Design of environmental detector system application aims to promote awareness of pollution on campus

Afritha Amelia¹, Roslina Roslina², Bakti Viyata Sundawa¹, Abdul Azis³, Banu Afwan Pribadi⁴

¹Study Program of Telecommunication Network Engineering and Technology, Department of Electrical Engineering, Politeknik Negeri Medan, Indonesia

²Study Program of Informatics Management, Department of Computer and Informatics, Politeknik Negeri Medan, Medan, Indonesia
 ³Study Program of Electrical Engineering, Faculty of Engineering, Universitas Muhammadiyah Sumatera Utara, Medan, Indonesia
 ⁴Department of Product Integration, Samsung R&D Institute Indonesia, Jakarta, Indonesia

Article Info

Article history:

Received Jun 12, 2024 Revised Apr 10, 2025 Accepted May 27, 2025

Keywords:

Environmental detection system Environmental parameters Environmental sustainability Internet of things UI GreenMetric

ABSTRACT

Politeknik Negeri Medan (POLMED) was involved in the UI GreenMetric world rankings. The UI GreenMetric committee assessed green campus activities and environmental sustainability. The UI GreenMetric aims to raise awareness about sustainable campus greening, and social impacts of these endeavors. Based on the concept, an environmental detection system (EDS) was developed using internet of things (IoT) technology. The EDS can detect and monitor environmental parameters remotely such as carbon dioxide (CO₂), noise levels, light intensity, air temperature, relative humidity, and dust particle density in real-time via the internet. Measurements of environmental parameters were conducted at one location in POLMED. The average CO2 level was 485 ppm. The average noise level was 53.40 dB. The average light intensity was 129 lux. The average air temperature was 26.60 °C. The average of relative humidity was 63.8% RH. The average of PM2.5 dust particle densities was 23 µg/m³. The average of PM10 dust particle densities was 29 µg/m³. Based on these results, the air quality has begun to be polluted because this value is already above the threshold clean quality air set by the Government of the Republic of Indonesia (310-330 ppm).

This is an open access article under the <u>CC BY-SA</u> license.

2548

Corresponding Author:

Afritha Amelia Study Program of Telecommunication Network Engineering and Technology Department of Electrical Engineering, Politeknik Negeri Medan North Sumatera, Medan, Indonesia Email: afrithaamelia@polmed.ac.id

1. INTRODUCTION

Many institutions of higher education including colleges, universities, polytechnics participate in the UI GreenMetric World University Rankings. They assessed the performance of higher education institutions with regard to sustainability. The objective of the UI GreenMetric was to raise awareness of the contributions of higher education institutions with regard to sustainable development, sustainable research, and campus greening, and the social impacts of such contributions [1], [2]. In general, the UI GreenMetric assessed higher educational institutions with regard to their environmental impact, including the utilisation of natural resources, the implementation of environmental management strategies and the mitigation of pollution [3], [4]. The economic aspects of the business include considerations of profit and efficiency [5], [6]. The social aspects encompass education, community, and social involvement [7], [8].

Journal homepage: http://beei.org

The UI GreenMetric assessed the environmental performance of an institution according to six domains: setting and infrastructure (SI), energy and climate change (EC), waste (WS), water (WR), transportation (TR), and education and research (ED) [9], [10]. One of the EC criteria was the implementation of smart buildings on campus. The construction of smart building involves the integration of smart features into building such as the incorporation of automation systems, security systems, comfort and environmental control systems, as well as the efficient use of renewable energy sources [11], [12]. Three elements that need to be considered for building comfort and environmental control systems, namely, water, land, and air [13], [14].

Unintentionally, pollution or contamination of these elements often occurs on campus. Institutions of higher education still rely on groundwater to meet daily water needs. Waste from laboratories and workshops was disposed of immediately without treatment process. The term "contamination" was defined as the deterioration of land surfaces and underground levels due to solid and liquid wastes that contaminate both soil and groundwater [15], [16]. Moreover, the use of private vehicles on campus contributes to air pollution. Pollution significantly impacts the environmental sustainability of campus. The lack of development of green space open areas. Even though, that was useful to support recreational activities, diverse organisms' habitat, rainwater catchment areas, mitigating floods. That was some challenges faced by campus [17], [18].

The Government of The Republic of Indonesia has enacted regulations aimed at safeguarding the environment. Maximum threshold of carbon dioxide (CO_2) in the air was 3,180 ppm [19]. Maximum of noise level was 97 dB [20]. The threshold of temperature was 26–30 °C [21]. The threshold of relative humidity was 65%–95% RH [22]. According to Indonesian National Standart No. 03-6575-2001, range of light intensity was 100-200 lux.

Internet of things (IoT) system was capable to detect and monitor of environmental parameters remotely such as CO₂, noise level, light intensity, air temperature, relative humidity, and dust particle density [23], [24]. The data collected from these environmental parameters can serve as a big data for developing policies to protect and mitigating actions [25], [26].

Therefore, this study focused on developing environmental detection system (EDS) using IoT technology. A data logger was used to record and store data. Then, it was transmitted to a cloud server. Communication between the data logger and the cloud server uses a global system for mobile communication (GSM) network. User applications were developed by Android and website programming. The big data will provide valuable insight into effective policies at campus. That was contributing to the achievement of environmental sustainability goals.

2. RESEARCH METHOD

The research about detection of environmental pollution levels on campus has been carried out in 2021 [13]. It has been done detection and monitoring various environmental parameters such as dust particle densities, temperature and humidity, illumination, CO₂, and noise levels. This research is used as a basis for further research development.

2.1. System design

EDS block diagram consists of five blocks, namely sensors block, server block, connectivity block, IoT gateway block, and application block. EDS block diagram was created in compliance with the guidelines shown in Figure 1. The type of sensor used has a built-in socket specifically designed to connect the long range (LoRa) node via cable pin. The sensors were CO₂ sensor type Renke RS-CO2*-*-2-EX, light intensity sensor and temperature humidity sensor type Renke RS-GZ*-*-2-EX, noise sensor type Renke RS-ZS-N01-*-EX, PM2.5 and PM10 sensor type Renke RS-PM-*-2. Every sensor sent the data to LoRa node. LoRa node saved the data and then it was transmitted to cellular LoRa gateway type King Pigeon S281. The transmission ranges up to 2 km as transmit distance between LoRa node and cellular LoRa gateway. This transmission did not use data packets, but it used a radio frequency network. It was an innovation for efficiency measures to save costs in research.

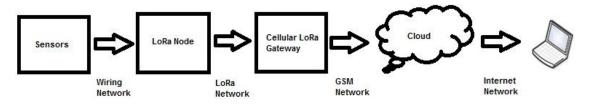


Figure 1. EDS block diagram

Next, the communication between cellular LoRa gateway and cloud server using a GSM network. It was caused by better features of the GSM network, which offers a wider network coverage in Indonesia. A significant proportion of campus locations were located close to urban centers. It was expected the GSM network will be easier to access environmental data from very long distance.

This research used https://app.microthings.id/ as key performance index (KPI) software platform. It can be utilized for the operation of web-based and Android/iOS applications. This platform was to create KPI indicators for laptop and smartphone users. This dashboard can be utilized for monitoring daily activities as well including the results in environmental pollution due to interactive system, accuration, analytical system, and real-time monitoring of activities. That was a novelty in this research.

2.2. Bracket design

The bracket was intended to be used to hold and stand of EDS's components. The welding of the frame iron seat or holder was required for this design. The design of EDS's bracket was straight-profiled with rooftop rectangle was bent 45 degrees to form an V-shaped inverted. The EDS's bracket was designed in Figure 2.

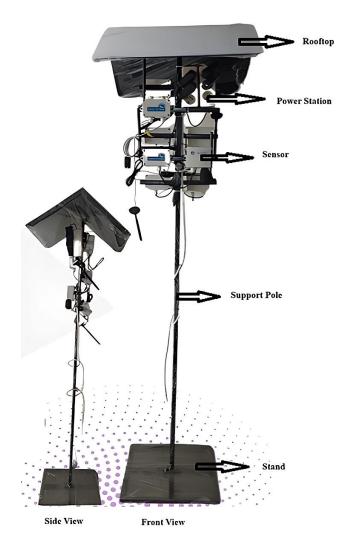


Figure 2. EDS with bracket

3. RESULTS AND DISCUSSION

Environmental parameters were measured as shown in Tables 1 and 2. Parameters are CO_2 levels, noise levels, light intensity, air temperature, relative humidity, and dust particle densities. Environmental parameters were measured on one location in Politeknik Negeri Medan (POLMED). The measurements were conducted at 10.00 a.m. (Western Indonesian Time) and the results were summarized in Tables 1 and 2. These data was measured on February 13, 2024.

Table 1. Measurement results for CO₂ and noise levels and light intensity

Date and time	Measurement results							
Date and time	CO ₂ level (ppm)	Noise level (dB)	Light intensity (lux)					
2024-02-13 10.17.15	485	52.87	129					
2024-02-13 10.17.17	489	52.44	130					
2024-02-13 10.17.19	490	55.27	130					
2024-02-13 10.17.21	482	54.07	128					
2024-02-13 10.17.23	486	54.16	128					
2024-02-13 10.17.25	487	53,56	130					
2024-02-13 10.17.27	485	55.67	128					
2024-02-13 10.17.29	483	52.82	129					
2024-02-13 10.17.31	482	53.25	130					
2024-02-13 10.17.33	484	52.87	129					
2024-02-13 10.17.35	485	53.44	128					
2024-02-13 10.17.37	489	55.92	128					
2024-02-13 10.17.39	490	53.35	129					
2024-02-13 10.17.41	482	52,92	129					
2024-02-13 10.17.43	486	53.97	129					
2024-02-13 10.17.45	489	53.33	128					
2024-02-13 10.17.47	485	51.78	127					
2024-02-13 10.17.49	483	53.51	129					
2024-02-13 10.17.51	482	53.38	129					
2024-02-13 10.17.53	484	53.27	130					
2024-02-13 10.17.55	485	51.78	129					
2024-02-13 10.17.57	489	53.81	129					
2024-02-13 10.17.59	490	51.44	128					
2024-02-13 10.18.01	482	53.25	129					
2024-02-13 10.18.03	486	55.09	129					
2024-02-13 10.18.05	482	53.09	130					
2024-02-13 10.18.07	486	52.61	130					
2024-02-13 10.18.09	487	53.28	129					
2024-02-13 10.18.11	485	53.24	129					
2024-02-13 10.18.13	483	52.69	128					
Mean	485	53.40	129					

<u>Table 2. Measurement results for air temperature, relative humidity, and dust particle densities</u>

Measurement results

	Measurement results							
Date and time	Air temperature	Relative	Dust particle density	Dust particle density				
	(°C)	humidity (%)	for PM2.5 (μ g/m ³)	for PM10 (μ g/m ³)				
2024-02-13 10.18.00	26.2	64.5	23	30				
2024-02-13 10.18.02	26.3	65.4	24	31				
2024-02-13 10.18.04	26.8	65.3	22	29				
2024-02-13 10.18.06	26.7	65.3	21	28				
2024-02-13 10.18.08	26.2	65.1	24	32				
2024-02-13 10.18.10	26.2	65.1	25	30				
2024-02-13 10.18.12	26.3	65.2	23	27				
2024-02-13 10.18.14	26.3	65.9	23	30				
2024-02-13 10.18.16	26.4	65.3	24	31				
2024-02-13 10.18.18	26.5	65.6	22	29				
2024-02-13 10.18.20	26.6	64.1	21	28				
2024-02-13 10.18.22	26.2	65.1	23	28				
2024-02-13 10.18.24	26.7	64.1	25	30				
2024-02-13 10.18.26	26.7	63.9	23	28				
2024-02-13 10.18.28	26.7	63.3	22	27				
2024-02-13 10.18.30	26.6	63.7	21	26				
2024-02-13 10.18.32	26.6	63.5	24	30				
2024-02-13 10.18.34	26.6	63.4	22	28				
2024-02-13 10.18.36	26.6	62.8	21	28				
2024-02-13 10.18.38	26.7	62.5	24	31				
2024-02-13 10.18.40	26.7	62.3	23	30				
2024-02-13 10.18.42	26.7	62.7	24	30				
2024-02-13 10.18.44	26.7	62.3	22	27				
2024-02-13 10.18.46	26.8	62.3	21	28				
2024-02-13 10.18.48	26.8	62.1	24	31				
2024-02-13 10.18.50	26.8	62.4	23	30				
2024-02-13 10.18.52	26.9	62.3	26	30				
2024-02-13 10.18.54	26.9	62.7	22	31				
2024-02-13 10.18.56	27.3	62.3	24	32				
2024-02-13 10.18.58	26.9	63.6	22	29				
Mean	26.6	63.8	23	29				

The graphical user interface used to select the environmental parameters for display was shown in Figure 3. While the graphical user interfaces used to monitor the air temperature and relative humidity were shown in Figures 4 and 5.

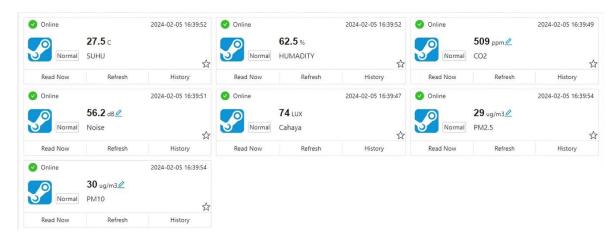


Figure 3. Graphical user interface showing the environmental parameters to be monitored

Figure 4. Graphical user interface showing the variation of the air temperature with respect to date and time. (Note that the word suhu means temperature)

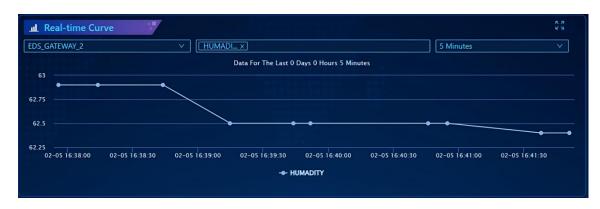


Figure 5. Graphical user interface showing the variation of the relative humidity with respect to date and time

The measurements were conducted in the morning in the vicinity of POLMED campus. It was necessary to measure the data results considering the regulatory standards established by the Indonesian government such as regulation no. 12/2010 of the Minister of Environment with maximum density of PM-2.5 dust particles was $66~\mu g/m^3$ and permissible concentration of CO_2 in outdoor was 350–700 parts per million (ppm). According to Minister of Health regulation no. 70/2016, lighting minimum was 150 lux. According to

regulation no. 13/2011 of the Minister of Manpower and Transmigration that the maximum noise level was 97 dB. Based on Minister of Manpower, Transmigration, and Cooperation regulation No. 1/1978, the ideal temperature range was between 26 °C and 30 °C, and humidity range of 65% to 95% RH.

Variation for assessment with respect to date and time. Level of CO₂ measured within the range of 482-490 ppm. The average was 485 ppm. According to the Ministry of Environment regulation no.12/2010, outdoor air in POLMED was considered polluted. It was caused by many vehicles passing through POLMED. Many students drove their own vehicle to the campus. The graphic result was shown in Figure 6. Despite the fewer number of vehicles passed through POLMED at the time. The CO₂ levels were measured, but the outdoor air was still polluted. Thus, policies need to be developed to tackle air pollution in POLMED such as prohibiting students from bringing their private vehicles to campus. That was directly correlated with the quantity of cars on campus. In addition, POLMED needs to consider the development of green spaces (i.e., open spaces with plenteous grass, trees, shrubs, or other vegetation), covering 30% of the campus area. POLMED has an area of 8 ha and therefore, the area of the green spaces should be at least 2.4 ha.

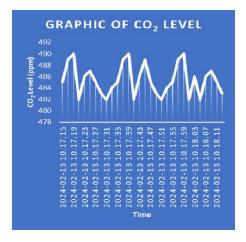


Figure 6. Variation for CO₂ level with respect to date and time

Noise level measured within the range of 51.78-55.92 dB. The average was 53.40 dB. This value was still below the maximum noise level of 85 dB with an exposure time of 8 hours. It was indeed expected since the noise level measurements were made at 10.00 a.m. because students still studied on this time. It needs to be considered by POLMED to ensure that the noise levels will never exceed the maximum noise because it can disrupt the teaching and learning process. The graphic result was shown in Figure 7.

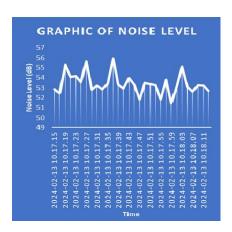


Figure 7. Variation for noise level with respect to date and time

Light intensity measured within the range of 127-130 lux. The average was 129 lux. There was a need to improve indoor lighting conditions because the average light intensity of 129 lux was found to be lower than the minimum indoor light intensity of 150 lux set by the Indonesian Government. The graphic result was shown in Figure 8.

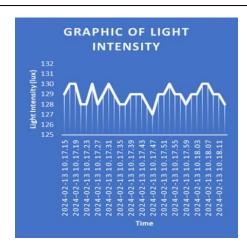


Figure 8. Variation for light intensity with respect to date and time

Air temperature was measured within the range of $26.2~^{\circ}\text{C}-26.9~^{\circ}\text{C}$ and relative humidity was measured within the range of 62.1% RH-65.9% RH. The average of air temperature was $26.6~^{\circ}\text{C}$, and the average of relative humidity was 63.8% RH. These values were in the range of $26~^{\circ}\text{C}-30~^{\circ}\text{C}$ and 65%-95% RH respectively. The condition was normal as Indonesia a tropical and humid country. The graphic result of temperature was shown in Figure 9. The graphic result of relative humidity was shown in Figure 10.

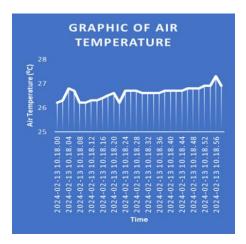


Figure 9. Variation for air temperature with respect to date and time

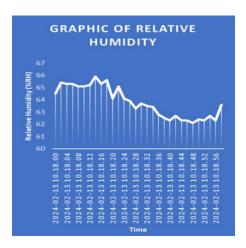


Figure 10. Variation for relative humidity with respect to date and time

П

Dust particle density for PM2.5 was measured within the range of $21~\mu g/m^3$ - $26~\mu g/m^3$. The average was $23~\mu g/m^3$. The graphic result was shown in Figure 11. Dust particle density for PM10 was measured within the range of $27~\mu g/m^3$ - $32~\mu g/m^3$. The average was $29~\mu g/m^3$. The graphic result was shown in Figure 12. According to regulation no. 12/2010 of the Minister of Environment with maximum density of PM-2.5 dust particles was $66~\mu g/m^3$.

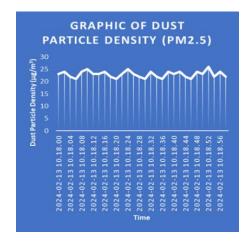


Figure 11. Variation for dust particle density for PM2.5 with respect to date and time

Figure 12. Variation for dust particle density for PM10 with respect to date and time

4. CONCLUSION

An EDS has been developed by using IoT technology. This device was developed to detect and monitor environmental parameters such as CO2 and noise levels, light intensity, air temperature, relative humidity, and dust particle densities (PM2.5 and PM10) remotely by real-time. Based on the results, it can be concluded that most of the environmental parameters measured were still recommended by the Indonesian regulation, excepted for CO₂ level and light intensity. The average of CO₂ level was 485 ppm. It was found to exceed the CO₂ threshold for clean outdoor air in range 310-330 ppm. It was a warning since higher CO₂ levels in the air contribute to the greenhouse effect (i.e., the trapping of heat in the Earth's atmosphere due to high CO₂ levels). The POLMED campus area was only 8 ha, where 30% of the land was used as parking space. It would have been more desirable if the land was used to develop green spaces, which would help reduce CO₂ levels. In addition, the CO₂ levels can be reduced by prohibiting students from not bringing their private vehicles to campus. The average light intensity was determined to be 129 lux. This value was less than the minimum indoor light intensity specified by the Indonesia regulation (150 lux). The most of lecture and students worked in their classes. There was need to improve the lighting conditions indoors, which will help promote the well-being of the building occupants and ensure a productive work environment. Finally, POLMED needs to focus on environmental sustainability, which involves ensuring the health and well-being of current and future generations through the responsible use of natural resources, minimization, and

management of wastes, and ensuring that human activities will not cause detriment to the environment and biological diversity. It can be achieved by detecting and monitoring environmental parameters using the EDS development as a start to develop and implement effective environmental sustainability policies in POLMED. An EDS will be developed in the future by adding more sensors so that more environmental parameters can be detected and monitored. These environmental parameters are in the air, soil, and water.

ACKNOWLEDGMENTS

The authors wish to express their heartfelt appreciation to the Director of POLMED as well as the staff of the Research and Public Services Center (P3M) POLMED, for their cooperation and providing the resources and facilities in the preparation of this work.

FUNDING INFORMATION

The authors also wish to express their gratitude to the Directorate of Vocational Education, Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia, for funding this work through the 2023 Matching Fund Program with contract number: B/30/PL5/HK.07.00/2023; 12 Juli 2023.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author	C	M	So	Va	Fo	I	R	D	0	Е	Vi	Su	P	Fu
Afritha Amelia	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
Roslina Roslina		\checkmark		\checkmark		\checkmark		\checkmark	✓	\checkmark		\checkmark		
Bakti Viyata Sundawa		\checkmark	✓	\checkmark		\checkmark	✓	\checkmark		\checkmark	✓	\checkmark	\checkmark	
Abdul Azis	\checkmark			\checkmark		✓		\checkmark		\checkmark			\checkmark	
Banu Afwan Pribadi	✓		✓			\checkmark	✓	\checkmark		✓		\checkmark		\checkmark

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

INFORMED CONSENT

We have obtained informed consent from all persons included in this research.

DATA AVAILABILITY

The data in this study is finding accessible in https://app.microthings.id. The dataset includes all parameters used for environmental monitoring system such as carbon dioxide (CO₂), noise levels, light intensity, air temperature, relative humidity, and dust particle density. Environmental parameters were measured on one location in POLMED. The measurements were conducted at 10.00 a.m. (Western Indonesian Time) and these data was measured on February 13, 2024.

REFERENCES

- [1] A. S. Tabucanon *et al.*, "Investigating the critical issues for enhancing sustainability in higher education institutes in Thailand," *International Journal of Sustainable Development and Planning*, vol. 16, no. 3, 2021, doi: 10.18280/IJSDP.160311.
- [2] A. Kusumawanto and M. Setyowati, "Green engineering for waste management system in university-A case study of universitas Gadjah Mada Indonesia," in *Green Engineering for Campus Sustainability*, 2019, doi: 10.1007/978-981-13-7260-5_11.
- [3] A. Mahmud, N. Susilowati, P. N. Sari, and A. Herdiani, "Analyzing environmental management accounting to increase university awareness towards sustainability," in *IOP Conference Series: Earth and Environmental Science*, 2023, doi: 10.1088/1755-

П

- 1315/1248/1/012018.
- [4] E. Lourrinx, Hadiyanto, and M. A. Budihardjo, "Implementation of UI GreenMetric at Diponegoro University in order to Environmental Sustainability Efforts," in E3S Web of Conferences, 2019, doi: 10.1051/e3sconf/201912502007.
- [5] K. B. Atici, G. Yasayacak, Y. Yildiz, and A. Ulucan, "Green University and academic performance: An empirical study on UI GreenMetric and World University Rankings," *Journal of Cleaner Production*, vol. 291, 2021, doi: 10.1016/j.jclepro.2020.125289.
- [6] E. B. Ali and V. P. Anufriev, "UI greenmetric and campus sustainability: A review of the role of African universities," International Journal of Energy Production and Management, vol. 5, no. 1, 2020, doi: 10.2495/EQ-V5-N1-1-13.
- [7] T. Kurbatova, D. Lysenko, G. Trypolska, O. Prokopenko, M. Järvis, and T. Skibina, "Solar energy for green university: estimation of economic, environmental and image benefits," *International Journal of Global Environmental Issues*, vol. 21, no. 2–4, 2022, doi: 10.1504/ijgenvi.2022.126209.
- [8] N. Parvez and A. Agrawal, "Assessment of sustainable development in technical higher education institutes of India," *Journal of Cleaner Production*, vol. 214, 2019, doi: 10.1016/j.jclepro.2018.12.305.
- [9] H. Hakim and T. Endangsih, "Evaluation Of The Application of The Green Campus Concept at Universitas Budi Luhur Based On UI Greenmetric Category," RSF Conference Series: Engineering and Technology, vol. 1, no. 2, 2021, doi: 10.31098/cset.v1i2.476.
- [10] B. Galleli, N. E. B. Teles, J. A. R. dos Santos, M. S. Freitas-Martins, and F. Hourneaux Junior, "Sustainability university rankings: a comparative analysis of UI green metric and the times higher education world university rankings," *International Journal of Sustainability in Higher Education*, vol. 23, no. 2, 2022, doi: 10.1108/IJSHE-12-2020-0475.
- [11] R. Apanaviciene, R. Urbonas, and P. A. Fokaides, "Smart building integration into a smart city: Comparative study of real estate development," *Sustainability*, vol. 12, no. 22, 2020, doi: 10.3390/su12229376.
- [12] W. Muhamad, N. B. Kurniawan, S. Suhardi, and S. Yazid, "Smart campus features, technologies, and applications: A systematic literature review," in 2017 International Conference on Information Technology Systems and Innovation, ICITSI 2017 -Proceedings, 2017, doi: 10.1109/ICITSI.2017.8267975.
- [13] F. A. Batubara, B. V. Sundawa, and M. W. Lestari, "Design of Environmental Pollution Monitoring Tool Based on Internet of Things (IoT)," in *Proceedings of the 2nd Borobudur International Symposium on Science and Technology (BIS-STE 2020)*, 2021, doi: 10.2991/aer.k.210810.037.
- [14] M. Wimala, B. Zirads, and R. Evelina, "Water Security in Green Campus Assessment Standard," in E3S Web of Conferences, 2019, doi: 10.1051/e3sconf/20199302003.
- [15] P. Li, D. Karunanidhi, T. Subramani, and K. Srinivasamoorthy, "Sources and Consequences of Groundwater Contamination," Archives of Environmental Contamination and Toxicology, vol. 80, no. 1. 2021, doi: 10.1007/s00244-020-00805-z.
- [16] A. O. Meray et al., "PyLEnM: A Machine Learning Framework for Long-Term Groundwater Contamination Monitoring Strategies," Environmental Science & Technology, vol. 56, no. 9, 2022, doi: 10.1021/acs.est.1c07440.
- [17] R. Mitchie, "Entity-level Greenhouse Gas Emission of University of Science and Technology of Southern Philippines-Oroquieta," American Journal of Environment and Climate, vol. 1, no. 3, 2022, doi: 10.54536/ajec.vli3.665.
- [18] J. Kalpana and P. R. Ramidi, "Environmental biotechnology -Biofuels as Renewable energy," New Horizons Biotechnol., 2015.
- [19] Q. Y. Zhang *et al.*, "City level CO2 and local air pollutants co-control performance evaluation: A case study of 113 key environmental protection cities in China," *Advances in Climate Change Research*, vol. 13, no. 1, 2022, doi: 10.1016/j.accre.2021.10.002.
- [20] T. Schaffeld, J. G. Schnitzler, A. Ruser, J. Baltzer, M. Schuster, and U. Siebert, "A Result of Accidental Noise Pollution: Acoustic Flowmeters Emit 28 kHz Pulses That May Affect Harbor Porpoise Hearing," Frontiers in Marine Science, vol. 9, 2022, doi: 10.3389/fmars.2022.892050.
- [21] H. M. Kasim, "Salinity tolerance of certain freshwater fishes.," Indian Journal of Fisheries, vol. 30, no. 1, 1983.
- [22] F. Wang, R. Tang, Z. Wang, and W. Yang, "Experimental study on anti-frosting performance of superhydrophobic surface under high humidity conditions," *Applied Thermal Engineering*, vol. 217, 2022, doi: 10.1016/j.applthermaleng.2022.119193.
- [23] T. L. Narayana *et al.*, "Advances in real time smart monitoring of environmental parameters using IoT and sensors," *Heliyon*, vol. 10, no. 7, 2024, doi: 10.1016/j.heliyon.2024.e28195.
- [24] R. F. Chisab, A. A. Majeed, and H. S. Hamid, "IoT-Based Smart Wireless Communication System for Electronic Monitoring of Environmental Parameters with a Data-Logger," *International Journal of Electrical and Electronic Engineering and Telecommunications*, vol. 12, no. 6, 2023, doi: 10.18178/ijeetc.12.6.450-458.
- [25] N. Walton and B. S. Nayak, "Rethinking of Marxist perspectives on big data, artificial intelligence (AI) and capitalist economic development," *Technological Forecasting and Social Change*, vol. 166, 2021, doi: 10.1016/j.techfore.2021.120576.
- [26] R. H. Hariri, E. M. Fredericks, and K. M. Bowers, "Uncertainty in big data analytics: survey, opportunities, and challenges," Journal of Big data, vol. 6, no. 1, 2019, doi: 10.1186/s40537-019-0206-3.

BIOGRAPHIES OF AUTHORS

Afritha Amelia graduated from the bachelor's Program (S1) at Sekolah Tinggi Teknik Harapan (STTH) Medan in the Department of Electrical Engineering Concentration of Telecommunication Engineering (2002). Then completed the master's Program (S2) at the Sepuluh Nopember Institute of Technology Surabaya (ITS) in the Department of Electrical Engineering with Multimedia Telecommunications Expertise (2009). Furthermore, completing Doctoral education (S3) at the University of Sumatera Utara (USU) Computer Science Study Program (2023). After that, completing Professional Engineer Education at PSPPI Politeknik Negeri Batam (2023). She has been a lecturer at Politeknik Negeri Medan since 2002. Currently, she serves as Head of the Electrical Engineering Department. She can be contacted at email: afrithaamelia@polmed.ac.id.

Roslina Roslina achieved her Professor since 2023 in mainly focused on smart cities, smart vocational education, and smart system. She has graduated Doctoral Program from Computer Science, University of Sumatera Utara in 2018. She is The Institute of Indonesian Engineers/Persatuan Insinyur Indonesia (PII) member since 2022. She also has professional experiences as national assessor of Independent Accreditation Institution/LAM Infokom. She can be contacted at email: roslina@polmed.ac.id.

Bakti Viyata Sundawa be solutioned his master's degree at Electrical Engineering from University of Sumatera Utara in 2011. He is a lecturer in Electrical Engineering Politeknik Negeri Medan. His research is mainly focused on sensors, IoT application, and wireless telecommunications. He is The Institute of Indonesian Engineers/Persatuan Insinyur Indonesia (PII) member since 2022. Currently, he serves as Head of Study Program of Technology of Network Telecommunication Engineering. He can be contacted at email: baktisundawa@polmed.ac.id.

Abdul Azis obtained his master's degree in human resources management sciences from Ganesha College of Economics (STIE) Jakarta in 2003. His research namely those entitled efforts to increase the efficiency of electric power consumption by comparison of TL lamps, HE lamps, and incandescent lamps in simple houses (2011), and design of a single-phase hydroelectric generator using a used induction motor for PLTMH (2013). He is The Institute of Indonesian Engineers/Persatuan Insinyur Indonesia (PII) member since 2010. He can be contacted at email: abdulazis@umsu.ac.id.

Banu Afwan Pribadi 🗓 🛂 🚾 🗘 has more than 20 years of experience in the information technology industry in Indonesia. During his career, he has held various positions, including product management, technology evangelist, product development leader and technical support for regional scale in Southeast Asia and Oceania. Currently, he is working at Samsung R&D Institute Indonesia, a research and development entity under Samsung Electronics. After graduating from the Bachelor of Industrial Engineering program at STT Telkom Bandung in 2004, he continued his Master of Management Studies with a focus on Business Management at Prasetiya Mulya Business School, Jakarta in 2010. As a professional who has gained a lot of knowledge from the academic world, he participated in the Teaching Practitioner program developed by the Ministry of Education, Culture, Research and Technology as an effort to share knowledge with students and provide provisions for students to work in the professional world. He was involved as a Teaching Practitioner at Politeknik Negeri Medan, Department of Electrical Engineering with a focus on teaching Satellite Communication System courses. He identifies himself as an independent learner who is enthusiastic about expanding his knowledge in physics, information technology, and business. He can be contacted at email: banu.a@samsung.com.