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 The variability and distributed nature of renewable energy sources (RES) 

pose challenges to real-time monitoring and control in distribution networks. 

Phasor measurement units (PMUs) provide high-precision, time-

synchronized measurements, significantly improving state estimation (SE) 

accuracy in complex grids. This paper reviews SE in distribution systems 

using PMU data, focusing on challenges introduced by high-RES 

integration. Traditional techniques, such as weighted least squares (WLS), 

are analyzed, revealing limitations like reduced observability and accuracy 

due to RES intermittency. To address these challenges, advanced methods 

such as robust optimization, dynamic network reconfiguration, and 

decentralized control are explored, showing improved network reliability 

and adaptability under RES variability. Furthermore, innovative approaches 

like Bayesian non-parametric modelling are discussed, offering solutions to 

mitigate uncertainties and enhance grid flexibility. Case studies highlight the 

scalability and effectiveness of PMUs in extensive networks, showcasing 

their role in improving both SE precision and system stability. These 

findings underline the critical need for precise and integrated SE techniques 

to develop resilient, adaptable smart grids capable of accommodating the 

increasing penetration of RES, setting a foundation for future technological 

advancements. 
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1. INTRODUCTION 

The integration of renewable energy sources (RES), such as wind and solar photovoltaics (PV), into 

modern distribution networks presents significant challenges to grid efficiency, stability, and reliability [1]. 

RES variability and intermittency due to changing weather patterns make managing power flows and voltage 

stability more complex than with traditional generation, intensifying real-time monitoring difficulties for 

distribution network operators (DNOs) [2]. The general layout of a distribution grid with integrated 

renewables is shown in Figure 1 [3]. State estimation (SE), a key tool in transmission systems for optimizing 

grid performance, faces new challenges in distribution networks due to their radial topology, low X/R ratios, 

and high load variability, particularly with integrated RES. Traditional SE techniques, like the weighted least 

squares (WLS) method, often fall short in this context, as real-time estimation is hindered by a lack of wide-

scale, high-resolution measurement data. Phasor measurement units (PMUs) offer a potential solution by 

providing high-frequency, synchronized voltage and current phasor data, significantly enhancing SE 

https://creativecommons.org/licenses/by-sa/4.0/
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resolution [4]. However, logistical and financial challenges limit PMU deployment at the distribution level, 

requiring optimized placement strategies and hybrid approaches that integrate PMU and SCADA data. This 

review provides a comprehensive examination of SE in distribution networks with integrated renewables, 

focusing on PMU-assisted methods. It evaluates PMU integration efficacy, identifies shortcomings in 

existing SE approaches, and explores advanced techniques, such as machine learning, to address the unique 

challenges posed by modern RES-integrated grids. 
 
 

 
 

Figure 1. General layout of distribution grid with integrated renewables [3] 
 

 

SE is critical for maintaining reliability in distribution networks with increasing RES integration, 

such wind and PV [5]. PMUs significantly enhance SE capabilities with high-precision, real-time data, but 

the integration of distributed generation (DG) and RES introduces challenges like data uncertainty, network 

observability, and measurement synchronization. Several works address these challenges by improving SE 

methods. For instance, [6] proposed a joint topology and SE approach using Bayesian non-parametric 

modeling to enhance accuracy and adaptability in dynamic grids. Another study [7] applied deep neural 

networks for topology and SE in RES systems, although real-time large-scale deployment poses challenges 

due to computational demands. Other studies [8], [9] highlight PMU-based SE benefits, improving fault 

detection, situational awareness, and grid stability in high-RES systems. 

To further improve SE in RES-integrated systems, optimization strategies and sophisticated 

algorithms are investigated. For example, [10] proposed a cost-effective PMU placement framework, while 

[11] suggested L-1 regularized forecasting-aided SE to minimize errors in high-RES systems. Another study 

[12] incorporated multi-source data, addressing topology errors and outage detection in SE frameworks. 

Research also focuses on multi-source data integration, such as PMUs, μPMUs, and smart meters, to manage 

uncertainty in distribution networks [13]. Methods that model non-Gaussian uncertainties in measurements, 

like [14], have improved SE accuracy but face challenges in real-time anomaly detection. In contrast [15], 

used GMM-PSEs and KL divergence to address dynamic topology and DG uncertainties. Other advanced 

techniques include multi-area state estimation (MASE) frameworks [16] and SE performance in complex 

and unbalanced systems is greatly enhanced by Chen et al. [17], who offers a more realistic depiction of 

DG variability. An additional study [18] underlined the necessity of precise synchronization of various 

data sources, including SCADA and PMU, and suggested a delay estimation technique to address 

synchronization problems, thereby improving the multi-source SE's reliability. Pseudo-measurement 

modeling is crucial for SE in RES-integrated networks, as demonstrated by [19], which used entropy-

weighted support vector machines (SVM) to model DG uncertainties. However, managing high uncertainty 

levels remains difficult. Robust interval state estimation (ISE) methods, like in [20], address these 

uncertainties by providing tight bounds on state variables. 
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PMU integration has been thoroughly explored for enhancing observability in SE frameworks. For 

example [21], proposed a robust PMU placement strategy for ensuring system observability while 

minimizing PMU deployment costs. Similarly, another study [22] concentrated on DGs, zero injection 

buses (ZIBs), and network reconfigurations while optimizing D-PMU placement to guarantee system 

observability. Machine learning techniques are increasingly integrated into SE frameworks, such as in [23], 

which used synchrophasors for topology identification and SE. Hybrid optimization techniques have also 

been applied, such as [24], which developed a robust PSOS-CGSA method for SE in unbalanced networks. 

Other studies focus on real-time SE frameworks for managing voltage stability in DG-heavy networks [25]. 

Although SE processes have improved, challenges remain, such as managing inaccurate measurement data 

and system errors, addressed by techniques like the extended Kalman filter in [26] and augmented SE in [27].  

Despite these advancements, several research gaps remain. Scalability challenges persist when 

applying SE frameworks to large, dynamic networks with high DG penetration. Managing uncertainties from 

DG remains a significant obstacle, particularly in networks with varying observability levels. Synchronizing 

data from multiple sources remains another critical issue, necessitating further optimization in PMU 

placement strategies. 

This review addresses these challenges by providing a comprehensive examination of SE in 

distribution networks with integrated renewables, focusing on PMU-assisted methods. It evaluates PMU 

integration efficacy, identifies shortcomings in existing SE approaches, and explores advanced techniques, 

such as machine learning, robust optimization, and hybrid algorithms, to address the unique challenges posed 

by modern RES-integrated grids. 

The main contributions of this review include: 

− A critical analysis of the methodologies and advancements in PMU-assisted SE frameworks for 

distribution networks with integrated renewables. 

− A detailed comparison of traditional and modern SE techniques, including WLS and PMU-based 

approaches, highlighting improvements in accuracy and non-linearity reduction. 

− A focus on challenges such as renewable variability, data synchronization, and DG uncertainties, with 

potential solutions for improving SE in distribution networks. 

− Suggestions for future research directions, including cybersecurity risks in PMU data integration and real-

time SE in renewable-heavy grids. 

The paper is structured as follows: section 2 outlines the strategy for PMU deployment in 

distribution networks. Section 3 presents the SE methodology, detailing its formulation and integration. 

Section 4 offers a comparative evaluation of conventional and proposed approaches. Section 5 critically 

examines recent advancements in SE techniques tailored for distribution systems with high renewable energy 

source (RES) integration. Finally, Section 6 concludes the study by highlighting the pivotal role of  

PMU-assisted SE in improving the observability, accuracy, and stability of modern RES-integrated 

distribution networks. 

 

 

2. PHASOR MEASUREMENT UNIT 

IEEE standards include detailed descriptions of synchronized phasor technology. A PMU is an 

instrument that can measure waveforms of voltage and/or current and calculate their frequency, 

synchrophasors, and rate of change of frequency (ROCOF, also known as 𝑑𝑓/𝑑𝑡) concerning a single 

coordinated universal time (UTC). After PMUs are installed at a substation, standard instrument 

transformers are frequently used to link them to the electrical grid. A synchrophasor is an absolute 

measurement of the phase angle and magnitude at a specific point in time. A sine wave's representation 

and its phasor representation are shown in Figure 2(a). 

The general block diagram of the PMU is displayed in Figure 2(b). Wherein the voltage and current 

inputs to a PMU are obtained directly from the current transformer (CT) and the potential transformer (PT), 

respectively. A predetermined sample rate is used when utilizing a synchronized GPS clock. Power grids use 

the GPS signal, just like other commercial (non-military) uses. The central frequency of this signal is  

1575.42 MHz, and its bandwidth is 2.046 MTz. It is available to all users. GPS can be advantageous for 

electricity grids because of its high degree of timing precision, free availability, and global coverage. Still, 

spoofing is possible. Another application for a phase-locked oscillator in the second is time tag generation 

(output with phasors). After passing via a filter and an analog-to-digital converter, the analog voltage and 

current signals are time-tagged. PMU then uses the digital data to calculate the frequency, ROCOF, 

voltage and current phasors, and binary information. This data is typically located at primary substations 

and sent to phase data concentrators (PDCs) within frames to store it for later offline assessments or online 

system health monitoring.  
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(a) 

 

 
(b) 

 

Figure 2. A comparative visualization of phasor measurement concepts; (a) A sine wave representation 

versus its corresponding phasor form and (b) general block diagram illustrating the functional components of 

a PMU 

 

 

2.1.  Phasor measurement unit installation in distribution networks 

Early in the 1980s, Virginia Tech's Power System Research Laboratory produced the first PMU 

prototype. Many companies soon started working on synchrophasor technology. PMUs are crucial to the 

control and monitoring of power systems. They provide synchronized voltage and current phasor readings 

across the entire network. PMUs significantly enhance the observability, fault detection, and grid stability 

of distribution networks (DNs). Analysis of PMU deployment procedures in distribution networks 

evaluates different strategies for setting up and utilizing PMUs to monitor grid condition effectively [28]. 

The optimal deployment strategy depends on several factors, such as the network configuration, the 

monitoring objectives, the resources that are available, and any applicable laws. By creating effective 

strategy for PMU deployment utilities and grid operators can enhance their capacity for distribution 

network grid monitoring and control. Installing PMUs at key nodes in the distribution network, like 

substations or centralized control centers, is known as centralized deployment. On the other hand, 

distributed deployment enables wider coverage by positioning PMUs at different points in the grid, such as 

distribution feeders, distributed energy resource (DER) interconnection points, and critical nodes. PMUs 

are positioned both centrally and dispersedly across the network for improved observability in a hybrid 

deployment, which blends centralized and distributed techniques. By dynamically placing PMUs based on 

grid conditions and particular monitoring objectives, adaptive deployment adopts a more flexible approach 

and ensures responsive coverage to shifting system dynamics. Lastly, to achieve efficient deployment, 

cost-optimized deployment balances network topology, monitoring requirements, and budgetary constraints 

to determine the most cost-effective PMU locations using optimization algorithms [29]. Consequently, 

distribution network PMU adoption necessitates meticulous analysis of network dynamics, integration of 

RES, and communication infrastructure. Grid operation must strike a balance between observability, 

redundancy, and precision to be durable and efficient. 

 

 

3. METHOD 

Figure 3 shows the methodology used for this review. This paper conducts a critical review of SE 

of distribution networks with integrated renewables aided by PMU data that has been published in the last 

six years, up until 2024 (2019–2024). Preferred reporting items for systematic reviews and meta-analysis 

(PRISMA) [30] were used to guide the selection of the articles. This review's methodology is set up to 

ensure a thorough, in-depth, and consistent analysis of the field. An organized methodology was used, 

starting with a thorough search of the literature through several of the most well-known scientific 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 4, August 2025: 2456-2470 

2460 

databases, such as IEEE Xplore, ScienceDirect, Google Scholar, and Web of Science. To pertinent studies, 

search terms like "PMU-assisted SE," "renewable energy integration," "distribution network monitoring," 

"PMU placement optimization," and "cybersecurity in smart grids" were used. These topics included PMU 

placement optimization, the integration of renewable energy, and SE techniques. The title and keywords 

were used to filter the search results. After removing duplicates, 106 articles remained from the 180 that 

were gathered after the search. The conclusions and abstracts of the chosen papers were carefully 

examined to ascertain their applicability to the particular goals of the investigation. Two impartial 

reviewers were tasked with evaluating each paper during this screening phase, guaranteeing a thorough 

and objective evaluation procedure. Fifty-five articles were deemed eligible for additional examination 

after this screening process. Following selection, the full text of these articles was subjected to a thorough 

review process by three impartial reviewers, who assessed the methodology, results, discussions, and 

conclusions. After that, the reviewers contrasted their analyses until they came to a mutual understanding. 

Ultimately, only 37 publications were chosen for critical review after being judged pertinent . 

 

 

 
 

Figure 3. Review methodology 

 

 

3.1.  Mathematical formulation of state estimation in distribution networks: traditional vs novel methods 

SE in distribution networks involves determining the voltage magnitude and angle at different nodes 

or buses, along with the overall electrical state of the power system. Accurate SE is essential for real-time 

monitoring, control, and optimization, particularly in networks integrating RES and advanced technologies 

like PMUs [31]. 

 

3.1.1. Traditional method for state estimation 

The conventional SE approach in power systems is based on the WLS method [32]. This method 

relies on traditional measurements such as power injections, active and reactive power flows, and bus voltage 

magnitudes. Below is a detailed explanation of its components: 

a. State variables (X) 

Determining the system's state, which normally consists of voltage magnitude (|𝑉𝑖|) and voltage 

angle (θ) at each bus i, is the main goal of SE. In a system with N buses, the state vector is: 

 

𝑋 = [|𝑉1| |𝑉2| … … . |𝑉𝑁| 𝜃1 𝜃2 … … . 𝜃𝑁]𝑇 (1) 

 

 

Article Selection 
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b. Measurement vector (Z) 
The available measurements can include: bus voltage magnitudes 𝑉𝑖; active power flows 𝑃𝑖𝑗; 

reactive power flows 𝑄𝑖𝑗; power injections 𝑃𝑖 , 𝑄𝑖; m represents the number of measurements. Now 

measurement vector is: 

 

𝑧 = [𝑧1 𝑧2 … . 𝑧𝑚]𝑇 (2) 

 

c. Measurement model 

A non-linear function h(x) defines the relationship between the measurements (z) and the state 

variables (x), where:  

 

𝑍 = ℎ(𝑥) + 𝑒 (3) 

 

Here: the non-linear measurement function h(x) is used to map the measurements to the state vector. The 

measurement error, or noise, is represented by the symbol e. It is commonly assumed to be Gaussian with 

zero mean and covariance coefficient R.  

The following model represents the active power flow 𝑃𝑖𝑗 between two buses, i and j:  

 

𝑃𝑖𝑗 = |𝑉𝑖||𝑉𝑗| (𝐺𝑖𝑗 cos(𝜃𝑖 − 𝜃𝑗) +  𝐺𝑖𝑗 sin(𝜃𝑖 − 𝜃𝑗)) (4) 

 

where the conductance and susceptance of the line are denoted by 𝐺𝑖𝑗 and 𝐵𝑖𝑗 . 

d. WLS formulation 

SE is formulated as an optimization problem to minimize the difference between the measured 

values (z) and the estimated values (h(x)): 

 

𝐽(𝑥) = (𝑧 − ℎ(𝑥))𝑇𝑅−1(𝑧 − ℎ(𝑥)) (5) 

 

where R represents the measurement noise covariance matrix. 

The non-linear optimization problem is solved by the WLS method through an iterative technique, 

typically Newton-Raphson. Every iteration, k, updates the state vector as (6): 

 

𝑥𝑘+1 = 𝑥𝑘 + ∆ 𝑥 (6) 

 

In this case, the correction term ∆x is computed as (7): 

 

∆ 𝑥 = (𝐻𝑇𝑅−1𝐻)−1𝐻𝑇𝑅−1(𝑧 − ℎ(𝑥𝑘)) (7) 
 

The measurement function's partial derivatives with respect to the state variables are contained in the 

Jacobian matrix, or H.  
 

𝐻 =
𝜕ℎ(𝑥)

𝜕𝑥
 (8) 

 

This iterative process keeps going until the correction term ∆x gets small enough, or until the state 

estimates converge. 

e. Observability 

Observability ensures that the available measurements are sufficient to uniquely determine the state 

variables. Traditional methods use numerical or topological observability analysis to verify system 

observability before estimation. 

 

3.1.2. Novel method for state estimation: phasor measurement unit-assisted state estimation  

Modern SE techniques leverage PMU to improve accuracy and reduce dependency on conventional 

measurements. 

a. PMU-based measurement 

PMUs measure voltage and current phasors in real time, providing direct measurements of both 

magnitude and angle. Compared to conventional SCADA-based measurements, these measurements are 

more accurate and simplify SE [33]. 

The PMU measurement model is easier and linear. 
 

𝑧𝑃𝑀𝑈 = ℎ𝑃𝑀𝑈(𝑥) + 𝑒𝑃𝑀𝑈 (9) 
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Here the voltages and currents are directly measured in ℎ𝑃𝑀𝑈(𝑥). In iterative techniques such as Newton-

Raphson, the reduced non-linearity greatly accelerates convergence. SE process changes the structure of the 

problem: 

- Linear PMU measurements 

Since PMUs measure voltage magnitudes and angle directly, the need for extensive non-linear 

transformation is reduced. This speed up calculations. 

- Hybrid measurement model 

Traditional SCADA and PMU data are now combined in the SE problem. After combination, the 

measurement vector becomes: 

 

𝑧 = [
𝑧𝑆𝐶𝐴𝐷𝐴

𝑧𝑃𝑀𝑈
] (10) 

 

The measurement function which corresponds to this is (11): 

 

ℎ(𝑥) = [ℎ𝑆𝐶𝐴𝐷𝐴(𝑥)
ℎ𝑃𝑀𝑈(𝑥)

] (11) 

 

The WLS objective function remains the same, but the addition of linear PMU measurements improves 

performance: 

 

𝐽(𝑥) = (𝑧 − ℎ(𝑥))𝑇𝑅−1(𝑧 − ℎ(𝑥)) (12) 

 

b. Observability 

PMU measurements greatly improve the accuracy and robustness of SE in the WLS framework, 

especially in complex networks with high integration of renewable energy. The deployment of PMUs 

enhances system observability by providing additional measurements, even in low-measurement scenarios. 

Hybrid models address observability gaps, ensuring reliable SE in modern, renewable-rich networks. 

While traditional SE methods based on WLS have served power systems well, the integration of 

PMUs marks a significant leap forward. By combining SCADA and PMU data, hybrid approaches offer 

improved accuracy, faster convergence, and enhanced observability, making them indispensable for active 

distribution networks with renewable energy integration. 

 

3.1.3. Renewable energy sources integration 

Integrating RES into distribution networks poses several challenges due to their intermittent and 

variable nature, as well as their impact on grid stability, power quality, and overall network re liability 

[34]. These challenges are driven by the characteristics of RES such as solar and wind, which vary 

depending on environmental conditions. The following are some of the key challenges and their potential 

solutions. 

a. Key challenges in RES integration 

The integration of RES into distribution networks poses several significant challenges (as 

illustrated in Figure 4) [35]. One of the most significant issues is the intermittent and variable nature of 

RES, such as solar and wind power, which can cause fluctuations in power generation and complicate grid 

stability and reliability.  

The distributed nature of RES, which is often located at the grid's edges, complicates voltage 

control, power flow management, and protection coordination. The limited observability of traditional 

distribution networks, which were not designed for high levels of distributed generation, causes these issues, 

making it difficult to monitor and manage RES' dynamic behavior. Furthermore, the uncertainty in RES 

power output makes it difficult to accurately forecast generation and balance supply and demand. This can 

strain grid operations and increase reliance on ancillary services to keep the system stable. 

The seamless integration of RES is further hindered by inadequate grid infrastructure and 

investments in smart technologies, such as sophisticated metering systems and communication networks. In 

conclusion, the adoption of the technologies and practices required for RES integration may be hindered by 

regulatory and market barriers, such as out-of-date policies and a lack of financial incentives. Figure 4 shows 

the key challenges in RES integration in distribution network. 

b. Potential solutions for RES integration 

To effectively integrate RES into distribution networks, innovative approaches are essential to 

manage the inherent variability and uncertainty. Advanced SE techniques, such as those utilizing PMUs, 

provide precise real-time monitoring and forecasting, which enhances grid observability and control. These 

techniques, in combination with traditional SCADA systems, allow grid operators to make accurate, timely 
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decisions and better handle the intermittent nature of RES. Alongside SE, robust optimization and forecasting 

models are crucial for predicting generation patterns and managing load demand. These models, enhanced by 

artificial intelligence (AI), offer improved accuracy and help optimize grid operations, ensuring stability even 

under unpredictable conditions [36].  

 

 

 
 

Figure 4. Key challenges in RES integration 

 

 

Dynamic network reconfiguration is another key solution, enabling real-time adjustments to the 

grid’s topology, rerouting power flows to prevent overload and congestion during high renewable output. 

This flexibility enhances the grid's resilience, particularly in handling localized fluctuations in energy 

production. Decentralized and multi-area control further strengthens this approach by distributing control 

responsibilities, allowing more localized and efficient grid management. By enabling peer-to-peer energy 

trading and more granular control over DER, decentralized control improves energy efficiency and 

scalability.  

c. Incorporating cybersecurity in PMU-assisted SE frameworks 

The reliance on real-time data acquisition and communication in PMU-based systems exposes 

distribution networks to potential cyber threats, including data spoofing, denial of service (DoS) attacks, and 

unauthorized access to sensitive system parameters. These vulnerabilities can compromise SE accuracy, grid 

stability, and overall reliability. 

To mitigate these risks, robust cybersecurity measures are imperative: 

− Encryption and authentication protocols: implementing advanced encryption standards (AES) and multi-

factor authentication ensures secure communication between PMUs and control centers, preventing 

unauthorized access. 

− Intrusion detection systems (IDS): deploying machine learning-based IDS can identify and respond to 

anomalous behavior in data transmission, enhancing network resilience. 

− Blockchain technology: incorporating blockchain for data validation creates a tamper-proof ledger, 

ensuring data integrity across decentralized networks. 

− Redundancy and backup systems: establishing redundant communication paths and real-time backup 

mechanisms mitigates the risk of data loss or corruption during attacks. 

− Regular security audits: routine penetration testing and software updates ensure that vulnerabilities are 

identified and patched proactively. 

Future research should explore integrating these cybersecurity measures with advanced PMU-based 

SE frameworks, balancing real-time performance with robust security. Additionally, a focus on scalable, 

lightweight security algorithms can address computational constraints in large, dynamic networks with high 

renewable penetration. 

 

3.1.4. Enhanced observability with phasor measurement units and renewable energy sources 

PMU provides real-time, synchronized data at multiple network points, significantly enhancing 

network observability. Compared to a traditional SCADA system, fewer PMUs are needed to make a system 

observable. Traditional SCADA-based methods, which mainly rely on non-linear are models and a large 

number of measurements, have been replaced by novel PMU-assisted methods that offer faster convergence, 
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better observability, and increased robustness in the mathematical formulation of SE [37], [38]. The new 

techniques better meet the requirements of contemporary distribution networks integrating distributed 

generation and renewable energy since they make use of robust optimization and linear measurement 

functions. The general network configuration is depicted in Figure 5. The network topology and the electrical 

characteristics of the power system components make up the network model. PMUs supply the voltage, 

current, and angle needed to estimate the unknown states of the system. Direct angle measurements are 

included for SE using PMU measurements in addition to the classical measurement set. The WLS state 

estimate and PMU measurements must be modelled as a linear measurement set to improve the output. A 

model demonstrates how measurements, system variables, and measurement noise are correlated [39].  

 

 

 
 

Figure 5. Network configuration for SE 

 

 

4. RESULTS 

4.1.  Comparison of traditional and novel method of state estimation 

The study of distribution network SE has undergone substantial development, with conventional 

techniques providing the foundation for preserving grid stability, particularly in simpler, more predictable 

systems. Nonetheless, new approaches have been developed as a result of the growing integration of RES 

and the growing complexity of contemporary distribution networks. These more recent methods take 

advantage of cutting-edge technologies like PMUs, optimization algorithms, and machine learning to 

tackle issues like unobservability, dynamic topology changes, and real-time performance. A comparative 

analysis is performed to assess the advantages and disadvantages of both traditional and innovative 

approaches. Important factors like measurement type, function, convergence speed, observability criteria, 

robustness, and optimization are the main subjects of the analysis. Table 1 provides an overview of the key 

differences between innovative and traditional SE techniques, as well as an understanding of the benefits and 

drawbacks of each [40], [41]. 

The primary functions of SCADA systems in conventional SE techniques are the collection of 

voltage magnitudes and active/reactive power flows. Due to the non-linear nature of these measurements, 

the estimation process converges more slowly. Furthermore, traditional approaches are typically less 

resilient to noise and uncertainties and suffer from low observability, necessitating a high number of 

measurements to fully monitor the network. These methods' optimization techniques, such as WLS, have 
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limited robustness. However, new PMU-assisted techniques make use of PMUs, which offer linear or 

hybrid measurement functions and provide both voltage and current phasors, including magnitude and 

angle.  

 

 

Table 1. Comparative analysis between traditional and novel method 
Aspect Traditional method Novel method (PMU-assisted) 

Measurement type SCADA: Voltage magnitudes, 
active/reactive power flows 

PMU: Voltage and current phasors (magnitude and 
angle) 

Measurement function Non-linear Linear (for PMUs) or hybrid 

Convergence speed Slower (due to non-linearity) Faster speed (due to linearity) 
Observability Low observable (limited measurement) Enhanced due to PMU 

Robustness Less robust due to noise and uncertainties More robust 

Optimization Traditional WLS and LAV Advanced approach, ML based, and hybrid approach 

 

 

This greatly improves observability and accelerates convergence, enabling thorough monitoring 

with fewer devices. PMU-assisted approaches further enhance performance in modern-day distribution 

networks by being more resilient, better able to manage uncertainty, especially from RES, and by making 

use of cutting-edge optimization techniques like robust and multi-objective frameworks. 

 

4.2.  Review and comparison of existing studies 

To maintain grid stability and reliability, the increasing integration of RES into modern 

distribution networks has made SE technique advancements necessary. Several studies have put forward 

various approaches to deal with issues like fault detection, network observability, and the dynamic nature 

of RES. A comparative analysis has been carried out to gain a deeper understanding of the contributions 

made by these studies which includes different type of SE techniques, the extent of RES integration, and 

the primary conclusions put forth by each study are important factors that are taken into account. Table 2 

(see Appendix) [8]-[10], [15], [22]-[27], [41]-[53] provides a systematic comparison of these studies, 

emphasizing the different approaches used for SE in RES-integrated distribution networks, along with their 

applications, limitations, and methodology. 

 

 

5. DISCUSSION 

Table 2 (see Appendix) provides a comprehensive overview of recent studies on SE methodologies 

in distribution networks integrated with RES. These studies highlight various approaches and innovations 

aimed at improving the accuracy, robustness, and adaptability of SE in dynamic and RES-rich environments. 

One notable approach is the use of Bayesian non-parametric modelling, which enhances SE accuracy and 

adaptability, especially in dynamic networks. Another study explores the application of deep neural networks 

(DNNs) for both state and topology estimation, improving accuracy in unobservable systems, which is 

crucial for networks with high-RES penetration. Additionally, several studies emphasize the role of PMUs in 

fault detection, noting improvements in fault localization within active distribution networks incorporating 

RES. Research on high PV penetration emphasizes its effect on grid stability and the need for advanced SE 

techniques to manage the complexity introduced by renewable sources. To optimize system observability 

while reducing costs, a cost-effective framework for PMU placement has been proposed, ensuring efficient 

deployment of PMUs in large-scale networks. Other studies investigate advanced forecasting techniques such 

as L-1 regularization, which helps to reduce estimation errors, while the integration of multi-source 

measurements enhances the robustness of SE. Real-time applications of SE, including micro-PMUs and 

smart meter data, are also explored for improved topology detection in RES-integrated systems. Additionally, 

advanced modelling techniques addressing non-Gaussian uncertainties and dynamic topologies are discussed, 

allowing for more accurate and adaptive SE in systems with high-RES variability. Augmented SE techniques 

are considered to address computational complexity, improving efficiency in real-time applications. Research 

also focuses on voltage issues and error estimation in multiterminal DC networks, which present unique 

challenges in comparison to AC systems. The introduction of a virtual reference for three-phase estimation 

and adaptive dynamic SE using interacting multiple model approaches further enhances the accuracy of SE in 

complex networks. Despite the advancements, several practical challenges persist. A major issue is the 

dependency on high-quality measurement data, as factors like noise, synchronization errors, and device 

calibration problems can degrade estimation accuracy. To address this, robust error-handling mechanisms 

and improvements in device reliability are necessary. The high cost of deploying PMUs also remains a 

challenge, particularly in large networks. While PMUs provide accurate and real-time data, their installation 

and maintenance can be expensive, so optimizing their placement is essential to reduce costs while 
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maintaining system observability. Additionally, integrating PMUs with existing legacy systems is difficult 

because many traditional networks are not designed to handle the high-frequency data generated by PMUs, 

requiring significant hardware and software upgrades for seamless integration. Cybersecurity also emerges as 

a critical concern, particularly with the increased reliance on real-time data communication and PMU 

integration. The risk of cyberattacks, such as false data injection, can compromise the accuracy of SE, 

leading to erroneous operational decisions. Robust encryption, authentication protocols, and enhanced 

cybersecurity measures, including firewalls and IDS, are crucial to safeguarding data integrity. The literature 

also highlights several directions for future research. Studies on MASE frameworks are needed to address the 

complexities of large, interconnected distribution networks. Further advancements in load and PV estimation 

methods will be vital for accurately predicting the behaviour of renewable sources in distribution networks. 

Additionally, optimization of PMU placement through hybrid methods and pseudo-measurement strategies 

could improve the overall performance of SE systems. In conclusion, the body of research presented in  

Table 2 (see Appendix) illustrates significant advancements in SE for RES-integrated distribution networks, 

with improvements in accuracy, robustness, and adaptability. However, addressing the practical challenges of 

data quality, cost, integration, and cybersecurity remains critical to realizing the full potential of these 

methods in real-world applications. 

 

 

6. CONCLUSION 

This comprehensive review of PMU-data-assisted SE for distribution networks with integrated 

renewables demonstrates PMUs' transformative potential in improving grid observability, accuracy, and 

resilience. The integration of RES poses significant challenges, including uncertainty, variability, and the 

requirement for real-time monitoring and control. PMUs, with their ability to provide high-resolution, time-

synchronized measurements, have emerged as an important tool for dealing with these issues. Researchers 

have shown that advanced methodologies such as robust optimization, machine learning, and adaptive SE 

frameworks improve SE accuracy, fault detection, and overall grid stability in active distribution networks. 

There are still a number of drawbacks, mainly with regard to the cost of deployment, computational 

complexity, and scalability to more expanding distribution networks. For wider adoption, it is imperative to 

address communication delays, implement cost-effective PMU placement strategies, and synchronize with 

other data sources like SCADA and smart meters. Additionally, more research is needed to find real-time 

solutions that can adapt to changing grid conditions due to the complexity of modern distribution networks, 

which have dynamic topologies and a variety of DERs.  

Future efforts need to focus on overcoming these limitations by increasing the computational 

efficiency of SE algorithms, optimizing PMU placement for cost and coverage, and developing scalable 

solutions that can be applied to increasingly complex distribution networks. By overcoming these 

challenges, PMU-assisted SE will play a critical role in enabling the reliable integration of renewable 

energy into modern distribution networks, ensuring grid stability, and furthering the vision of smart, 

sustainable power systems. 
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APPENDIX 

 

Table 2. Existing literature in summerized form 
References SE RES integration Main findings 

[8] Bayesian non-parametric modelling 

combined with joint topology and SE 

Yes enhances estimation accuracy and adaptability to 

changes in the network. 
[9] State and topology estimation using 

deep neural networks 

Suitable for RES-

integrated 
unobservable systems 

Improves estimation accuracy in unobservable 

systems using machine learning techniques. 

[10] PMU-based SE for fault detection Active distribution 

networks with RES 

Improves fault detection and localization in RES-

integrated active distribution networks. 
[15] Real-time topology detection and SE 

using μPMU and smart meter data 

Active distribution 

networks with RES 

and microgrids 

Enhances real-time grid observability and 

reliability using μPMU and smart meter data for 

topology detection. 
[22] SE with non-Gaussian measurement 

uncertainty modelling 

Applicable to RES 

and active distribution 

networks 

Models non-Gaussian uncertainties to improve 

estimation accuracy in active distribution systems. 

[23] SE considering dynamic topology and 

distributed generation uncertainties 

DG uncertainties and 

active distribution 

networks 

Improves topology awareness and SE accuracy 

under dynamic DG uncertainties using GMM-

PSEs and KL divergence. 
[24] Augmented SE for estimating line 

parameters 

Active power 

distribution systems 

with RES 

Improves line parameter estimation accuracy in 

active distribution networks with PMU data 

integration. 
[25] Computational complexity analysis 

for SE methods 

Not explicitly focused 

on RES 

Provides detailed computational complexity 

analysis to optimize SE performance. 

[26] SE with sensitivity analysis to solve 
voltage and congestion issues 

Active distribution 
networks with DG 

Proposes methods for addressing voltage 
problems and congestion in active networks using 

SE. 

[27] SE for multiterminal DC networks Not directly focused 
on RES 

Proposes an error estimation method for small-
signal models, improving SE accuracy in DC 

distribution networks. 

[41] Three-phase SE for unbalanced 
distribution networks 

Applicable to RES 
systems in unbalanced 

networks 

Introduces a virtual reference for more accurate 
three-phase SE. 

[42] Adaptive dynamic SE for networks 
with changing conditions 

Active distribution 
networks with RES 

Improves DSSE accuracy in dynamically 
changing networks using interacting multiple 

model approach. 

[43] Forecasting-aided MASE Unbalanced 
distribution networks 

with DG 

Enhances SE accuracy by integrating forecasting 
models in multi-area unbalanced networks. 

[44] Multi-area framework with DG 
modelling and pseudo-measurements 

DG integration Proposes a multi-area framework for unbalanced 
active distribution networks, with innovative DG 

modelling and pseudo-measurements for 

unmonitored DGs. 
[45] Load/PV estimation and topology 

estimation using Gaussian mixture 

model (GMM) 

Load and PV 

integration 

Improves accuracy and reduces uncertainty in 

topology estimation by integrating load/PV 

estimation using GMM. 
[46] Robust measurement placement 

considering network reconfiguration 

DG integration Uses measurement saturation analysis and 

heuristic algorithm to propose a robust 

measurement placement method for active 
distribution systems with DG. 

[47] ISE considering multiple uncertainties DG integration Proposes a fast ISE algorithm addressing 

imprecise line parameters, measurement noise, 
and uncertain DG outputs, offering tight bounds 

on state variables. 
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Table 2. Existing literature in summerized form (continued) 

References SE RES integration Main findings 

[48] Voltage profile estimation considering 
line X/R ratios and laterals 

DG integration Proposes a method for estimating voltage profiles 
in smart distribution networks with DG, 

facilitating online voltage control. 

[49] Hybrid PSO and CGSA optimization 
for SE 

DG integration Proposes a hybrid optimization method for 
improved SE in three-phase unbalanced DG-

integrated distribution systems. 

[50] Pseudo-measurement modeling using 
entropy-weighted SVM 

DG integration Proposes a strategy that optimizes pseudo-
measurement selection to improve SE 

effectiveness in active distribution networks. 

[51] PMU placement optimization to 
minimize cost and maximize system 

observability 

DG integration, ZIBs, 
and tie-switches 

Proposes a cost-effective D-PMU placement 
method for ADN SE, considering DG, ZIBs, and 

tie-switches. 

[52] Hybrid PSO-Krill Herd optimization 
for measurement placement 

Smart distribution 
networks with DG 

Proposes a hybrid optimization approach for 
measurement device placement in smart 

distribution networks with DG integration. 

[53] Multi-objective PSO for PMU 
placement 

DG integration Proposes a multi-objective PSO algorithm for 
optimal PMU placement in DG-integrated 

distribution networks. 
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