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 This research explores the use of the grasshopper optimization algorithm 

(GOA) for optimizing the placement of additional turbines in an established 

wind farm. The primary objective is to increase the annual energy 

production (AEP) of the wind farm while minimizing the wake effects 

caused by both existing and new turbines. The research evaluates three 

different turbine types (1.5 MW, 2.0 MW, and 2.5 MW) to identify the most 

appropriate choice for increasing the wind farm's capacity. The GOA’s 

performance is compared with the commercial software windPRO and 

validated using WAsP software for energy calculations. Numerical results 

indicate that the GOA effectively improves wind farm layout, with the 1.5 

MW turbines identified as the optimal choice for maximizing AEP and 

minimizing wake interactions. This study provides practical insights for 

wind farm operators and contributes to the development of advanced 

optimization techniques in wind energy. 
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1. INTRODUCTION 

The global effort to mitigate climate change has put renewable energy at the forefront of 

environmental initiatives. As nations seek to curtail greenhouse gas emissions, various sustainable power 

sources have gained prominence. Among these, wind energy has emerged as a particularly promising option, 

offering significant potential for eco-friendly electricity generation. This growing sector has attracted 

attention from researchers and policymakers alike, who recognize its capacity to contribute substantially to a 

cleaner energy landscape [1], [2]. However, optimizing wind farm layouts remains a significant challenge 

due to the complex interactions between turbines and the variability of wind conditions. 

Wind farm design optimization plays a crucial role in enhancing energy output while reducing 

expenses. A significant hurdle in this process is addressing the wake phenomenon, where turbines positioned 

downwind experience diminished wind velocities and heightened turbulence due to the influence of upwind 

turbines. This phenomenon, called the wake effect, is a significant factor in wind farm layout optimization 

(WFLO). It can greatly impact the overall productivity and efficiency of the wind farm [3], [4]. The 

optimization of turbine placement in wind farms has been the focus of numerous research studies. Mosetti et 

al. [5] pioneered the use of Jensen’s [6] wake model in conjunction with a genetic algorithm (GA) for this 

purpose, while Yang et al. [7] classified WFLO literature and conducted multi-objective optimization. To 

enhance financial analysis methods for wind farm projects, researchers such as Marmidis et al. [8] utilized 

https://creativecommons.org/licenses/by-sa/4.0/
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probabilistic modeling techniques, specifically implementing Monte Carlo simulations in their work. Şişbot 

et al. [9] optimized layouts on Gökçeada Island with a multi-objective GA. Wan et al. [10] found particle 

swarm optimization (PSO) more effective than GA for maximizing annual energy production (AEP). Kusiak 

and Song [11] used an evolutionary strategy to optimize AEP and minimize constraints. Saavedra-Moreno et 

al. [12] proposed a new evolutionary algorithm considering various factors and used a greedy heuristic for 

initialization. Archer et al. [13] developed a wake effects coefficient for mixed integer linear programming. 

Intelligent methods have been effectively used in various wind farm optimization challenges [14]. Meta-

heuristic algorithms, drawing inspiration from biological behaviors, have demonstrated impressive 

performance in tackling complex problems and are extensively used in real-world applications [15]–[20]. 

Prominent examples include GA, PSO [21], [22], gravitational search algorithm (GSA), and differential 

evolution (DE) [23], grey wolf optimizer (GWO) and whale optimization algorithm (WOA) [24], [25]. As an 

alternative approach, these algorithms also perform well in WFLO tasks, with GA being particularly 

prevalent [26]. 

Although GAs are widely used, they often struggle with issues like low performance and getting 

trapped in local optima. To address these limitations, new algorithms have been developed. For example, 

Beşkirli et al. [27] introduced a binary artificial algae algorithm, while Eroğlu and Seçkiner [28] 

implemented an ant colony optimization (ACO) algorithm with an innovative pheromone update method. 

Additional approaches include the elephant herding optimization algorithm [29], PSO for offshore wind 

farms [30], and the use of neural networks as surrogate models [31]. Ju et al. [32] combined GA with support 

vector regression to identify and replace underperforming turbines, leading to improved overall farm 

efficiency. In a separate investigation, Bai et al. [33] augmented GA by incorporating Monte Carlo tree 

search methods, which enhanced the algorithm's ability to explore potential solutions. These investigations 

highlight the promise of advanced computational approaches in refining wind farm layouts. Nevertheless, the 

field continues to seek more powerful and streamlined optimization strategies to further improve wind farm 

design and performance. 

The grasshopper optimization algorithm (GOA) is a relatively new nature-inspired optimization 

technique [34]–[36]. Modeled after the swarming behavior of grasshoppers, GOA has demonstrated its 

potential in addressing complex optimization challenges by efficiently balancing exploration and 

exploitation. This research aims to utilize the GOA to optimize the placement of additional turbines in an 

existing wind farm, taking into account wake effects and the influence of different turbine types on AEP. 

The studies mentioned above demonstrate the strong performance of meta-heuristic algorithms in 

WFLO, particularly for new wind farms and under simple wind scenarios. However, only a few have 

explored their effectiveness in complex wind scenarios or in upgrading existing wind farms. For example, 

Abdulrahman and Wood [37] proposed a method to enhance wind farm layouts by introducing different 

commercial turbines into an existing farm, using GA for optimization. As the demand for renewable energy 

grows, upgrading existing wind farms by adding more turbines has become an increasingly practical 

approach to increasing energy production. This research explores the optimization of existing wind farm 

expansions, an area often overlooked in current literature. We examine how to best integrate new turbines 

into operational farms, considering both the interactions between new and existing turbines and the farm's 

overall performance. This approach aims to maximize energy output in upgraded wind facilities. 

The contributions of this study are threefold: 

a. Implement the GOA to determine ideal locations for new turbines within an operational wind farm, 

showcasing the algorithm's capability in this novel application. 

b. Evaluate the performance of different turbine types (1.5 MW, 2.0 MW, and 2.5 MW) in the optimization 

process, providing insights into the most suitable turbine type for upgrading wind farms. 

c. Validate the proposed optimization method using WAsP [38] software for energy calculations and 

compare the results with those obtained from the commercial windPRO software [39]. 

This article is organized into the following sections: section 2 details wind farm modeling, covering 

key assumptions, wake effect analysis, and wind power calculation methods. Section 3 introduces the GOA 

and explains its application to WFLO. Section 4 presents our numerical experiment results, comparing 

various turbine types and contrasting the proposed algorithm's performance against commercial software 

solutions. Section 5 presents the conclusions, highlighting the main outcomes of investigation and suggesting 

potential directions for subsequent studies. 

 

 

2. WIND FARM MODELING 

2.1.  Assumptions 

To create a standardized model for optimizing turbine locations in a wind farm, we employ the 

following premises: 
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a. Uniform turbine specifications: every turbine within the facility is assumed to have identical 

characteristics and technical specifications. 

b. Fixed turbine count: the total number of wind turbines (N) is predetermined and remains constant 

throughout the optimization process. 

c. Two-dimensional representation: the wind farm is modeled on a flat (x, y) coordinate system, assuming 

minimal variations in elevation and surface conditions. Each turbine's position is denoted by its 

coordinates (𝑥𝑖,𝑦𝑖), where i ranges from 1 to the total number of turbines, N. 

d. Wind speed distribution: the wind speed 𝑣, occurring in direction θ across the farm, is characterized using 

a Weibull probability distribution [40]–[43]. 

In wind energy research, the Weibull distribution is commonly used to model wind speed patterns 

because of its effectiveness in representing wind speed probability distributions. This statistical model is 

characterized by two essential parameters: the scale parameter (c) and the shape parameter (k), which 

determine the distribution’s form and magnitude, respectively. The probability density function of the 

Weibull distribution is given by (1): 
 

𝑓(𝑣, 𝑘, 𝑐) =
𝑘

𝑐
(

𝑣

𝑐
)

𝑘−1

𝑒−(
𝑣

𝑐
)

𝑘

 (1) 

 

2.2.  Wake effect model 

The wake produced by a wind turbine can be separated into two regions: the near wake, located just 

behind the rotor, and the far wake, which extends further beyond this zone. In optimizing wind farm layouts 

for AEP, the far wake is more critical due to reduced velocity and increased turbulence, which significantly 

lowers overall output [44]. This effect, caused by upstream turbines, impacts the performance of downstream 

turbines, making precise wake modeling essential for efficient turbine placement. The impact is even greater 

in wind farms with multiple turbines, where one turbine's wake can affect several others [44]. 

Researchers have employed a variety of wake models to illustrate the patterns of wind speed 

reductions [45], [46]. These models can be broadly categorized into two main groups: analytical and 

computational. While computational models, which rely on solving the Navier-Stokes equations, typically 

offer greater precision than other modeling techniques, their extensive computational requirements and 

associated expenses render them unsuitable for application in WFLO [47]. 

The wake effect model is crucial in the optimization of wind farm layouts. This model simulates how 

turbines interact with each other, accounting for the decreased wind velocity and heightened turbulence caused 

by turbines positioned upstream. A simple tail effect model was introduced based on linear assumptions Jensen, 

where the reduced wind speed is determined by the distance from the turbine. This model is relatively 

straightforward, with the authors positing that the linear expansion of the wake effect behind wind turbines is 

contingent on the downstream distance between turbines, as illustrated in Figure 1 using wake model of Jensen. 

 

 

 
 

Figure 1. The Jensen’s wake model [6] 
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The fall in wind speed at a certain location d is: 

 

𝑉𝑑𝑒𝑓 = 1 −
𝑉𝑑𝑜𝑤𝑛

𝑉𝑢𝑝
=

1−√1−𝐶𝑡

(1+
𝜅𝑑𝑖,𝑗

𝑅
)

2 (2) 

 

where, the turbine's thrust coefficient is denoted by Ct, while di,j signifies the projection of the distance 

between the ith and jth turbines along the wind's direction. The entrainment constant, also known as the decay 

coefficient, is represented by 𝑘 and is determined empirically [48], as (3): 

 

𝑘 =
0.5

𝑙𝑛(𝐻/𝑧0)
 (3) 

 

where, the hub height is represented by H, while z0 indicates the terrain's surface roughness. For land-based 

areas, the constant k is assigned a value of 0.075, whereas for offshore regions, it is set to 0.04. Turbine jth is 

considered to be within the wake of turbine ith if it lies inside the wake cone, as shown in Figure 2. The 

distance from turbine ith to turbine jth, projected along the wind direction , di,j, is defined as (4) [11]: 

 

𝑑𝑖,𝑗 = |(𝑥𝑖 − 𝑥𝑗) 𝑐𝑜𝑠 𝜃 + (𝑦𝑖 − 𝑦𝑗) 𝑠𝑖𝑛 𝜃| (4) 

 

 

 
 

Figure 2. A wind turbine located within the wake cone of another turbine [11] 

 

 

The wind speed reduces due to the wake effect, which occurs when a turbine is impacted by several 

turbines situated in front of it. 

 

𝑉𝑑𝑒𝑓𝑖 = √∑ [
1−√1−𝐶𝑡

(1+𝜅𝑑𝑖,𝑗/𝑅)
2]𝑁

𝑗=1,𝑗≠𝑖,𝛽𝑖,𝑗<𝛼  (5) 

 

where, parameter α(0≤α≤π/2) is defined as arctan(κ) and the angle i,j, (0    ), between the vector 

originating from the apex of the hypothetical cone to the ith turbine and the jth turbine, is calculated as (6): 

 

𝛽𝑖,𝑗 = 𝑐𝑜𝑠−1 {
(𝑥𝑖−𝑥𝑗) 𝑐𝑜𝑠 𝜃+(𝑦𝑖−𝑦𝑗) 𝑠𝑖𝑛 𝜃+𝑅/𝜅

√(𝑥𝑖−𝑥𝑗+
𝑅

𝜅
𝑐𝑜𝑠 𝜃)

2
+(𝑦𝑖−𝑦𝑗+

𝑅

𝜅
𝑠𝑖𝑛 𝜃)

2
} (6) 

 

It is clear that the configuration of every turbine and the direction of the wind 𝜃 have an impact on 

Vdefi. Research has indicated that wake losses affect the Weibull distribution's scaling parameter c alone. 

According to statistical analysis, the wake effect looks like this [49]: 

 

𝑐′(𝜃) = 𝑐(𝜃). (1 − 𝑉𝑑𝑒𝑓𝑖) (7) 
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2.3.  Wind turbine characteristics 

Precisely characterizing turbine attributes is essential for accurately predicting wind energy output. 

Different techniques, such as using approximate polynomials, have been utilized to model wind turbines [50]. 

In this study, a 9th order polynomial model is employed as it has been found to be appropriate. 

 

𝑓(𝑥) = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥2 + 𝑝3𝑥3 + 𝑝4𝑥4 + 𝑝5𝑥5 + 𝑝6𝑥6 + 𝑝7𝑥7 + 𝑝8𝑥8 + 𝑝9𝑥9 (8) 

 

The standard case is applied to the problem with turbine capacities of 1.5 MW, 2.0 MW, and 2.5 MW as 

shown in Table 1. 
 

 

Table 1. Types of turbines proposed for wind farms 
Type of turbine FLMD 1.5 MW VESTAS 2.0 MW GE 2.5 MW 

General data Rated power (kW) 

Rotor diameter (m) 

Number of blades 

1500 

77 

3 

2000 

100 

3 

2500 

100 

3 

Rotor Minimum speed (rd/min) 

Maximum speed (rd/min) 
Cut-in wind speed (m/s) 

Rated wind speed (m/s) 

Cut-off wind speed (m/s) 

9.7 

18.3 
3.5 

13.5 

20 

- 

13.4 
3.5 

12 

22 

5.0 

14.1 
3.0 

11.5 

25 
Generator Maximum speed (rd/min) 

Voltage (V) 

1800 

690 

- 

- 

1650 

690 

 

 

Figure 3 presents the polynomial model, which integrates realistic wind turbine characteristics as 

proposed in this paper. The results show that the modeled characteristics closely align with those of actual 

turbines. Specifically, Figure 3(a) depicts the power characteristics of the FLMD-1.5 MW turbine, Figure 3(b) 

illustrates those of the VESTAS-2.0 MW turbine, and Figure 3(c) represents the GE-2.5 MW turbine. 

 

 

  
(a) (b) 

  

 
(c) 

  

Figure 3. Turbine characteristics; (a) FLMD 1.5 MW turbine characteristic, (b) VESTAS 2.0 MW turbine 

characteristic, and (c) GE 2.5 MW turbine characteristic 

 

https://www.thewindpower.net/manufacturer_en_14-vestas.php
https://www.thewindpower.net/manufacturer_en_5-ge-energy.php
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Therefore, the wind turbine characteristics are restated as (9): 

 

𝑓(𝜈) = {

0, 𝑣𝑖 < 𝑣𝑐𝑢𝑡𝑖𝑛 , 𝑣𝑖 > 𝑣𝑐𝑢𝑡𝑜𝑢𝑡

𝑓(𝑥)𝑖𝑛𝐸𝑞. (8), 𝑣𝑐𝑢𝑡𝑖𝑛 ≤ 𝑣𝑖 ≤ 𝑣𝑐𝑢𝑡𝑜𝑢𝑡

𝑃𝑟𝑎𝑡𝑒𝑑 , 𝑣𝑟𝑎𝑡𝑒𝑑 ≤ 𝑣𝑖 ≤ 𝑣𝑐𝑢𝑡𝑜𝑢𝑡

 (9) 

 

2.4.  Wind power model 

2.4.1.  Wind model 

The wind model is essential for forecasting wind power, as wind speed and direction affect turbine 

efficiency. Wind speed is typically modeled using a Weibull distribution, while wind direction is analyzed 

through a wind rose. For wind farm layout design, a 12-sector wind rose is recommended. 

 

2.4.2.  Wind power output 

By multiplying the power created at each wind speed by the period for which that particular wind 

speed occurs, and then integrating this across all conceivable wind speeds, one may get the average power 

produced by a wind turbine. In (10) represents the turbine's energy production [51]: 

 

𝐸(𝑃, 𝜃) = ∫ 𝑓(𝑣)𝑝(𝑣, 𝑐(𝜃), 𝑘(𝜃))𝑑𝑣
∞

0
 (10) 

 

where, the expression p(v,c(),k()) denotes the Weibull probability density function for wind speed, while 

f(v) signifies the power curve, as outlined in (9). The computation of energy generated by a turbine for wind 

directions varying from 0° to 360° is detailed as (11): 

 

𝐸(𝑃) = ∫ 𝑝(𝜃)𝑑𝜃
360

0
∫ 𝑓(𝑣)𝑝(𝑣, 𝑐(𝜃), 𝑘(𝜃))𝑑𝑣

∞

0
 (11) 

 

The energy output of the wind farm will be determined through numerical integration. The overall energy 

production for each wind direction θ will be aggregated as (12) [11]: 

 

𝐸(𝑃) = ∑ 𝑓𝑖(𝜃) ∫ 𝑓(𝑣)
𝑘𝑖(𝜃)

𝑐𝑖
′(𝜃)

(
𝑣

𝑐𝑖
′(𝜃)

)
(𝑘𝑖(𝜃)−1)

𝑒
−(

𝑣

𝑐𝑖
′(𝜃)

)

𝑘𝑖(𝜃)

𝑑𝑣
∞

0
ℎ
𝑖=1  (12) 

 

 

3. METHOD 

3.1.  Objective function 

The process of optimizing turbine location focuses on addressing new challenges, such as 

integrating advanced turbines with varying specifications, reducing wake losses, and adapting to shifts in 

wind patterns due to changes in surrounding landscapes. Therefore, properly optimizing turbine locations can 

significantly increase the AEP, reduce maintenance costs, and improve the overall sustainability of the wind 

farm. This research presents a strategy to optimize the turbine layout in a wind farm to increase AEP. The 

objective function for the considered problem is as (13): 
 

𝑂𝑏𝑗 = 𝑚𝑎𝑥[∑ 𝐸(𝑃)] (13) 

 

3.2.  Optimization algorithm 

The intricate nature of wind farm optimization, coupled with the constraints of trial-and-error 

techniques, makes heuristic approaches more favorable, as they effectively address these design challenges. 

For this study, we have selected the GOA to optimize turbine placement during the upgrade of existing wind 

farms. The GOA is a nature-inspired swarm intelligence method, modeled on the foraging and collective 

swarming behavior observed in grasshoppers. Widely adopted by researchers, GOA has proven effective in 

solving various optimization problems. Grasshoppers' unique social interactions and predatory strategies, 

involving continuous position updates and comfort zone adjustments, enable them to balance global and local 

search, successfully identifying optimal solutions [34]. 

The larval phase of grasshopper swarms is characterized by slow, small-step movement. In contrast, 

the adult swarm exhibits long-range, abrupt movement. Seeking food sources is another key feature of 

grasshopper swarming behavior. The search process is split into two stages by the GOA, just like other 

nature-inspired algorithms: exploration and exploitation. In optimization algorithms, two fundamental 

concepts are exploration and exploitation. Exploration refers to the wide-ranging movement of agents across 

the search space, while exploitation involves more localized, fine-tuned searches. Interestingly, grasshoppers 
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in nature display behaviors that mirror these algorithmic concepts. They engage in both broad area searches 

and focused local movements. Additionally, grasshoppers exhibit a third behavior-the ability to orient 

themselves towards and move in the direction of specific goals. Modeling this behavior mathematically could 

enable the design of a new nature-inspired algorithm [34]. Grasshopper swarming behavior can be modeled 

using the concept of a comfort zone, as illustrated in Figure 4. This social interaction, represented by a 

function 's', was a key influence on earlier, simplified locust swarm models. 

 

 

 
 

Figure 4. Social interaction of grasshoppers [34] 

 

 

The mathematical representation of grasshopper swarming behavior can be expressed as (14) [34]: 

 

𝑃𝑖 = 𝑆𝑖 + 𝐺𝑖 + 𝐴𝑖 (14) 

 

where, 𝑃𝑖 represents the location of the ith grasshopper, S𝑖 the social dynamics between grasshoppers in the 

swarm, 𝐺𝑖 indicates the gravitational force acting on the ith grasshopper, and 𝐴𝑖 is used to model the effect of 

wind on grasshopper movement. To incorporate the unpredictable behavior of grasshoppers, may be 

reformulated as (14): 

 

𝑋𝑖 = 𝑟1𝑆𝑖 + 𝑟2𝐺𝑖 + 𝑟3𝐴𝑖 (15) 

 

where, 𝑟1, 𝑟2, and 𝑟3 are numbers distributed within the range [0, 1]. 

The definition of social interaction 𝑆𝑖 is presented as (16): 

 

𝑆𝑖 = ∑ 𝑠(𝑑𝑖𝑗)𝑑̂𝑖𝑗
𝑁
𝑗=1
𝑗≠𝑖

 (16) 

 

where, dij is the distance from the ith to the jth grasshopper, calculated as 𝑑𝑖𝑗 = |𝑥𝑗 −  𝑥𝑖|. The function s is 

used to represent the intensity of social forces; 𝑑̂𝑖𝑗  is the unit vector pointing from the grasshopper ith to jth, 

calculated as (17): 

 

𝑑̂𝑖𝑗 =
𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗
 (17) 

 

The mathematical representation of social forces among grasshoppers, denoted by the function s, is computed 

as (18): 

 

𝑠(𝑟) = 𝑓𝑒
−𝑟

𝑙 − 𝑒−𝑟 (18) 

 

where, the variable f signifies the intensity of attraction, whereas l indicates the extent of the attractive range. 

The social dynamics among grasshoppers can be described by forces of attraction and repulsion. These forces 

are influenced by the distance between the grasshoppers, which is considered within the range of [0, 15]. 

Attraction intensifies when the distance lies between 2.079 and 4, after which it gradually diminishes. 

Repulsion, on the other hand, takes place when the distance falls within the range of 0 to 2.079. At an exact 

distance of 2.079, there is no force acting between the grasshoppers, neither repulsion nor attraction, and this 

is referred to as the comfort zone [35]. 

The gravitational force Gi is calculated as (19): 
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𝐺𝑖 = −𝑔𝑒̂𝑔 (19) 

 

where, the variable g represents the gravitational constant, and 𝑒̂𝑔 denotes the unit vector directed toward the 

Earth's center. 

In (20) shows the wind advection Ai: 
 

𝐴𝑖 = 𝑢𝑒̂𝑤 (20) 
 

where, the drift constant is u and unit vector in the direction of the wind is  𝑒̂𝑤. 

By replacing the values of S, G, and A, the resulting equation becomes: 

 

𝑋𝑖 = ∑ 𝑠(|𝑥𝑗 − 𝑥𝑖|)
𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗
−𝑁

𝑗=1
𝑗≠𝑖

𝑔𝑒̂𝑔 + 𝑢𝑒̂𝑤 (21) 

 

where, the total number of locusts in the population is N. 

In (21), cannot be directly applied to optimization tasks due to a specific limitation. In this 

formulation, the grasshoppers rapidly attain their comfort zone, which results in the swarm's inability to 

effectively converge on the desired target point [36]. To address this issue, researchers have developed an 

enhanced version of the equation, which is presented in (22): 

 

𝑋𝑖
𝑑 = 𝑐 (∑ 𝑐

𝑢𝑏𝑑−𝑙𝑏𝑑

2
𝑠(|𝑥𝑗

𝑑 − 𝑥𝑖
𝑑|)

𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗

𝑁
𝑗=1
𝑗≠𝑖

) + 𝑇̂𝑑 (22) 

 

where, the terms 𝑢𝑏𝑑 and 𝑙𝑏𝑑 indicate the upper and lower limits in the 𝑑th dimension, respectively. 

𝑇̂𝑑  signifies the optimal solution found to date within the 𝑑th dimensional space. 

It's worth noting that S is akin to the S component in (14), the gravitational force component (G) 

equals zero, and the wind direction component (A) always points towards the best solution 𝑇̂𝑑. 

In (22) indicates that a grasshopper's subsequent location is determined by three key factors: its 

present position, the target location, and the positions of fellow grasshoppers. The equation's first term takes 

into account the grasshopper's proximity to its peers, which helps ensure that the search agents are distributed 

around the intended target. The adaptive parameter c appears twice in this equation, serving distinct 

purposes: 

a. The initial coefficient c on the left is similar to the inertial weight (w) in PSO. It moderates the 

grasshoppers' movements toward the target, effectively balancing the exploration and exploitation 

activities of the entire swarm in relation to the target. 

b. The second 𝑐 reduces the areas of attraction, comfort, and repulsion among grasshoppers. In terms of 

composition 𝑐
𝑢𝑏𝑑−𝑙𝑏𝑑

2
𝑠(|𝑥𝑗

𝑑 − 𝑥𝑖
𝑑|), the 𝑐

𝑢𝑏𝑑−𝑙𝑏𝑑

2
 component plays a role in diminishing the space a 

locust explores and exploits in a linear fashion, while the 𝑠(|𝑥𝑗
𝑑 − 𝑥𝑖

𝑑|) component dictates whether the 

locust should move away from (explore) or towards (exploit) the target. 

 

𝐶 = 𝐶𝑚𝑎𝑥 − 𝑡
𝐶𝑚𝑎𝑥−𝐶𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
 (23) 

 

where, 𝑡 represents the current iteration; and 𝑡max is the total number of iterations. A large value of 𝑐 results in 

greater exploration in GOA, while a small value of 𝑐 leads to increased exploitation. The value of 𝑐 is always 

set between cmax and cmin. 

In this optimization approach, the position of each grasshopper is adjusted by considering three 

essential elements: its present coordinates, the optimal position found within the entire swarm, and the 

positions of its neighboring grasshoppers. This updating strategy helps the algorithm avoid getting trapped in 

local optimal solutions. The step-by-step process of this optimization technique is outlined in a pseudocode 

format, which can be found in the first algorithm description [34]. The flowchart illustrating the GOA 

algorithm is presented in Figure 5. 

 

Algorithm 1. The pseudo-code of the GOA [35] 
1: 

2: 

3: 

4: 

5: 

Initializing the grasshopper population: Xi (i = 1, 2, . . . , N) 

Setting up algorithm parameters: cmin, cmax, and tmax  

Evaluating initial fitness: f (Xi) of each Xi  

t = the best solution  

while (t < tmax ) do  
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6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

        Updating the adaptive parameter using Eq. (23)  

        for i = 1 to N do  

             Updating grasshopper positions using Eq. (22)  

             Enforcing search boundaries 

        end for  

        Re-evaluating fitness and updating the best solution  

         t = t + 1  

 end while  

Returning the best solution found 

 

 

 
 

 

Figure 5. The flowchart of the GOA [35] 

 

 

Wind farm data plays a vital role in optimizing turbine locations to reduce interference effects and 

enhance yearly energy output. The wind farm discussed in this paper is an onshore site, derived from the 

WAsP workspace sample [38], specifically the file Version8Windfarm.wh. This wind farm is situated in a 

complex terrain with elevations ranging from 10 m to 110.5 m. The site experiences an average wind speed 

of 7.25 m/s and an average wind energy density of 388 W/m2. The goal is to enhance the wind farm 

configuration for each suggested turbine model to maximize energy output and efficiency, ultimately 

identifying the most appropriate turbine type. 

The task is to increase the output capacity of a current 30 MW wind farm by incorporating an extra 

20 MW within the same area, which spans 3000×2500 m2. The proposal involves using three types of 

turbines with different capacities to calculate the total energy output and efficiency of the wind farm in order 

to select the most suitable turbine type. The parameters of wind farm are shown in Table 2. 

 

 

Table 2. Input parameters 
Parameters Value 

Roughness (Z0) 0.083 

Wind velocity in free flow (V0) 7.25 m/s 

Hub height (h) 80 m 
Existing wind farm area 3000 m×2500 m 

Thrust coefficient (Ct) 0.8 

Wind density 388 W/m2 

 

 

The flow chart of Figure 6 shows the optimization steps applied to optimize an upgraded wind farm [24]. 

Step 1: raw data of wind, terrain, surface roughness, obstacles, existing turbine locations and wind generator 

data will be input into WAsP software for processing and the output of this process is the wind resource map. 

Step 2: the input data for windPRO and GOA is the wind resource map, which will be used to optimally 

position new turbines within the upgraded wind farm. 

Start 

Set GOA parameters: cmin, cmax, tmax 

Generate the fitness value of swarm population 

Evaluating initial fitness  
and identify the best search agent 

Update c using (23) 

Evaluate the fitness value 
and update the best search agent 

Update the position of the current Xi using (22) 

t < tmax 

Finish 

No 

Yes 
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Step 3: after the wind farm is optimally arranged by the GOA algorithm, the windPRO software will be 

recalculated and analyzed by WAsP software. 

Step 4: conclusion and proposal of the best solution. 

 

 

 

 

Figure 6. Flow chart of WFLO [24] 

 

 

4. NUMERICAL RESULTS 

The article suggests selecting three different types of wind turbines to be optimally arranged within 

the same wind farm to assess the algorithm's effectiveness and identify the most suitable turbine type for 

installation. The case studies are summarized in Table 3. The existing wind farm consists of 20 FMD77 

turbines, each with an installed capacity of 1.5 MW, resulting in a total capacity of 30 MW. Detailed data for 

the current wind farm is presented in Table 4. 

 

 

Table 3. Case studies of optimization of wind farm layout 
Case studies Case study 1 Case study 2 Case study 3 

Turbine capacity [MW] 1.5 2.0 2.5 

Number of turbines 14 10 8 

Shape of wind farm Fixed Fixed Fixed 

cut-in [m/s] 3.54 3.5 3.5 

cut-out [m/s] 20 22 25 

 

 

Table 4. Existing wind farm data 
Variable Total Mean Min Max 

Gross AEP [GWh] 94.373 4.719 4.511 4.952 

Net AEP [GWh] 90.686 4.534 4.359 4.687 

Wake loss [%] 3.91 - 0.87 5.35 
Mean speed [m/s] - 7.04 6.9 7.21 

Capacity factor [%] 34.508 - - - 

 

 

Table 4 summarizes the data from the existing wind farm, showing that the maximum, minimum, 

and average Gross AEP per turbine are 4,952 GWh, 4,511 GWh, and 4,719 GWh, respectively. The wind 

Raw of 

wind 

Wind 

generator data 
Obstacle 

group 

Elevation and 

roughness 

map 

WAsP Turbine Editor 

(WAsP tools) 

OWC wizard 

(WAsP tools) 

WAsP Map Editor 

(WAsP tools) 

WAsP Software 

Wind resource grid 

Optimize module 

(windPRO software) 

GOA 

(proposed algorithm) 

Wind farm layout optimization 

Recalculated by 

WAsP Software 

Analyze and 

evaluate the results 
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farm's total Gross AEP, encompassing all 20 turbines, is 94,373 GWh. In terms of Net AEP, the maximum, 

minimum, and average values per turbine are 4,687 GWh, 4,359 GWh, and 4,534 GWh, respectively, 

resulting in a total Net AEP of 90,686 GWh. The wake losses for individual turbines vary, with a maximum 

of 5.35%, a minimum of 0.87%, and an average of 3.91%. The entire wind farm has a capacity factor of 

34.508%. 

Figure 7 displays the primary wind directions in the project area, with angles of 30, 60, 240, and 270 

degrees. The wind roses are simplified and divided into four sectors (sectors 2, 3, 9, and 10) as shown in 

Figure 7(a). The highest probability was observed at a wind speed of 6.8 m/s, representing approximately 

12%, with an average wind power density of 330 W/m², as illustrated in Figure 7(b). Figures 8 and 9 depict 

the turbine layout and terrain elevation of the existing wind farm, simulated using WAsP software [38]. 

 

 

  
(a) (b) 

 

Figure 7. Characteristics of wind energy; (a) wind rose and (b) wind speed distribution 

 

 

  

  

Figure 8. Turbine layout of the existing wind farm 

using WAsP software 

Figure 9. Current wind farm elevation 

 

 

4.1.  Case study 1 

In case study 1, it is proposed to utilize 14 FLMD wind turbines, each with a capacity of 1.5 MW, 

for the upgrade of the existing wind farm. These turbines are strategically positioned in regions with the 

highest wind energy density and arranged to minimize wake effects, all within the current footprint of the 

wind farm. 

Table 5 present the calculation results of the GOA algorithm and windPRO software for three 

scenarios: i) the existing wind farm with 20 turbines considering the wake effect from the additional turbines; 

ii) 14 additional turbines installed within the existing wind farm area; and iii) the entire upgraded wind farm. 

Each method produces different calculation results, but both methods show similar efficiency in terms of 

AEP and wake loss for the existing wind farm, the additional turbines, and the upgraded wind farm. 
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Table 5. Results of the wind farms using the GOA and windPRO 

Variable 

GOA windPRO 

Existing wind 
farm 

Additional wind 
farm 

Upgraded wind 
farm 

Existing 
wind farm 

Additional 
wind farm 

Upgraded 
wind farm 

Gross AEP [GWh] 94.373 66.186 160.559 94.374 68.927 163.301 

Net AEP [GWh] 87.293 59.185 146.478 87.742 62.785 150.527 

Wake loss [%] 7.502 10.58 8.77 7.0274 8.91 7.82 
Capacity factor [%] 33.217 32.173 32.787 33.387 34.129 33.693 

 

 

The calculation results show a significant decrease in the wind farm's efficiency after the upgrade, 

dropping from 34.508% to 32.787% according to GOA, and to 33.693% according to windPRO, following 

the addition of 14 turbines. The data suggests that increasing the density of wind turbines in a given area 

leads to more pronounced wake effects. This intensification of wake interference among turbines can result in 

higher energy losses and a decrease in the overall annual energy output of the wind farm. The wake loss of 

the wind farm after the upgrade rises significantly from the original 3.91% to 8.77% according to GOA, and 

to 7.82% according to windPRO. This demonstrates the effectiveness of the GOA algorithm for optimizing 

wind farm layouts. Each method identified a different layout, but all exhibited similar performance in terms 

of AEP and wake loss. The wind turbine layout in Figure 10 is closely aligned with the layout shown in 

windPRO in Figure 11. The additional wind turbines are positioned within the same area as the existing wind 

farm and are placed in locations with the highest power density. They are optimally arranged to avoid wake 

effects. 

 

 

  
  

Figure 10. Optimal turbine layout using GOA Figure 11. Optimal turbine layout using windPRO 

 

 

4.2.  Case study 2 

In this study, 10 VESTAS 2.0 MW wind turbines will be used for optimal layout to upgrade the 

wind farm. As in case study 1, the GOA algorithm and windPRO software will be applied to evaluate the 

AEP, wake losses, and efficiency of the newly upgraded turbines, the existing wind farm considering the 

influence of the additional turbines, and the overall upgraded wind farm. 

The calculation results of the GOA algorithm and windPRO software for three scenarios are shown 

in Table 6. These scenarios include the existing wind farm with 20 turbines considering the wake effect from 

10 VESTAS 2.0 MW additional turbines, 10 additional turbines installed within the existing wind farm area, 

and the entire upgraded wind farm. While the two methods yield different results, they both show similar 

efficiency in terms of AEP and wake loss for the existing wind farm, the additional turbines, and the 

upgraded wind farm. 

 

 

Table 6. Results of the wind farms using the GOA 

Variable 

GOA windPRO 

Existing 

wind farm 

Additional 

wind farm 

Upgraded 

wind farm 

Existing 

wind farm 

Additional 

wind farm 

Upgraded 

wind farm 

Gross AEP [GWh] 94.373 55.269 149.642 94.373 56.015 150.388 
Net AEP [GWh] 87.741 50.862 138.603 88.133 52.46 140.593 

Wake loss [%] 7.027 7.97 7.38 6.612 6.35 6.51 

Capacity factor [%] 33.387 29.031 31.645 33.536 29.943 32.099 

Wind direction 
Wind direction 
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The data presented in Table 6 demonstrate a significant reduction in the wind farm's capacity factor 

post-upgrade. GOA calculations reveal a drop in efficiency from 34.508% to 31.645%, while windPRO 

shows a decrease to 32.009% with the addition of 10 turbines. This indicates that adding more turbines 

within the same area amplifies wake effects, leading to greater wake losses and a reduction in energy 

production. Specifically, wake losses in the wind farm spike from 3.91% to 7.38% according to GOA, and to 

6.51% based on windPRO after the upgrade. GOA and windPRO for wind farm layout are different, but all 

demonstrate similar performance in terms of AEP and wake losses. An examination of Figures 12 and 13 

reveals striking similarities between the wind turbine configurations generated by the GOA and the windPRO 

software, respectively. In both layouts, the newly added turbines are integrated within the existing wind 

farm's footprint. These additional units appear to be strategically positioned in areas characterized by superior 

power density. The arrangement suggests a careful optimization process aimed at minimizing wake 

interference among the turbines. 

 

 

  
  

Figure 12. Optimal turbine layout using GOA Figure 13. Optimal turbine layout using windPRO 

 

 

4.3.  Case study 3 

Expanding on the methodologies employed in the previous two case studies, this investigation 

proposes the addition of eight GE energy 2.5 MW turbines to enhance the wind farm's capacity. Both the 

GOA and windPRO software will be utilized to calculate the AEP and wake losses for both the current and 

expanded wind farm configurations. 

The results, summarized in Table 7, indicate a notable reduction in the existing wind farm's AEP 

following the expansion. The initial net AEP of the current wind farm stands at 90.686 GWh. Post-upgrade 

simulations show a decrease to 88.759 GWh according to windPRO software, and 88.57 GWh as per the 

GOA algorithm. This decline in energy output can be attributed to the wake effects introduced by the newly 

installed turbines, which appear to negatively impact the performance of the existing farm. 

 

 

Table 7. Results of the wind farms using the GOA 

Variable 

GOA windPRO 

Existing wind 

farm 

Additional wind 

farm 

Upgraded wind 

farm 

Existing 

wind farm 

Additional 

wind farm 

Upgraded 

wind farm 

Gross AEP [GWh] 94.373 55.173 149.546 94.373 57.16 151.533 
Net AEP [GWh] 88.57 51.438 140.008 88.759 53.985 142.744 

Wake loss [%] 6.15 6.77 6.38 5.949 5.55 5.8 

Capacity factor [%] 33.703 29.359 31.966 33.775 30.814 32.589 

 

 

The data presented in Table 7 demonstrate a significant reduction in the wind farm's capacity factor 

post-upgrade. GOA calculations reveal a drop in efficiency from 34.508% to 31.966%, while windPRO 

shows a decrease to 32.589%. This analysis indicates that a higher density of wind turbines within a fixed 

area intensifies the wake interference phenomenon. As a consequence, there is an observed increase in 

energy losses due to wake effects, leading to a decrease in the overall energy output of the wind farm. 

Specifically, wake losses in the wind farm spike from 3.91% to 6.38% according to GOA, and to 5.8% based 

on windPRO after the upgrade. The results demonstrate a noteworthy decrease in the wind farm's efficiency 

post-upgrade. Figures 14 and 15 show the turbine layout in the wind farm using GOA and windPRO, 

respectively. The turbines are arranged similarly in both layouts. 

Wind direction 
Wind direction 
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Figure 14. Optimal turbine layout using GOA Figure 15. Optimal turbine layout using windPRO 

 

 

5. DISCUSSION 

Optimizing turbine locations in upgraded wind farms is challenging, particularly due to wake effects 

between existing and new turbines. This study successfully applied the GOA to improve turbine placement 

and enhance AEP. To evaluate the algorithm's effectiveness, we compared the performance of wind farms 

optimized by GOA with those calculated by windPRO software, as shown in Table 8. 

 

 

Table 8. Efficiency of wind farms with optimal turbine placement using windPRO and GOA 

Wind farms 
Efficiency [%] 

FLDM 1.5 MW VESTAS 2.0 MW  GE 2.5 MW 

Existing wind farm windPRO 33.387 33.536 33.774 
GOA 33.217 33.387 33.702 

Additional wind farm windPRO 34.129 29.943 30.813 

GOA 32.173 29.031 29.359 
Upgraded wind farm windPRO 33.693 32.099 32.589 

GOA 32.787 31.645 31.965 

 

 

The comparison results indicate that the 1.5 MW FLDM turbine is the most efficient for capacity 

upgrades in the existing wind farm, with an efficiency of 32.787%, outperforming the 2.0 MW VESTAS 

turbine at 31.645% and the 2.5 MW GE turbine at 31.965%. The relevant data for both the existing wind 

farm and the newly installed turbines are summarized in Table 8. This result shows that the FLDM 1.5 MW 

turbine is the most efficient in both the existing and the upgraded wind farm, and GOA has an efficiency 

close to windPRO in this case. 

The GOA results were compared with those from the commercial software windPRO and further 

validated using WAsP. The comparison shows that GOA offers a robust alternative to traditional methods, 

delivering notable improvements in AEP. These results underscore the effectiveness of the GOA as a 

valuable method for enhancing wind farm configurations. The algorithm demonstrates particular utility in 

scenarios involving the integration of additional turbines into pre-existing wind farm layouts. 

Table 9 shows that the Net AEP for the upgraded wind farms calculated using GOA is within 3% of 

the results from windPRO, demonstrating the algorithm's practicality for wind energy calculations. However, 

assumptions like constant terrain elevation and surface roughness limit the real-world applicability of this 

study. Future research should consider more detailed terrain models and compare GOA with other advanced 

or hybrid algorithms to enhance its performance further. 
 
 

Table 9. Comparison of Net AEP for upgraded wind farms calculated using windPRO and GOA 

Case studies Variable 
Upgraded wind farm 
windPRO GOA 

Case study 1 Net AEP [GWh] 150.527 146.478 

Comparison (%) 2.690 

Case study 2 Net AEP [GWh] 140.593 138.603 
Comparison (%) 1.415 

Case study 3 Net AEP [GWh] 142.744 140.008 

Comparison (%) 1.917 

 

 

Wind direction 
Wind direction 

https://www.thewindpower.net/manufacturer_en_14-vestas.php
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In summary, this study demonstrates the GOA's efficacy in refining wind farm configurations. The 

algorithm provides pragmatic approaches for improving overall wind farm performance, thereby making a 

significant contribution to the ongoing development of wind energy technologies. The GOA's ability to 

optimize turbine placement, especially when integrating new units into existing farms, highlights its potential 

as a valuable tool in the wind energy sector. 

 

 

6. CONCLUSION 

This study highlights the successful application of the GOA in optimizing the placement of 

additional turbines in a wind farm undergoing upgrades. By effectively accounting for wake effects and 

analyzing different turbine types, GOA has demonstrated considerable potential in improving the AEP of 

wind farms. 

The use of GOA in this scenario represents a notable advancement over conventional optimization 

methods. The GOA's balanced approach to exploration and exploitation enables it to effectively search the 

complex solution landscape, evading local optima and yielding superior optimization results. Validation 

through comparisons with windPRO and WAsP software reinforces the reliability and accuracy of GOA in 

practical applications. 

The study’s analysis of various turbine types (1.5 MW, 2.0 MW, and 2.5 MW) provides important 

insights for wind farm operators considering upgrades. The 1.5 MW turbines were found to be the most 

advantageous, offering the best trade-off between energy generation and wake effect reduction. This 

information is crucial for making well-informed decisions on turbine selection to optimize the efficiency and 

profitability of wind farm upgrades. 

Nonetheless, the study acknowledges certain limitations, such as the assumptions regarding constant 

terrain elevation and surface roughness. Future research should focus on incorporating more detailed terrain 

models and varying surface roughness to better reflect real-world conditions. Moreover, further comparisons 

with other advanced optimization algorithms and the exploration of hybrid methods could yield a deeper 

understanding of GOA’s capabilities and potential areas for improvement. 
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