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This research explores the use of the grasshopper optimization algorithm
(GOA) for optimizing the placement of additional turbines in an established
wind farm. The primary objective is to increase the annual energy
production (AEP) of the wind farm while minimizing the wake effects
caused by both existing and new turbines. The research evaluates three
different turbine types (1.5 MW, 2.0 MW, and 2.5 MW) to identify the most
appropriate choice for increasing the wind farm's capacity. The GOA’s
performance is compared with the commercial software windPRO and
validated using WASP software for energy calculations. Numerical results
indicate that the GOA effectively improves wind farm layout, with the 1.5
MW turbines identified as the optimal choice for maximizing AEP and
minimizing wake interactions. This study provides practical insights for
wind farm operators and contributes to the development of advanced
optimization techniques in wind energy.
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1. INTRODUCTION

The global effort to mitigate climate change has put renewable energy at the forefront of
environmental initiatives. As nations seek to curtail greenhouse gas emissions, various sustainable power
sources have gained prominence. Among these, wind energy has emerged as a particularly promising option,
offering significant potential for eco-friendly electricity generation. This growing sector has attracted
attention from researchers and policymakers alike, who recognize its capacity to contribute substantially to a
cleaner energy landscape [1], [2]. However, optimizing wind farm layouts remains a significant challenge
due to the complex interactions between turbines and the variability of wind conditions.

Wind farm design optimization plays a crucial role in enhancing energy output while reducing
expenses. A significant hurdle in this process is addressing the wake phenomenon, where turbines positioned
downwind experience diminished wind velocities and heightened turbulence due to the influence of upwind
turbines. This phenomenon, called the wake effect, is a significant factor in wind farm layout optimization
(WFLO). It can greatly impact the overall productivity and efficiency of the wind farm [3], [4]. The
optimization of turbine placement in wind farms has been the focus of numerous research studies. Mosetti et
al. [5] pioneered the use of Jensen’s [6] wake model in conjunction with a genetic algorithm (GA) for this
purpose, while Yang et al. [7] classified WFLO literature and conducted multi-objective optimization. To
enhance financial analysis methods for wind farm projects, researchers such as Marmidis et al. [8] utilized
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probabilistic modeling techniques, specifically implementing Monte Carlo simulations in their work. Sisbot
et al. [9] optimized layouts on Gokceada Island with a multi-objective GA. Wan et al. [10] found particle
swarm optimization (PSO) more effective than GA for maximizing annual energy production (AEP). Kusiak
and Song [11] used an evolutionary strategy to optimize AEP and minimize constraints. Saavedra-Moreno et
al. [12] proposed a new evolutionary algorithm considering various factors and used a greedy heuristic for
initialization. Archer et al. [13] developed a wake effects coefficient for mixed integer linear programming.
Intelligent methods have been effectively used in various wind farm optimization challenges [14]. Meta-
heuristic algorithms, drawing inspiration from biological behaviors, have demonstrated impressive
performance in tackling complex problems and are extensively used in real-world applications [15]-[20].
Prominent examples include GA, PSO [21], [22], gravitational search algorithm (GSA), and differential
evolution (DE) [23], grey wolf optimizer (GWO) and whale optimization algorithm (WOA) [24], [25]. As an
alternative approach, these algorithms also perform well in WFLO tasks, with GA being particularly
prevalent [26].

Although GAs are widely used, they often struggle with issues like low performance and getting
trapped in local optima. To address these limitations, new algorithms have been developed. For example,
Beskirli et al. [27] introduced a binary artificial algae algorithm, while Eroglu and Segkiner [28]
implemented an ant colony optimization (ACQO) algorithm with an innovative pheromone update method.
Additional approaches include the elephant herding optimization algorithm [29], PSO for offshore wind
farms [30], and the use of neural networks as surrogate models [31]. Ju et al. [32] combined GA with support
vector regression to identify and replace underperforming turbines, leading to improved overall farm
efficiency. In a separate investigation, Bai et al. [33] augmented GA by incorporating Monte Carlo tree
search methods, which enhanced the algorithm's ability to explore potential solutions. These investigations
highlight the promise of advanced computational approaches in refining wind farm layouts. Nevertheless, the
field continues to seek more powerful and streamlined optimization strategies to further improve wind farm
design and performance.

The grasshopper optimization algorithm (GOA) is a relatively new nature-inspired optimization
technique [34]-[36]. Modeled after the swarming behavior of grasshoppers, GOA has demonstrated its
potential in addressing complex optimization challenges by efficiently balancing exploration and
exploitation. This research aims to utilize the GOA to optimize the placement of additional turbines in an
existing wind farm, taking into account wake effects and the influence of different turbine types on AEP.

The studies mentioned above demonstrate the strong performance of meta-heuristic algorithms in
WFLO, particularly for new wind farms and under simple wind scenarios. However, only a few have
explored their effectiveness in complex wind scenarios or in upgrading existing wind farms. For example,
Abdulrahman and Wood [37] proposed a method to enhance wind farm layouts by introducing different
commercial turbines into an existing farm, using GA for optimization. As the demand for renewable energy
grows, upgrading existing wind farms by adding more turbines has become an increasingly practical
approach to increasing energy production. This research explores the optimization of existing wind farm
expansions, an area often overlooked in current literature. We examine how to best integrate new turbines
into operational farms, considering both the interactions between new and existing turbines and the farm's
overall performance. This approach aims to maximize energy output in upgraded wind facilities.

The contributions of this study are threefold:

a. Implement the GOA to determine ideal locations for new turbines within an operational wind farm,
showcasing the algorithm's capability in this novel application.

b. Evaluate the performance of different turbine types (1.5 MW, 2.0 MW, and 2.5 MW) in the optimization
process, providing insights into the most suitable turbine type for upgrading wind farms.

c. Validate the proposed optimization method using WAsP [38] software for energy calculations and
compare the results with those obtained from the commercial windPRO software [39].

This article is organized into the following sections: section 2 details wind farm modeling, covering
key assumptions, wake effect analysis, and wind power calculation methods. Section 3 introduces the GOA
and explains its application to WFLO. Section 4 presents our numerical experiment results, comparing
various turbine types and contrasting the proposed algorithm's performance against commercial software
solutions. Section 5 presents the conclusions, highlighting the main outcomes of investigation and suggesting
potential directions for subsequent studies.

2. WIND FARM MODELING
2.1. Assumptions

To create a standardized model for optimizing turbine locations in a wind farm, we employ the
following premises:
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a. Uniform turbine specifications: every turbine within the facility is assumed to have identical
characteristics and technical specifications.

b. Fixed turbine count: the total number of wind turbines (N) is predetermined and remains constant
throughout the optimization process.

¢. Two-dimensional representation: the wind farm is modeled on a flat (x, y) coordinate system, assuming
minimal variations in elevation and surface conditions. Each turbine's position is denoted by its
coordinates (x:,y:), where i ranges from 1 to the total number of turbines, N.

d. Wind speed distribution: the wind speed v, occurring in direction & across the farm, is characterized using
a Weibull probability distribution [40]-[43].

In wind energy research, the Weibull distribution is commonly used to model wind speed patterns
because of its effectiveness in representing wind speed probability distributions. This statistical model is
characterized by two essential parameters: the scale parameter (c) and the shape parameter (k), which
determine the distribution’s form and magnitude, respectively. The probability density function of the
Weibull distribution is given by (1):

Fw kc) = S(E)H ' @

2.2. Wake effect model

The wake produced by a wind turbine can be separated into two regions: the near wake, located just
behind the rotor, and the far wake, which extends further beyond this zone. In optimizing wind farm layouts
for AEP, the far wake is more critical due to reduced velocity and increased turbulence, which significantly
lowers overall output [44]. This effect, caused by upstream turbines, impacts the performance of downstream
turbines, making precise wake modeling essential for efficient turbine placement. The impact is even greater
in wind farms with multiple turbines, where one turbine's wake can affect several others [44].

Researchers have employed a variety of wake models to illustrate the patterns of wind speed
reductions [45], [46]. These models can be broadly categorized into two main groups: analytical and
computational. While computational models, which rely on solving the Navier-Stokes equations, typically
offer greater precision than other modeling techniques, their extensive computational requirements and
associated expenses render them unsuitable for application in WFLO [47].

The wake effect model is crucial in the optimization of wind farm layouts. This model simulates how
turbines interact with each other, accounting for the decreased wind velocity and heightened turbulence caused
by turbines positioned upstream. A simple tail effect model was introduced based on linear assumptions Jensen,
where the reduced wind speed is determined by the distance from the turbine. This model is relatively
straightforward, with the authors positing that the linear expansion of the wake effect behind wind turbines is
contingent on the downstream distance between turbines, as illustrated in Figure 1 using wake model of Jensen.

Figure 1. The Jensen’s wake model [6]
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The fall in wind speed at a certain location d is:

Vaown _ 1—/1-C
Vaer = — —down — > )
Vip(1450)

where, the turbine's thrust coefficient is denoted by C; while d;; signifies the projection of the distance
between the i and j™ turbines along the wind's direction. The entrainment constant, also known as the decay
coefficient, is represented by k and is determined empirically [48], as (3):

_ 05
" n(H/z0)

®)

where, the hub height is represented by H, while zo indicates the terrain's surface roughness. For land-based
areas, the constant k is assigned a value of 0.075, whereas for offshore regions, it is set to 0.04. Turbine j" is
considered to be within the wake of turbine it if it lies inside the wake cone, as shown in Figure 2. The
distance from turbine i to turbine j™, projected along the wind direction 6, dij, is defined as (4) [11]:

dij = |(x; —x;) cos 0 + (y; — y;) sin | (4)

sz

JR——Wind direction 6

-
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v

Figure 2. A wind turbine located within the wake cone of another turbine [11]

The wind speed reduces due to the wake effect, which occurs when a turbine is impacted by several
turbines situated in front of it.

N 1-/1=C;
Viesi = \/Z;:l,jﬂ,gi_jm [W] (5)

where, parameter a(0<a<r/2) is defined as arctan(x) and the angle £, (0 < g < =), between the vector
originating from the apex of the hypothetical cone to the i turbine and the j™ turbine, is calculated as (6):

-1 (xj—xj) cos 0+(y;—yj) sin 0 +R/x

(6)

Bi; =cos
Y J(xi—xj+§cos 9)2+(yi—yj+§sin 6)2

It is clear that the configuration of every turbine and the direction of the wind 8 have an impact on

Vaeri. Research has indicated that wake losses affect the Weibull distribution's scaling parameter ¢ alone.
According to statistical analysis, the wake effect looks like this [49]:

c'(6) = (). (1 = Vaers) (7
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2.3. Wind turbine characteristics

Precisely characterizing turbine attributes is essential for accurately predicting wind energy output.
Different techniques, such as using approximate polynomials, have been utilized to model wind turbines [50].
In this study, a 9™ order polynomial model is employed as it has been found to be appropriate.

f(x) = po + p1x + pox? + p3x® + pax® + psx® + pex® + prx” + pgx® + pox® (8)

The standard case is applied to the problem with turbine capacities of 1.5 MW, 2.0 MW, and 2.5 MW as
shown in Table 1.

Table 1. Types of turbines proposed for wind farms

Type of turbine FLMD15MW VESTAS20MW GE25MW
General data  Rated power (kW) 1500 2000 2500
Rotor diameter (m) 77 100 100
Number of blades 3 3 3
Rotor Minimum speed (rd/min) 9.7 - 5.0
Maximum speed (rd/min) 18.3 13.4 14.1
Cut-in wind speed (m/s) 35 35 3.0
Rated wind speed (m/s) 135 12 115
Cut-off wind speed (m/s) 20 22 25
Generator Maximum speed (rd/min) 1800 - 1650
Voltage (V) 690 - 690

Figure 3 presents the polynomial model, which integrates realistic wind turbine characteristics as
proposed in this paper. The results show that the modeled characteristics closely align with those of actual
turbines. Specifically, Figure 3(a) depicts the power characteristics of the FLMD-1.5 MW turbine, Figure 3(b)
illustrates those of the VESTAS-2.0 MW turbine, and Figure 3(c) represents the GE-2.5 MW turbine.
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Figure 3. Turbine characteristics; (a) FLMD 1.5 MW turbine characteristic, (b) VESTAS 2.0 MW turbine
characteristic, and (c) GE 2.5 MW turbine characteristic
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Therefore, the wind turbine characteristics are restated as (9):

0, Vi < Veutins Vi 2 Veutout
f) =1f(x)inEq. (8), Veutin < Vi < Veurour (9)
Pratedrvrated =y < VUcutout

2.4. Wind power model
2.4.1. Wind model

The wind model is essential for forecasting wind power, as wind speed and direction affect turbine
efficiency. Wind speed is typically modeled using a Weibull distribution, while wind direction is analyzed
through a wind rose. For wind farm layout design, a 12-sector wind rose is recommended.

2.4.2. Wind power output

By multiplying the power created at each wind speed by the period for which that particular wind
speed occurs, and then integrating this across all conceivable wind speeds, one may get the average power
produced by a wind turbine. In (10) represents the turbine's energy production [51]:

E(P,0) = [, f(w)p(v,c(8), k(6))dv (10)

where, the expression p(v,c(6),k(6)) denotes the Weibull probability density function for wind speed, while
f(v) signifies the power curve, as outlined in (9). The computation of energy generated by a turbine for wind
directions varying from 0° to 360° is detailed as (11):

E(P) = [ p(6)d8 [ f()p(v, c(8), k(6))dv (11)

The energy output of the wind farm will be determined through numerical integration. The overall energy
production for each wind direction & will be aggregated as (12) [11]:

k(6
» \E®

E(P) = St fi®) J; F) 50 (o )(ki(g)_”e—<ﬂ‘“’>) v (12)

i (0) \c{(0)

3. METHOD
3.1. Objective function

The process of optimizing turbine location focuses on addressing new challenges, such as
integrating advanced turbines with varying specifications, reducing wake losses, and adapting to shifts in
wind patterns due to changes in surrounding landscapes. Therefore, properly optimizing turbine locations can
significantly increase the AEP, reduce maintenance costs, and improve the overall sustainability of the wind
farm. This research presents a strategy to optimize the turbine layout in a wind farm to increase AEP. The
objective function for the considered problem is as (13):

0bj = max[¥ E(P)] (13)

3.2. Optimization algorithm

The intricate nature of wind farm optimization, coupled with the constraints of trial-and-error
techniques, makes heuristic approaches more favorable, as they effectively address these design challenges.
For this study, we have selected the GOA to optimize turbine placement during the upgrade of existing wind
farms. The GOA is a nature-inspired swarm intelligence method, modeled on the foraging and collective
swarming behavior observed in grasshoppers. Widely adopted by researchers, GOA has proven effective in
solving various optimization problems. Grasshoppers' unique social interactions and predatory strategies,
involving continuous position updates and comfort zone adjustments, enable them to balance global and local
search, successfully identifying optimal solutions [34].

The larval phase of grasshopper swarms is characterized by slow, small-step movement. In contrast,
the adult swarm exhibits long-range, abrupt movement. Seeking food sources is another key feature of
grasshopper swarming behavior. The search process is split into two stages by the GOA, just like other
nature-inspired algorithms: exploration and exploitation. In optimization algorithms, two fundamental
concepts are exploration and exploitation. Exploration refers to the wide-ranging movement of agents across
the search space, while exploitation involves more localized, fine-tuned searches. Interestingly, grasshoppers
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in nature display behaviors that mirror these algorithmic concepts. They engage in both broad area searches
and focused local movements. Additionally, grasshoppers exhibit a third behavior-the ability to orient
themselves towards and move in the direction of specific goals. Modeling this behavior mathematically could
enable the design of a new nature-inspired algorithm [34]. Grasshopper swarming behavior can be modeled
using the concept of a comfort zone, as illustrated in Figure 4. This social interaction, represented by a
function 's', was a key influence on earlier, simplified locust swarm models.

Comfort sone - . Attraction fore —=

Repulsion force  —s

N

Figure 4. Social interaction of grasshoppers [34]

The mathematical representation of grasshopper swarming behavior can be expressed as (14) [34]:
PiZSi+Gi+Ai (14)

where, P; represents the location of the i grasshopper, S, the social dynamics between grasshoppers in the
swarm, G indicates the gravitational force acting on the i™" grasshopper, and A; is used to model the effect of
wind on grasshopper movement. To incorporate the unpredictable behavior of grasshoppers, may be
reformulated as (14):

Xi = r15i + TZGL' + T3Ai (15)

where, 71, 73, and 73 are numbers distributed within the range [0, 1].
The definition of social interaction Si is presented as (16):

S = Z?’=1 S(dij)aij (16)

Jj#i

where, dj is the distance from the i" to the j™" grasshopper, calculated as dij = |xj — xi|. The function s is
used to represent the intensity of social forces; &ij is the unit vector pointing from the grasshopper i to j™,
calculated as (17):

~ Xji—Xi

dyj ==~ (17)
The mathematical representation of social forces among grasshoppers, denoted by the function s, is computed
as (18):

s(r) = fe_Tr —e " (18)

where, the variable f signifies the intensity of attraction, whereas | indicates the extent of the attractive range.
The social dynamics among grasshoppers can be described by forces of attraction and repulsion. These forces
are influenced by the distance between the grasshoppers, which is considered within the range of [0, 15].
Attraction intensifies when the distance lies between 2.079 and 4, after which it gradually diminishes.
Repulsion, on the other hand, takes place when the distance falls within the range of 0 to 2.079. At an exact
distance of 2.079, there is no force acting between the grasshoppers, neither repulsion nor attraction, and this
is referred to as the comfort zone [35].

The gravitational force G;j is calculated as (19):
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Gi = —gé, (19)

where, the variable g represents the gravitational constant, and é, denotes the unit vector directed toward the
Earth's center.
In (20) shows the wind advection A;:

Ai = uéw (20)

where, the drift constant is u and unit vector in the direction of the wind is 2,,.
By replacing the values of S, G, and A, the resulting equation becomes:

Xi = leyzl S(|Xj — X

J#i

e, +ué, (21)

where, the total number of locusts in the population is N.

In (21), cannot be directly applied to optimization tasks due to a specific limitation. In this
formulation, the grasshoppers rapidly attain their comfort zone, which results in the swarm's inability to
effectively converge on the desired target point [36]. To address this issue, researchers have developed an
enhanced version of the equation, which is presented in (22):

Xf=c (2521 ¢ 5 (| - x?l)%) +Ta (22)

JE

where, the terms ubq and lba indicate the upper and lower limits in the &" dimension, respectively.

T, signifies the optimal solution found to date within the 2" dimensional space.

It's worth noting that S is akin to the S component in (14), the gravitational force component (G)
equals zero, and the wind direction component (A) always points towards the best solution T,.

In (22) indicates that a grasshopper's subsequent location is determined by three key factors: its
present position, the target location, and the positions of fellow grasshoppers. The equation's first term takes
into account the grasshopper's proximity to its peers, which helps ensure that the search agents are distributed
around the intended target. The adaptive parameter ¢ appears twice in this equation, serving distinct
purposes:

a. The initial coefficient ¢ on the left is similar to the inertial weight (w) in PSO. It moderates the
grasshoppers' movements toward the target, effectively balancing the exploration and exploitation
activities of the entire swarm in relation to the target.

b. The second c reduces the areas of attraction, comfort, and repulsion among grasshoppers. In terms of

composition c”b"’zﬂsﬂxf —xf|), the c”bdzﬂ component plays a role in diminishing the space a
locust explores and exploits in a linear fashion, while the s(|x]-d - x{1|) component dictates whether the
locust should move away from (explore) or towards (exploit) the target.

C = Cmax —t Cmax—Cmin (23)

tmax

where, t represents the current iteration; and .. is the total number of iterations. A large value of c¢ results in
greater exploration in GOA, while a small value of ¢ leads to increased exploitation. The value of c is always
set between ¢uax and Cumin.

In this optimization approach, the position of each grasshopper is adjusted by considering three
essential elements: its present coordinates, the optimal position found within the entire swarm, and the
positions of its neighboring grasshoppers. This updating strategy helps the algorithm avoid getting trapped in
local optimal solutions. The step-by-step process of this optimization technique is outlined in a pseudocode
format, which can be found in the first algorithm description [34]. The flowchart illustrating the GOA
algorithm is presented in Figure 5.

Algorithm 1. The pseudo-code of the GOA [35]

1: Initializing the grasshopper population: X; (1 =1, 2, . . . , N)
Setting up algorithm parameters: Cmin, Cmex, and tmax

Evaluating initial fitness: f (X;) of each Xi

t = the best solution

while (t < tmx ) do

g w N
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6: Updating the adaptive parameter using Eq. (23)

7 for i = 1 to N do

8: Updating grasshopper positions using Eqg. (22)

9: Enforcing search boundaries

10: end for

11: Re-evaluating fitness and updating the best solution
12: t =t +1

13: end while

14: Returning the best solution found

v

| Set GOA parameters: Cmin, Cmax, tmax

v

| Generate the fitness value of swarm population |

Evaluating initial fitness
and identify the best search agent

| Update c using (23) I(—
2

Update the position of the current X; using (22)

Evaluate the fitness value
and update the best search agent

No

< tmax

Yes

Figure 5. The flowchart of the GOA [35]

Wind farm data plays a vital role in optimizing turbine locations to reduce interference effects and
enhance yearly energy output. The wind farm discussed in this paper is an onshore site, derived from the
WASP workspace sample [38], specifically the file Version8Windfarm.wh. This wind farm is situated in a
complex terrain with elevations ranging from 10 m to 110.5 m. The site experiences an average wind speed
of 7.25 m/s and an average wind energy density of 388 W/m?2. The goal is to enhance the wind farm
configuration for each suggested turbine model to maximize energy output and efficiency, ultimately
identifying the most appropriate turbine type.

The task is to increase the output capacity of a current 30 MW wind farm by incorporating an extra
20 MW within the same area, which spans 3000x2500 m?. The proposal involves using three types of
turbines with different capacities to calculate the total energy output and efficiency of the wind farm in order
to select the most suitable turbine type. The parameters of wind farm are shown in Table 2.

Table 2. Input parameters

Parameters Value
Roughness (Z0) 0.083
Wind velocity in free flow (\V0) 7.25m/s
Hub height (h) 80m
Existing wind farm area 3000 mx2500 m
Thrust coefficient (Ct) 0.8
Wind density 388 W/m?

The flow chart of Figure 6 shows the optimization steps applied to optimize an upgraded wind farm [24].
Step 1: raw data of wind, terrain, surface roughness, obstacles, existing turbine locations and wind generator
data will be input into WASP software for processing and the output of this process is the wind resource map.
Step 2: the input data for windPRO and GOA is the wind resource map, which will be used to optimally
position new turbines within the upgraded wind farm.

Optimizing turbine location in upgraded wind farm using grasshopper optimization ... (Khoa Dang Nguyen)
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Step 3: after the wind farm is optimally arranged by the GOA algorithm, the windPRO software will be

recalculated and analyzed by WASP software.
Step 4: conclusion and proposal of the best solution.

Raw of Wind
wind generator data

Elevation and
roughness

Obstacle
aroun

OWC wizard | |WASP Turbine Editor|

(WASP tools) (WAsFI> tools)

WASsP Map Editor

(WASF tools)

Y

WASP Software

v

Wind resource grid

v

Optimize module
(windPRO software)

v

GOA
(proposed algorithm)

v

v

Wind farm layout optimization

Recalculated by
Analyze and
evaluate the results

Figure 6. Flow chart of WFLO [24]

4. NUMERICAL RESULTS

The article suggests selecting three different types of wind turbines to be optimally arranged within
the same wind farm to assess the algorithm's effectiveness and identify the most suitable turbine type for
installation. The case studies are summarized in Table 3. The existing wind farm consists of 20 FMD77
turbines, each with an installed capacity of 1.5 MW, resulting in a total capacity of 30 MW. Detailed data for

the current wind farm is presented in Table 4.

Table 3. Case studies of optimization of wind farm layout

Case studies Case study 1 Case study 2 Case study 3
Turbine capacity [MW] 15 2.0 25
Number of turbines 14 10 8
Shape of wind farm Fixed Fixed Fixed
veut-in [m/s] 3.54 35 35
veut-out [m/s] 20 22 25

Table 4. Existing wind farm data
Variable Total Mean  Min Max
Gross AEP [GWh] 94373 4719 4511 4952
Net AEP [GWh] 90.686 4534 4.359 4.687
Wake loss [%] 391 0.87 5.35
Mean speed [m/s] - 7.04 6.9 721
Capacity factor [%]  34.508 - -

Table 4 summarizes the data from the existing wind farm, showing that the maximum, minimum,
and average Gross AEP per turbine are 4,952 GWh, 4,511 GWh, and 4,719 GWh, respectively. The wind
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farm's total Gross AEP, encompassing all 20 turbines, is 94,373 GWh. In terms of Net AEP, the maximum,
minimum, and average values per turbine are 4,687 GWh, 4,359 GWh, and 4,534 GWh, respectively,
resulting in a total Net AEP of 90,686 GWh. The wake losses for individual turbines vary, with a maximum
of 5.35%, a minimum of 0.87%, and an average of 3.91%. The entire wind farm has a capacity factor of
34.508%.

Figure 7 displays the primary wind directions in the project area, with angles of 30, 60, 240, and 270
degrees. The wind roses are simplified and divided into four sectors (sectors 2, 3, 9, and 10) as shown in
Figure 7(a). The highest probability was observed at a wind speed of 6.8 m/s, representing approximately
12%, with an average wind power density of 330 W/m?, as illustrated in Figure 7(b). Figures 8 and 9 depict
the turbine layout and terrain elevation of the existing wind farm, simulated using WASsP software [38].

@ (b)

Figure 8. Turbine layout of the existing wind farm Figure 9. Current wind farm elevation
using WASsP software

4.1. Case study 1

In case study 1, it is proposed to utilize 14 FLMD wind turbines, each with a capacity of 1.5 MW,
for the upgrade of the existing wind farm. These turbines are strategically positioned in regions with the
highest wind energy density and arranged to minimize wake effects, all within the current footprint of the
wind farm.

Table 5 present the calculation results of the GOA algorithm and windPRO software for three
scenarios: i) the existing wind farm with 20 turbines considering the wake effect from the additional turbines;
ii) 14 additional turbines installed within the existing wind farm area; and iii) the entire upgraded wind farm.
Each method produces different calculation results, but both methods show similar efficiency in terms of
AEP and wake loss for the existing wind farm, the additional turbines, and the upgraded wind farm.
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Table 5. Results of the wind farms using the GOA and windPRO

GOA windPRO
Variable Existing wind Additional wind Upgraded wind Existing Additional Upgraded
farm farm farm wind farm wind farm wind farm
Gross AEP [GWh] 94.373 66.186 160.559 94.374 68.927 163.301
Net AEP [GWh] 87.293 59.185 146.478 87.742 62.785 150.527
Wake loss [%] 7.502 10.58 8.77 7.0274 8.91 7.82
Capacity factor [%] 33.217 32.173 32.787 33.387 34.129 33.693

The calculation results show a significant decrease in the wind farm's efficiency after the upgrade,
dropping from 34.508% to 32.787% according to GOA, and to 33.693% according to windPRO, following
the addition of 14 turbines. The data suggests that increasing the density of wind turbines in a given area
leads to more pronounced wake effects. This intensification of wake interference among turbines can result in
higher energy losses and a decrease in the overall annual energy output of the wind farm. The wake loss of
the wind farm after the upgrade rises significantly from the original 3.91% to 8.77% according to GOA, and
to 7.82% according to windPRO. This demonstrates the effectiveness of the GOA algorithm for optimizing
wind farm layouts. Each method identified a different layout, but all exhibited similar performance in terms
of AEP and wake loss. The wind turbine layout in Figure 10 is closely aligned with the layout shown in
windPRO in Figure 11. The additional wind turbines are positioned within the same area as the existing wind
farm and are placed in locations with the highest power density. They are optimally arranged to avoid wake
effects.

Figure 10. Optimal turbine layout using GOA Figure 11. Optimal turbine layout using windPRO

4.2. Case study 2

In this study, 10 VESTAS 2.0 MW wind turbines will be used for optimal layout to upgrade the
wind farm. As in case study 1, the GOA algorithm and windPRO software will be applied to evaluate the
AEP, wake losses, and efficiency of the newly upgraded turbines, the existing wind farm considering the
influence of the additional turbines, and the overall upgraded wind farm.

The calculation results of the GOA algorithm and windPRO software for three scenarios are shown
in Table 6. These scenarios include the existing wind farm with 20 turbines considering the wake effect from
10 VESTAS 2.0 MW additional turbines, 10 additional turbines installed within the existing wind farm area,
and the entire upgraded wind farm. While the two methods yield different results, they both show similar
efficiency in terms of AEP and wake loss for the existing wind farm, the additional turbines, and the
upgraded wind farm.

Table 6. Results of the wind farms using the GOA

GOA windPRO
Variable Existing Additional Upgraded Existing Additional Upgraded
wind farm wind farm wind farm wind farm wind farm wind farm
Gross AEP [GWh] 94.373 55.269 149.642 94.373 56.015 150.388
Net AEP [GWh] 87.741 50.862 138.603 88.133 52.46 140.593
Wake loss [%] 7.027 7.97 7.38 6.612 6.35 6.51
Capacity factor [%] 33.387 29.031 31.645 33.536 29.943 32.099
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The data presented in Table 6 demonstrate a significant reduction in the wind farm's capacity factor
post-upgrade. GOA calculations reveal a drop in efficiency from 34.508% to 31.645%, while windPRO
shows a decrease to 32.009% with the addition of 10 turbines. This indicates that adding more turbines
within the same area amplifies wake effects, leading to greater wake losses and a reduction in energy
production. Specifically, wake losses in the wind farm spike from 3.91% to 7.38% according to GOA, and to
6.51% based on windPRO after the upgrade. GOA and windPRO for wind farm layout are different, but all
demonstrate similar performance in terms of AEP and wake losses. An examination of Figures 12 and 13
reveals striking similarities between the wind turbine configurations generated by the GOA and the windPRO
software, respectively. In both layouts, the newly added turbines are integrated within the existing wind
farm's footprint. These additional units appear to be strategically positioned in areas characterized by superior
power density. The arrangement suggests a careful optimization process aimed at minimizing wake
interference among the turbines.

Figure 12. Optimal turbine layout using GOA Figure 13. Optimal turbine layout using windPRO

4.3. Case study 3

Expanding on the methodologies employed in the previous two case studies, this investigation
proposes the addition of eight GE energy 2.5 MW turbines to enhance the wind farm's capacity. Both the
GOA and windPRO software will be utilized to calculate the AEP and wake losses for both the current and
expanded wind farm configurations.

The results, summarized in Table 7, indicate a notable reduction in the existing wind farm's AEP
following the expansion. The initial net AEP of the current wind farm stands at 90.686 GWh. Post-upgrade
simulations show a decrease to 88.759 GWh according to windPRO software, and 88.57 GWh as per the
GOA algorithm. This decline in energy output can be attributed to the wake effects introduced by the newly
installed turbines, which appear to negatively impact the performance of the existing farm.

Table 7. Results of the wind farms using the GOA

GOA windPRO
Variable Existing wind  Additional wind Upgraded wind Existing Additional Upgraded
farm farm farm wind farm wind farm wind farm
Gross AEP [GWh] 94.373 55.173 149.546 94.373 57.16 151.533
Net AEP [GWHh] 88.57 51.438 140.008 88.759 53.985 142.744
Wake loss [%6] 6.15 6.77 6.38 5.949 5.55 5.8
Capacity factor [%] 33.703 29.359 31.966 33.775 30.814 32.589

The data presented in Table 7 demonstrate a significant reduction in the wind farm's capacity factor
post-upgrade. GOA calculations reveal a drop in efficiency from 34.508% to 31.966%, while windPRO
shows a decrease to 32.589%. This analysis indicates that a higher density of wind turbines within a fixed
area intensifies the wake interference phenomenon. As a consequence, there is an observed increase in
energy losses due to wake effects, leading to a decrease in the overall energy output of the wind farm.
Specifically, wake losses in the wind farm spike from 3.91% to 6.38% according to GOA, and to 5.8% based
on windPRO after the upgrade. The results demonstrate a noteworthy decrease in the wind farm's efficiency
post-upgrade. Figures 14 and 15 show the turbine layout in the wind farm using GOA and windPRO,
respectively. The turbines are arranged similarly in both layouts.
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Figure 14. Optimal turbine layout using GOA Figure 15. Optimal turbine layout using windPRO

5. DISCUSSION

Optimizing turbine locations in upgraded wind farms is challenging, particularly due to wake effects
between existing and new turbines. This study successfully applied the GOA to improve turbine placement
and enhance AEP. To evaluate the algorithm's effectiveness, we compared the performance of wind farms
optimized by GOA with those calculated by windPRO software, as shown in Table 8.

Table 8. Efficiency of wind farms with optimal turbine placement using windPRO and GOA

- Efficiency [%]
Wind farms FLDM 1.5 MW _VESTAS 2.0 MW _ GE 2.5 MW
Existing wind farm windPRO 33.387 33.536 33.774
GOA 33.217 33.387 33.702
Additional wind farm  windPRO 34.129 29.943 30.813
GOA 32.173 29.031 29.359
Upgraded wind farm  windPRO 33.693 32.099 32.589
GOA 32.787 31.645 31.965

The comparison results indicate that the 1.5 MW FLDM turbine is the most efficient for capacity
upgrades in the existing wind farm, with an efficiency of 32.787%, outperforming the 2.0 MW VESTAS
turbine at 31.645% and the 2.5 MW GE turbine at 31.965%. The relevant data for both the existing wind
farm and the newly installed turbines are summarized in Table 8. This result shows that the FLDM 1.5 MW
turbine is the most efficient in both the existing and the upgraded wind farm, and GOA has an efficiency
close to windPRO in this case.

The GOA results were compared with those from the commercial software windPRO and further
validated using WASP. The comparison shows that GOA offers a robust alternative to traditional methods,
delivering notable improvements in AEP. These results underscore the effectiveness of the GOA as a
valuable method for enhancing wind farm configurations. The algorithm demonstrates particular utility in
scenarios involving the integration of additional turbines into pre-existing wind farm layouts.

Table 9 shows that the Net AEP for the upgraded wind farms calculated using GOA is within 3% of
the results from windPRO, demonstrating the algorithm's practicality for wind energy calculations. However,
assumptions like constant terrain elevation and surface roughness limit the real-world applicability of this
study. Future research should consider more detailed terrain models and compare GOA with other advanced
or hybrid algorithms to enhance its performance further.

Table 9. Comparison of Net AEP for upgraded wind farms calculated using windPRO and GOA
Upgraded wind farm

Case studies Variable windPRO GOA
Casestudy 1 Net AEP [GWh]  150.527  146.478
Comparison (%) 2.690
Casestudy 2 Net AEP [GWh]  140.593  138.603
Comparison (%) 1.415
Casestudy 3 Net AEP [GWh]  142.744  140.008
Comparison (%) 1.917
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In summary, this study demonstrates the GOA's efficacy in refining wind farm configurations. The
algorithm provides pragmatic approaches for improving overall wind farm performance, thereby making a
significant contribution to the ongoing development of wind energy technologies. The GOA's ability to
optimize turbine placement, especially when integrating new units into existing farms, highlights its potential
as a valuable tool in the wind energy sector.

6. CONCLUSION

This study highlights the successful application of the GOA in optimizing the placement of
additional turbines in a wind farm undergoing upgrades. By effectively accounting for wake effects and
analyzing different turbine types, GOA has demonstrated considerable potential in improving the AEP of
wind farms.

The use of GOA in this scenario represents a notable advancement over conventional optimization
methods. The GOA's balanced approach to exploration and exploitation enables it to effectively search the
complex solution landscape, evading local optima and yielding superior optimization results. Validation
through comparisons with windPRO and WASP software reinforces the reliability and accuracy of GOA in
practical applications.

The study’s analysis of various turbine types (1.5 MW, 2.0 MW, and 2.5 MW) provides important
insights for wind farm operators considering upgrades. The 1.5 MW turbines were found to be the most
advantageous, offering the best trade-off between energy generation and wake effect reduction. This
information is crucial for making well-informed decisions on turbine selection to optimize the efficiency and
profitability of wind farm upgrades.

Nonetheless, the study acknowledges certain limitations, such as the assumptions regarding constant
terrain elevation and surface roughness. Future research should focus on incorporating more detailed terrain
models and varying surface roughness to better reflect real-world conditions. Moreover, further comparisons
with other advanced optimization algorithms and the exploration of hybrid methods could yield a deeper
understanding of GOA’s capabilities and potential areas for improvement.
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