
3 Fwd Pkt Len Max 17 Bwd IAT Mean 31 ACK Flag Cnt 

4 Fwd Pkt Len Min 18 Bwd IAT Std 32 URG Flag Cnt 

5 Bwd Pkt Len Max 19 Bwd IAT Max 33 Down/Up Ratio 
6 Bwd Pkt Len Min  Bwd PSH Flags 34 Pkt Size Avg 

7 Bwd Pkt Len Mean  Bwd URG Flags 35 Fwd Seg Size Avg 

8 Bwd Pkt Len Std  Fwd Pkts/s 36 Bwd Seg Size Avg 
9 Flow Pkts/s  Bwd Pkts/s 37 Init Bwd Win Byts 

10 Flow IAT Std  Pkt Len Min 38 Idle Mean 

11 Flow IAT Max  Pkt Len Max 39 Idle Std 

12 Fwd IAT Tot  Pkt Len Mean 40 Idle Max 

13 Fwd IAT Mean  Pkt Len Std 41 Idle Min 

14 Fwd IAT Std  FIN Flag Cnt   

 

 

 
 

Figure 4. Accuracy in our InSDN dataset (no feature selection) 

 

 

 
 

Figure 5. Classification reports comparison in our InSDN dataset (no feature selection) 
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Figure 6. Accuracy in our InSDN dataset (with feature selection) 
 
 

 
 

Figure 7. Classification reports comparison in our InSDN dataset (with feature selection) 

 

 

 
 

Figure 8. Accuracy in our CIC-DDoS2019 dataset (no feature selection) 
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Figure 9. Classification reports comparison in our CIC-DDoS2019 dataset (no feature selection) 

 

 

3.2.1. Evaluation on our experimental InSDN dataset without feature selection 

As depicted in Figure 4, once surpassing the approximate threshold of k=40, two key observations 

become evident: firstly, our proposed model demonstrates superior accuracy compared to the NN model. 

Furthermore, its accuracy continues to improve, notably, it reaches its peak around k=115, achieving 

exceptional accuracy. Additionally, starting from around k=65 onwards, the accuracy appears to stabilize, 

indicating consistent performance of our proposed model even with varying values of k. For this reason, 

we’ll next focus our model comparison from run time 8, corresponding to k=65. 

According to Table 2, our model achieves a higher maximum accuracy of 99.97% compared to the 

NN model’s maximum accuracy of 99.77%. Additionally, our model exhibits a higher mean accuracy of 

99.95% compared to the NN model’s mean accuracy of 99.70%. Moreover, our model demonstrates a 

smaller variance of 0.0003, indicating more consistent performance, while the NN model has a variance of 

0.0067, suggesting greater variability in accuracy. This pronounced superiority underscores the effectiveness 

and robustness of our proposed approach, which offers superior accuracy and stability across a wide range of 

desired number of clusters compared to the NN model. 

 

 

Table 2. Accuracy of our model and NN model over iterations (%) for our InSDN without feature selection 
Iteration number Our model NN model Iteration number Our model NN model 

1 98.3074 99.6421 11 99.9322 99.7751 
2 99.1537 99.7122 12 99.9637 99.7412 

3 99.8404 99.6880 13 99.9588 99.6711 

4 99.8645 99.7485 14 99.9637 99.7461 
5 99.8597 99.7243 15 99.9588 99.7146 

6 99.8694 98.5250 16 99.9540 99.7654 

7 99.9226 99.6977 17 99.9443 99.6373 
8 99.9443 99.7267 18 99.9685 99.7074 

9 99.9226 99.7582 19 99.9685 99.4632 

10 99.9347 99.7098 20 99.9153 99.7461 

 

 

Analysis of the classification report for our model with k=115, as depicted in Figure 5, reveals 

superior performance in precision, recall, and F1-score across all classes. Notably, our model achieves a 

precision of 1 for classifying DoS attacks, ensuring accurate identification. Similarly, for the Normal traffic 

class, our model demonstrates precision, recall, and F1-score values of 1, underscoring its proficiency in 

detecting normal network behavior. On the other hand, the NN model demonstrates comparable performance, 

with a marginal difference in precision for the DoS class and lower precision and recall values for the BFA 

class, decreasing to 0.94 and 0.84 respectively. This suggests challenges in accurately identifying instances of 

BFA attacks. These comparisons underscore the robustness and effectiveness of our proposed model in 

accurately classifying network traffic, encompassing various attack types as well as normal traffic. 
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3.2.2. Evaluation on our experimental InSDN dataset with feature selection 

Figure 6 illustrates the superior accuracy of our model compared to the NN model, evident from 

approximately k=20 onwards. Beyond k=45, the accuracy exhibits marginal deviations without significant 

improvement. Therefore, we focus our analysis starting from run time 9, corresponding to k=45. 

From Table 3, our model achieves a maximum accuracy of 98,92%, with a mean accuracy of 

approximately 98,82% and a variance of approximately 0,0027. In the other hand, the NN model reaches a 

maximum accuracy of 98,05%, with a mean accuracy of approximately 97,92% and a variance of 

approximately 0,0237. These results highlight that our model not only achieves a higher maximum accuracy 

but also demonstrates a more consistent and stable performance compared to the NN model, as evidenced by 

its notably lower variance. 

 

 

Table 3. Accuracy of our model and NN model over iterations (%) for our InSDN with feature selection 
Iteration number Our model NN model Iteration number Our model NN model 

1 95.0795 97.9979 11 98.8128 98.0221 
2 97.5699 97.9399 12 98.9216 98.0028 

3 97.8069 97.9955 13 98.7668 97.9858 

4 98.0898 97.9737 14 98.7982 97.4974 
5 98.2349 97.7392 15 98.8611 97.8867 

6 98.2905 97.8383 16 98.8248 97.9665 

7 98.2857 97.1323 17 98.8128 98.0148 
8 98.5782 98.0294 18 98.8998 97.9858 

9 98.7910 98.0463 19 98.7958 97.9544 

10 98.7426 97.7585 20 98.8539 97.9036 

 

 

As depicted in Figure 7, our model with k=60 demonstrates superior precision across all classes 

compared to the NN model. With precision scores ranging from 0.95 to 1.00, our model showcases its ability 

to accurately classify instances, even for the BFA class, which contains a small number of instances. 

Additionally, our model exhibits consistently higher recall rates, ranging from 0.96 to 1.00 across different 

classes. This difference is particularly evident in the BFA class, where it achieves a recall of 1, compared to 

the NN model’s 0.5. Furthermore, the balanced performance across precision and recall is reflected in the F1-

scores, consistently favoring our model over the NN model, with F1-scores ranging from 0.97 to 1.00 across 

all classes. These findings underscore the robustness of our proposed model in accurately classifying network 

traffic types, crucial for effective cybersecurity measures in real-world scenarios. 

 

3.2.3. Evaluation on our experimental CIC-DDoS2019 dataset 

The results depicted in Figure 8 highlight the promising performance of our proposed model on the 

CIC-DDoS2019 dataset. Across the range of experiments conducted with varying desired numbers of 

clusters, our model began to outperform the NN model in accuracy from around k=90 onwards. The accuracy 

demonstrated greater stability and consistently remained above 98.4% from approximately k=190, 

corresponding to run time 14. Consequently, we’ll conduct our comparison only from iteration number 14. 

Based on Table 4, our model exhibits a variance of 0.0056, a mean accuracy of 98.54%, and a 

maximum accuracy of 98.65%. In contrast, the NN model shows a higher variance of 0.0556, a mean 

accuracy of 97.72%, and a maximum accuracy of 98.01%. These results confirm our model’s superior 

accuracy compared to the NN model and underscore our model’s enhanced stability. 

 

 

Table 4. Accuracy of our model and NN model over iterations (%) for our CIC-DDoS2019 without feature 

selection 
Iteration number Our model NN model Iteration number Our model NN model 

1 97.5003 97.8066 14 98.5429 97.7629 

2 97.6367 97.3201 15 98.5892 97.9044 
3 97.5672 98.0048 16 98.5841 98.0126 

4 98.2726 97.4874 17 98.4219 97.7371 

5 98.1928 97.2531 18 98.4296 97.9353 
6 98.2880 97.7654 19 98.4914 97.9019 

7 98.2443 97.5904 20 98.5944 97.8504 

8 98.2751 97.9431 21 98.4888 97.6933 
9 98.5300 97.8633 22 98.6098 97.3716 

10 98.2391 97.9122 23 98.6536 97.2377 

11 98.5043 97.9250 24 98.4682 97.7551 
12 98.4656 97.2480 25 98.5660 97.5260 

13 98.3550 97.6830    
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Figure 9 illustrates a comparison between the classification reports of our model with k=280 and the 

NN model, revealing significant differences in their performance metrics. Notably, our model demonstrates 

superior precision, recall, and F1-score across multiple classes, indicating its effectiveness in accurately 

classifying network traffic. Classes such as BENIGN, LDAP, MSSQL, Syn, and UDP consistently exhibit 

higher performance metrics in our model compared to the NN model. Even within the UDPLag class, where 

instances are fewer in number, our model consistently exhibits superior precision, recall, and F1-score 

compared to the NN model. Overall, our model demonstrates more robust performance across all classes, 

confirming its effectiveness in network traffic classification. 

 

3.2.4. Computational overhead on our experimental InSDN dataset 

The multi-step process of our proposed approach might introduce significant computational 

overhead. This is because, for each k value, we construct a model that combines multiple k-means models, 

Word2Vec model, and a NN classifier to identify the one with the highest accuracy. As depicted in  

Figures 10 and 11, the training times show considerable variability and generally increase with the desired 

number of clusters. Without feature selection, the proposed model exhibits significantly higher training times, 

ranging from approximately 328.79 seconds to 841.08 seconds. In contrast, when feature selection is applied, 

the proposed model experiences reduced training times, decreasing to a range of 158.40 seconds to  

449.53 seconds. Overall, feature selection has a substantial positive impact, effectively reducing training 

times and enhancing the efficiency of the proposed method. 

 

 

 
 

Figure 10. Training time comparison without feature selection 
 

 

 
 

Figure 11. Training time comparison with feature selection 

 

 

3.3.  Analysis and discussion 

The experimental results show that our approach excels in both accuracy and stability compared to 

traditional NN models across various datasets. On the InSDN dataset, our method achieves a superior 

accuracy of 99.97% without feature selection when the desired number of clusters exceeds approximately 40, 

outperforming robust approaches such as the deep learning method in paper [25], the GRU model in paper 

[26], and the stacked auto-encoder multi-layer perceptron (SAE-MLP) classifier used in paper [27], which 

achieved accuracy rates of 96%, 99.65%, and 99.75%, respectively. It also maintains higher accuracy with 
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feature selection, especially after k≈45. Similarly, on the CIC-DDoS2019 dataset, our approach demonstrates 

strong accuracy, with a stable performance trend from approximately k=190 onwards, averaging around 

98.54%. This stability, along with high precision, recall, and F1-scores across various traffic types, highlights 

the method’s effectiveness in handling complex network conditions, even with limited sample sizes. 

The multi-step process of training multiple k-means models, along with training Word2Vec and NN 

models, introduces significant computational overhead that increases with the desired number of clusters. 

However, feature selection reduces some of this overhead and enhances efficiency. Future improvements 

should focus on addressing this computational overhead by utilizing advanced parallel processing, cloud-

based computing resources, and optimizing system architecture. These enhancements will improve the 

model’s scalability and efficiency, making it more suitable for real-world applications. 

The techniques developed in this study have potential benefits for other fields requiring high 

classification accuracy, particularly where dealing with imbalanced datasets is challenging. Such techniques 

could be valuable in areas like medical diagnostics or fraud detection, where precise classification is crucial 

despite uneven data distributions. 

 

 

4. CONCLUSION 

This study underscores the critical importance of feature-based approaches in enhancing SDN 

security through advanced clustering algorithms and feature extraction techniques. Starting from a specific 

desired number of clusters, our model, which integrates multiple k-means models for clustering, Word2Vec 

for feature extraction, and NN for traffic classification, consistently achieves superior accuracy and stability 

across diverse traffic classes, including those with limited sample sizes. These findings highlight the potential 

of our approach to effectively capture and categorize intricate patterns within SDN environments, surpassing 

the performance of traditional NN model. However, the computational demands associated with employing 

multiple k-means models and Word2Vec emphasize the need for efficient parallelization and robust 

infrastructure to ensure scalability and practical deployment in real-world scenarios. Looking ahead, our 

future research will focus on optimizing our approach to enhance the model’s effectiveness and applicability. 

We plan to evaluate the model’s performance in real-world networks, providing insight into its operational 

capabilities. Additionally, we will explore alternative feature extraction methods beyond Word2Vec, 

investigate different clustering algorithms to optimize performance further, and experiment with additional 

machine learning techniques for classification. By refining these aspects, we aim to make our approach more 

versatile and capable of addressing the evolving security needs of SDN environments. 
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