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 Acute lymphocytic leukemia (ALL) is a rapidly progressing blood cancer 

that affects the lymphocytes. The diagnosis of ALL typically entails the 

examination of blood smears under a microscope, processes that are both 

time-consuming and susceptible to errors. Deep learning (DL) approaches 

have shown significant promise in automating the classification of ALL 

from microscopic images. However, the lack of transparency in these 

models hinders their widespread adoption in clinical settings. This study 

addresses this challenge by employing fine-tuned EfficientNetV2B3, a DL 

model, in conjunction with local interpretable model-agnostic explanations 

(LIME), a technique for explainable artificial intelligence (XAI) technique, 

to classify microscopic images of ALL. The C-NMC 2019 dataset, which 

has been augmented to ensure class balance, was utilized for training and 

evaluation. The proposed approach achieved impressive results, with an 

average recall, F1-score, and accuracy of 0.9795 and precision of 0.9796. 

The use of LIME effectively highlights relevant areas for prediction, 

accurately corresponding to the cell characteristics. The integration of DL 

and XAI techniques enhances the interpretability of ALL classification 

models, potentially increasing their trustworthiness and adoption in clinical 

practice. This study aims to further the development of diagnostic tools that 

are both precise and transparent for ALL. 
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1. INTRODUCTION  

Leukemia comprises a diverse group of blood cancers that result from the abnormal and 

uncontrolled growth of immature white blood cells [1]. Leukemia can be classified based on its 

progression—acute or chronic—and the specific cell lineage involved—myeloid or lymphoid cells. Acute 

lymphocytic leukemia (ALL), commonly referred to as acute lymphoblastic leukemia (ALL), is a major 

concern. ALL is characterized by its rapid onset and progression, arising from the early forms of 

lymphocytes, a type of white blood cells. The global incidence of ALL has increased by 30.81% [2]. ALL is 

most commonly diagnosed in children under the age of five and adults over the age of 50 years. 

Approximately 25% of pediatric cancers are caused by ALL [3]. In Indonesia, 3,434 new cases of ALL are 

estimated to occur in children [4]. The prognosis for ALL varies significantly with age; while the disease 

progresses swiftly, only approximately 30% of adults with ALL can be cured [5]. Diagnosing conditions at 

an early stage and providing prompt treatment are essential for enhancing the patients' quality of life. 

https://creativecommons.org/licenses/by-sa/4.0/
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ALL is typically diagnosed by examining white blood cells using a blood smear through a 

microscope. Morphological evaluation is a valuable test for confirming the diagnosis and risk stratification of 

ALL [6]. The current diagnostic approach predominantly relies on manual methods in which the doctor 

visually analyzes the blood smear under a microscope. Nonetheless, differentiating malignant ALL cells from 

normal cells under a microscope is difficult due to their morphological similarities. In addition, this 

traditional method is time tedious and error-prone. Therefore, an automated system for ALL screening is 

required to significantly enhance diagnostic results. Automated systems can offer greater accuracy and faster 

diagnosis than manual methods, aiding doctors in providing more efficient treatment. Additionally, these 

systems could play a crucial role in rural and underserved areas, where medical experts are scarce [7]. 

Artificial intelligence, particularly through deep learning (DL) and computer vision techniques, 

presents a promising solution to these challenges [8]. Numerous studies have explored the use of DL for 

classifying leukemia, especially ALL. Sampathila et al. [9] developed a customized DL model based on 

convolutional neural networks (CNN) that achieved remarkable performance, including specificity of 

95.81%, a sensitivity of 95.91%, accuracy of 95.54%, precision of 96%, and F1-score of 95.43%. Batool and 

Byun [10] enhanced EfficientNetB3 with depthwise separable convolutions to improve efficiency and reduce 

computational load, achieving 96.81% accuracy for the multiclass leukemia dataset. Ullah et al. [11] 

designed an attention-based CNN model that improves VGG16 architecture with an efficient channel 

attention (ECA) module. This method focuses on the most relevant aspects of the input images, allowing the 

model to enhance the feature extraction and representation. The proposed model resulted in a mean test 

accuracy of 91.1% [11]. Cho et al. [12] adopted the vision transformer and CNN model on an ALL 

classification dataset consist of 12,528 samples and achieved accuracies of 86.2% and 88.4%, respectively. 

Abhishek et al. [13] presented a dataset of 500 peripheral blood smear images consisting of acute myeloid 

leukemia, ALL, and normal samples. They utilized ResNet50 combined with a support vector machine and 

attained an accuracy of 95% in their study. Shafi et al. [14] implemented CNN to differentiate three types of 

ALL utilizing peripheral blood smear microscopic images and achieved an accuracy of 89%.  

Despite numerous evaluations of various DL model architectures in previous studies, there is an 

ongoing need to assess model interpretability and feasibility in clinical settings [15], [16]. Models employing 

neural networks, particularly CNNs, are often characterized as black-box predictions. This is because of the 

opacity of the training and testing processes, as well as the complexity of the model itself, which makes it 

difficult to discern which features are most utilized in the classification process. Transparency is of 

paramount importance in the healthcare sector, and the ability to provide clear explanations of the predicted 

outcomes is critical. This study aims to bridge the existing gap by employing explainable artificial 

intelligence (XAI) techniques [17]-[19] to provide understanding into the prediction outcome of DL models. 

This research aims to advance the current understanding of ALL identification by employing the 

cutting-edge EfficientNetV2B3 architecture [20], [21] in conjunction with a local interpretable model-

agnostic explanation (LIME) technique [22]. The C-NMC2019 dataset [23] comprising 12,528 microscopic 

images of ALL collected from 118 subjects was used in this study. The present study build a valuable 

contribution to the development of an automated screening system for ALL by implementing a hybrid 

approach that integrate a CNN-based model and XAI for both the classification and explanation of ALL 

microscopic images. 

 

 

2. METHOD  

2.1.  Research workflow 

Figure 1 outlines the implementation process of this study. The process began with the 

preprocessing of the C-NMC2019 dataset, which involved several steps. Initially, the images were resized to 

a uniform dimension to match the optimal input requirements of the model. The dataset was partitioned into 

training and test sets. Subsequently, data augmentation techniques are employed to equalize the number of 

images in each class. Following the preprocessing stage, EfficientNetV2B3 architecture was employed for 

model training. Once the model training is complete, the trained model undergoes an evaluation process 

using the F1-score, precision, accuracy, and recall. To gain insights of the model's prediction-making 

process, the LIME method is employed by visualizing the highlighted regions to ensure that the predictions 

align with the expected cell characteristics. 

 

2.2.  C-NMC2019 dataset 

This study employed the C-NMC2019 dataset, which originally comprised 15,135 images of ALL 

obtained from 118 individuals. The images, formed of 450×450 pixels and a black background, was sourced 

from publicly available datasets [23]. The dataset comprises images of cells segmented from microscopic 

images that closely resemble real-world conditions, including the staining noise and illumination errors. 

Expert classification further categorizes each dataset into two classes: ALL (leukemia cells) and HEM 
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(healthy and non-cancerous cells). For this research, only images from the training and validation folders 

were used, as these datasets included ground-truth labels, whereas the test data lacked such labels and could 

not be utilized. This study utilized 12,528 images, including 8,491 ALL and 4,027 HEM images. Sample 

images of the dataset are shown in Figures 2 and 3. 

 

 

 
 

Figure 1. Research workflow 

 

 

  
 

Figure 2. Sample for ALL class 
 

Figure 3. Sample for HEM class 

 

 

Typically, lymphocytes and lymphoblasts are round, with the nucleus occupying most of the cell 

area and the remaining portion being the cytoplasm. From the images of both classes, it is evident that most 

do not include the cytoplasm and change to a black background. This was likely because of the segmentation 

performed by the dataset creators, which resulted in the cytoplasm surrounding the nucleus of the 

lymphoblasts and lymphocyte cells being cut off. This is indicated by the images with overly rigid cuts and 

noncircular cell shapes. The segmentation process during the dataset creation is shown in Figure 4. 

In the C-NMC2019 dataset, images of both ALL and acute lymphoblastic leukemia were provided. 

As shown in Figure 5, the white nucleoli, indicated by red arrows, are visible, and the nucleus surface 

appears smooth with minimal cytoplasm surrounding the cell, which is characteristic of lymphoblasts. 

Conversely, in lymphocyte cells, the nucleus surface was rough and uneven, the cytoplasm was relatively 

large compared to lymphoblasts (highlighted by green arrows), and no nucleoli or white dots were present. In 

the ALL class, which contains lymphoblast cells, some images display nucleoli very clearly, whereas in 

others, the nucleoli are either difficult to discern or are not visible at all. Similarly, in the HEM class images, 

some exhibited a rough surface on the nucleus, whereas in others, this rough texture was not as apparent. In 
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addition, in both classes, the cytoplasmic region is often unclear and is likely to be truncated during 

segmentation. This mixture of images, in which not all show the distinct characteristics of each cell type, 

mirrors real-life conditions in which microscopic images may not consistently display these features. 

 

 

 
 

Figure 4. Segmentation process during dataset creation 

 

 

 
 

Figure 5. Example of lymphocyte and lymphoblast 

 

 

2.3.  Dataset preprocessing 

The dataset was subsequently divided into train, validation, and test set with a ratio of 70:20:10. 

Owing to the uneven distribution of training data between the two classes, oversampling was applied through 

augmentation using ImageDataGenerator to ensure that both classes had a total of 10,000 images. The 

specific augmentation techniques employed were rotation with a range of 20°, vertical flip, and horizontal 

flip, which were based on previous research [9], [10]. These techniques were selected because they only 

involve rotating and flipping the image, thus minimizing the risk of the cell images being cut off owing to 

image shifting. In addition, the image size was adjusted to 300×300 pixels to accommodate the expected 

input shape of the EfficientNetV2B3 model [24]. 

 

2.4.  Classification system 

The classification system used in this study was constructed using EfficientNetV2B3. This model 

was selected because it is a more recent version of the EfficientNet family [21]. The EfficientNetV2 model 

demonstrated exceptional accuracy on the ImageNet dataset. Furthermore, it has the advantage of being 

smaller than the other CNN models [24]. The architecture of EfficientNetV2B3 is illustrated in Figure 6. 

Several modifications were made to optimize the hyperparameters for model training. Adam 

optimizer was utilized with a batch size of 32, a learning rate of 0.0001, and 60 epochs. The Adam optimizer 

was selected based on its reputation as a powerful and adaptable optimization strategy [8], [25]. A batch size 
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of 32 was selected to accommodate the limited computational resources. An epoch of 60 was selected to meet 

a balance between training stability and allow sufficient time for the model to learn the features from the 

images. To mitigate overfitting, the EarlyStopping technique was implemented to monitor the validation loss 

and stop training when there was no improvement for six successive epochs. The training process was 

implemented using the Google Colab-free version.  

 

 

 
 

Figure 6. EfficientNetV2B3 architecture 

 

 

2.5.  Model evaluation and explanation 

The key evaluation metrics used in this study were accuracy, F1 score, recall, and precision.  

In (1)-(4) provide the respective equations for these metrics, written in terms of true negatives (TN), true 

positives (TP), false positives (FP), and false negatives (FN). In addition, the learning curve was used to 

evaluate the performance during training by monitoring the accuracy and loss across multiple epochs [26]. 

This curve helps diagnose the model's proficiency in learning from the dataset. 

 

𝑇𝑒𝑠𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (1) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 

 

LIME is a technique used in the field of XAI. As the name suggests, LIME operates at the local 

level, focusing on a single instance, and is model-agnostic, meaning that it is compatible with any model. 

LIME perturbs the input data to produce multiple new synthetic datasets, which are variations of the 

original data. The new datasets were then assigned weights based on their resemblance to the original 

instance. LIME trains a model using synthetic data to make it easier to gain knowledge of the decision-

making process from a more complex model. The goal was to develop a simpler model to replicate the 

behavior of the complex model, while capturing the overall features of the data. This allows LIME to 

identify the parts of the input data that the model relies on for its classification, thereby providing valuable 

information about the model's decision-making process. A mathematical explanation of the LIME is 

presented in (5). In general, the goal is to achieve a satisfactory approximation between the complex 𝑓 

model and simple 𝑔 model. 

 

𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑔 ∈ 𝐺 𝐿(𝑓, 𝑔, 𝜋𝑥) + 𝛺(𝑔) (5) 

 

where: 𝑥 is the data to be explained, 𝑓 is the complex model used, such as EfficientNet, 𝑔 is one of the 

selected simple interpretable models for explanation, 𝐺 is a collection of simple interpretable models, 

𝛱𝑥 is proximity measure, and 𝛺(𝑔) is regularization to ensure that the g model does not become excessively 

complex and remains interpretable.  
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3. RESULTS AND DISCUSSION 

This study explored the performance of EfficientNetV2B3 in diagnosing ALL using the C-

NMC2019 dataset. While previous research has focused on various CNN-based architectures for diagnosing 

ALL, they have often overlooked the crucial aspect of model explainability in their predictions. This study 

aims to bridge this gap by developing an explainable deep-learning model utilizing EfficientNetV2B3 along 

with LIME to enhance the transparency of the prediction results.  

 

3.1.  Model performance results 

The model performance for training the C-NMC2019 dataset using EfficientNetV2B3 is listed in 

Table 1. As shown in Table 1, the average precision, recall, and F1 scores were 0.9796, 0.9795, and 0.9795, 

respectively. Furthermore, the model achieved an accuracy of 0.9795. We found that the addition of 

preprocessing through oversampling yielded consistent results for both ALL and HEM classes. The slight 

discrepancies in precision, recall, and F1-score among the classes indicated that oversampling was effective 

in enabling the model to learn from each class more effectively. The confusion matrix for these results is 

shown in Figure 7. 

 

 

Table 1. Model performance results 
Class Precision Recall F1-score 

ALL 0.9724 0.9870 0.9797 
HEM 0.9868 0.9720 0.9794 

Average 0.9796 0.9795 0.9795 

 

 

 
 

Figure 7. Confusion matrix 

 

 

As shown in Figure 7, the confusion matrix reveals that the model makes predictions with high 

accuracy, with only 41 misclassified images. The majority of these misclassifications occurred in the HEM 

class (healthy lymphocyte cells), where the model incorrectly predicted the images as belonging to the ALL 

class. This misclassification trend can be attributed to the fact that the HEM class images did not differ 

significantly from ALL class images. Healthy lymphocyte cells in the HEM class typically have a larger 

cytoplasm compared to ALL cells, but the nucleus's color and texture in both classes are quite similar, 

making it challenging to differentiate them. Moreover, the original dataset contained approximately  

7000 images for the ALL class and 3000 images for the HEM class. Consequently, the ALL class has more 

varied images despite previous data augmentation efforts. Although augmentation can modify existing 

images, it does not generate entirely new images, leading to less variety in the HEM class. As a result, the 

model tends to be more accurate in classifying images as ALL than as HEM. 

The loss and accuracy curves for the model training process are shown in Figures 8 and 9, 

respectively. Figure 8 illustrates a gradual decrease in loss, approaching nearly zero, which signifies an 

effective error minimization during training. Both training and validation losses were very low, starting 

below 50% at the beginning of training and ending below 15% by the end. In Figure 9, the accuracy curve 
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consistently increased, indicating the model's successful feature learning from the data. This graph indicates 

that the model achieved a high accuracy in both the training and validation phases. The model achieved a 

maximum training accuracy of 98.7% and a validation accuracy of 97.5%. The small difference in accuracy 

between training and validation—only 1-2%—indicates that the model is neither overfitting nor underfitting. 

This performance surpasses that of previous research, in which the difference in accuracy between training 

and validation was as high as 5%. This improvement suggests that the data augmentation techniques 

implemented by the author effectively minimized overfitting in the model. 

 

 

 
 

Figure 8. Training and validation loss curve 

 

 

 
 

Figure 9. Training and validation accuracy curve 

 

 

3.2.  Model explainability 

To test the LIME results, the author selected nine images from the ALL class (lymphoblast cells) 

and nine images from the HEM class (lymphocyte cells) were used. The images were selected to highlight 

their distinctive characteristics. Each image in Figure 10 and 11 (previously described in section 2) was 

analyzed using the LIME module, with the previously trained model as a reference. Figure 10 shows the 

LIME results for ALL classes. In Figure 10, the green-highlighted areas identified by the LIME model 

illustrate the features of the model used for its predictions. It is evident that the model is focused on the 

surface of the nucleus. For lymphoblast cells, the surface is smooth and homogeneous, and the model also 

identifies nucleoli, which appear as white dots within lymphoblast cells. Figure 11 shows the LIME results 
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for the HEM class. As can be seen in Figure 11, the green-highlighted areas indicate the parts of the image 

that the model used for classification, while the red-highlighted areas show the regions "discarded" by the 

LIME model, deemed less influential for classification. These images revealed that the model predominantly 

focused on the rough nuclear region of lymphocyte cells, as evidenced by the extensive green highlighting of 

the nuclear area.  

 

 

 
 

Figure 10. LIME explanation results on ALL class 

 

 

 
 

Figure 11. LIME explanation on HEM class 

 

 

Figures 10 and 11 demonstrate that the model effectively identified relevant features for predictions 

corresponding to the distinctive characteristics of each cell type. Our findings indicate that the fine-tuned 

EfficientNetV2B3 model is not only accurate but also makes informed predictions by targeting appropriate 

cell features. As explained in the dataset section, the images did not include the cytoplasm, as they were 

removed during segmentation when the dataset was created. Typically, lymphocytes, and lymphoblasts are 

round, with the nucleus occupying most of the cell area and the remaining portion being the cytoplasm. 

Including the cytoplasm in the images could enhance the classification and explanation accuracy, because the 
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nucleus-to-cytoplasm ratio is a key factor in distinguishing between lymphocytes and lymphoblasts, 

especially when other distinguishing features are less visible. 

  

3.3.  Comparison with previous studies 

Several studies have explored the use of CNN-based architectures for ALL diagnosis. This section 

compares our results with prior studies that also utilized the C-NMC 2019 dataset to emphasize progress and 

identify potential areas for enhancement. Cho et al. [12] adopted a CNN architecture and reported an 

accuracies of 86.2%. Similarly, Ullah et al. [11] utilized an attention-based CNN model to focus on the most 

relevant aspects of input images, achieving an accuracy of 91.1%. Our study, using the EfficientNetV2B3 

model, demonstrated a significant improvement, with 11.75% and 6.85% higher accuracy, respectively. This 

performance boost likely stems from the augmentation techniques and EfficientNetV2B3 architecture’s 

superior ability to extract features efficiently. Additionally, Batool and Byun [10] used the previous version 

of our model, EfficientNetV3, and achieved an accuracy of 96.81%. Although the difference in accuracy 

between their study and ours was small, they did not investigate which features of the images the model 

relied on to make its predictions. In contrast, our study not only achieves high accuracy but also prioritizes 

model explainability, offering insights into the decision-making process. However, while these results are 

promising, the model has not yet been tested in clinical environments. Further research is necessary to 

validate the clinical utility of our model through expert evaluation and real-world testing, to ensure its 

robustness and reliability for diagnostic use. 

 

 

4. CONCLUSION 

In this study, we developed an automated system capable of accurately and efficiently classifying 

ALL cells from microscopic images, while providing transparent explanations for its predictions. Utilizing 

EfficientNetV2B3 and LIME on the augmented C-NMC 2019 dataset. The results demonstrate that the 

proposed method achieves an average precision of 0.9796 with a recall, F1-score, and accuracy of 0.9795. 

The use of LIME effectively highlights relevant areas for prediction, corresponding accurately to the cell 

characteristics. Additionally, the small difference of approximately 1% between the training and validation 

accuracies indicates that the model does not suffer from overfitting. Our findings demonstrate that the 

proposed method not only achieves high performance, but also emphasizes model explainability, providing 

valuable insights into the decision-making process. However, while these results are promising, the model 

has not yet been tested in clinical environments, and its performance on a more diverse dataset needs further 

exploration. Future research could involve confirming the practical value of these results through expert 

assessment and real-world application, ensuring its reliability for ALL diagnosis, as well as expanding its 

application to other forms of leukemia. 
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