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 Facial emotion recognition (FER) is a crucial task in human communication. 

Various face emotion recognition models were introduced but often struggle 

with generalization across different datasets and handling subtle variations in 

expressions. This study aims to develop the deep residual bidirectional long 

short-term memory (Bi-LSTM) fusion method to improve FER accuracy. This 

method combines the strengths of convolutional neural networks (CNN) for 

spatial feature extraction and Bi-LSTM for capturing temporal dynamics, 

using residual layers to address the vanishing gradient problem. Testing was 

performed on three face emotion datasets, and a comparison was made with 

seventeen models. The results show perfect accuracy on the extended Cohn-

Kanade (CK+) and the real-world affective faces database (RAF-DB) datasets 

and almost perfect accuracy on the face expression recognition plus 

(FERPlus) dataset. However, the receiver operating characteristic (ROC) 

curve for the CK+ dataset shows some inconsistencies, indicating potential 

overfitting. In contrast, the ROC curves for the RAF-DB and FERPlus 

datasets are consistent with the high accuracy achieved. The proposed method 

has proven highly efficient and reliable in classifying various facial 

expressions, making it a robust solution for FER applications. 
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1. INTRODUCTION 

Facial expressions are an important part of human nonverbal communication, where facial muscle 

movements express emotions such as happiness, sadness, anger, surprise, fear, and disgust [1]. The ability to 

recognize facial expressions automatically, known as facial emotion recognition (FER), has garnered 

significant attention due to its potential in various applications, such as education and healthcare [2]. For 

instance, schools can use FER to assess teaching effectiveness, while hospitals can apply it to analyze patients' 

psychological conditions. Moreover, advancements in graphics processing unit (GPU) technology and the 

increasing use of FER across various fields have further boosted the popularity of this technology [2]. However, 

despite its great potential, FER faces several complex problems compared to other image classification tasks. 

The main problems are inter-class similarities and intra-class differences. Inter-class similarities refer to the 

difficulty in distinguishing between similar facial expressions, such as anger and disgust [3]. On the other hand, 

intra-class differences occur due to variations in expressions among individuals with different facial structures, 

https://creativecommons.org/licenses/by-sa/4.0/
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genders, ages, and ethnicities [4]. These variations limit how well the model generalizes, reducing its accuracy 

and reliability [5]. 

Researchers have developed various models to tackle these challenges, such as EfficientFace [6], 

dynamic attention network-generative adversarial network (DAN-GAN) [7], emotion-network (EMO-Net) [8], 

transfer learning-based facial emotion recognition (TransFER) [9], and lightweight facial emotion recognition 

(LiteFER) [10]. Although these models have improved FER accuracy, they still need help recognizing negative 

expressions effectively due to dataset imbalances and other limitations. Additionally, models like Occlusion-

Aware convolutional neural networks (CNN) [11], Pseudo-3D CNN [12], and vision transformer (ViT) [13] 

are designed to handle challenging situations, such as when parts of the face are obscured or when the face is 

viewed from difficult angles. While these models provide partial solutions, further refinement is necessary to 

address more complex real-world scenarios. To solve these issues, researchers have suggested that using larger 

neural networks can improve FER performance. Models such as emotion transformer [14], DAN [15], and 

HybridNet [16] have shown excellent results but require significant computational power. In contrast, models 

like MobileEmotionNet [17], TinyFaceNet [18], Light-FER [19], multi-scale feature fusion network [20], 

residual masking network [21], and Context-Aware FER [22]. Pyramid attention [23], which are more 

lightweight and efficient, are suitable for devices with limited resources without sacrificing too much accuracy. 

These models provide more efficient solutions for situations with limited computational resources [17]-[23]. 

In addition, researchers have proposed hybrid models to combine the advantages of various deep learning 

techniques. For example, the CNN-long short-term memory (CNN-LSTM) hybrid model integrates CNN for 

visual feature extraction with LSTM for processing temporal data, improving FER accuracy [24]. Another 

model, dual-stream CNN [25], processes spatial and temporal information simultaneously through two parallel 

convolutional streams, making it better at capturing the dynamics of facial expressions. However, despite 

various approaches, many models still face difficulty recognizing negative expressions. EfficientNet-B3 [26], 

deep comprehensive multi-patch network [27], spatio-temporal convolutional network [28], and transformer-

ResNet [28] have also proven effective in FER [26]-[28]. Adaptive graph convolutional network [29] and 

temporal FER focus on capturing temporal dynamics [30]. 

One promising approach to improving FER involves incorporating temporal information in facial 

images. Recurrent neural networks (RNN), particularly CNN-LSTM, effectively process sequential data and 

capture the temporal dynamics of facial expressions [31]. By feeding CNN-extracted features as input to 

LSTM, the model can encode temporal data dynamics while learning visual and temporal patterns. This 

approach increases classification accuracy compared to FER methods that rely solely on static images. Recent 

research by Liang et al. [31] introduced the deep convolution bidirectional long short-term memory (Bi-LSTM) 

fusion model, which includes three main components: deep spatial network (DSN) for extracting key features 

from image locations, deep temporal network (DTN) for monitoring changes over time, and recurrent networks 

to combine spatial and temporal information for a comprehensive understanding of the situation. This model 

achieved over 95% accuracy on the extended Cohn-Kanade (CK+) dataset after 10.000 training epochs. 

However, its reliance on advanced GPUs and large datasets makes it difficult to implement on a larger scale. 

This study aims to develop a deep residual Bi-LSTM fusion model by incorporating residual blocks from a 

residual network (ResNet) into the deep convolution Bi-LSTM fusion model to address these issues. This 

modification aims to reduce the risk of overfitting and improve the model's overall performance, particularly 

in recognizing both positive and negative expressions more effectively. 

 

 

2. RELATED WORK 

Research on FER has resulted in various models designed to address different challenges and improve 

accuracy and efficiency. EfficientFace is a model designed with an efficient architecture to overcome 

limitations in FER and achieve high accuracy [6]. DAN-GAN combines dual attention and generative 

adversarial networks to enhance image quality and classification of facial expressions [7]. EMO-Net uses deep 

neural networks to extract important features from facial images and classify them into different expression 

categories [8]. Transfer leverages the capabilities of transformers in handling long-term dependencies in 

sequential data, thereby improving FER accuracy [9]. LiteFER is designed for limited-resource devices, 

enabling fast and accurate FER [10]. However, these models still struggle to detect subtle variations in facial 

expressions and generalize well across different datasets. 

Several other models have been developed to address specific challenges in FER. Occlusion-. CNN 

uses specialized convolutional techniques to handle situations where parts of the face are obscured [11], while 

Pseudo-3D CNN combines spatial and temporal information to capture the dynamics of facial expressions [12]. 

ViT applies transformer architecture to divide facial images into small patches and process them in parallel 

[13]. Emotion transformer and DAN utilize the power of transformers and dynamic attention mechanisms to 

improve FER accuracy by focusing on key features in the images [14], [15]. 
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Several hybrid models have also been developed to capitalize on various deep learning techniques. 

HybridNet integrates CNN for visual feature extraction with RNN for temporal data processing, improving 

both accuracy and efficiency in FER [16]. MobileEmotionNet and TinyFaceNet are designed for mobile 

devices and IoT with lightweight architectures, allowing fast and accurate recognition even with limited 

resources [17], [18]. Light-FER focuses on computational efficiency by using compression and optimization 

techniques in neural networks [19]. Multi-scale feature fusion network integrates information from different 

image scales to improve FER accuracy [20]. 

Other effective models for FER include residual masking network, which combines residual and 

masking techniques to focus on important facial features [21], and Context-Aware FER, which uses contextual 

information to enhance recognition accuracy [22]. Pyramid attention network leverages pyramid attention 

mechanisms to capture critical features at various resolution levels [23]. CNN-LSTM hybrid model and dual-

stream CNN combine the strengths of CNN and LSTM to process spatial and temporal information 

simultaneously, making them more effective at capturing the dynamics of facial expressions [24], [25]. Models 

such as EfficientNet-B3, deep comprehensive multi-patch network, spatio-temporal convolutional network, 

and transformer-ResNet have also proven effective in FER by combining neural network and transformer 

techniques to process both visual and temporal data [26]-[28]. Adaptive graph convolutional network and 

temporal FER focus on capturing temporal dynamics and relationships between features in facial images, 

thereby improving overall recognition accuracy [29], [30]. 

 

 

3. METHOD 

The proposed model, deep residual Bi-LSTM fusion, aims to enhance FER performance by leveraging 

spatial-temporal information and using residual blocks to prevent overfitting. This method combines the 

strengths of CNN for feature extraction and Bi-LSTM for capturing temporal dynamics. 

 

3.1.  Data preprocessing 

This study used three main datasets: real-world affective faces database (RAF-DB), face expression 

recognition plus (FERPlus), and CK+. The RAF-DB dataset contains approximately 30,000 facial images 

classified into seven basic emotion categories: surprise, fear, disgust, happiness, sadness, anger, and neutral. 

Meanwhile, the FerPlus dataset extends the FER2013 dataset with 28,709 training images, 3,589 validation 

images, and 3,589 test images labeled with eight emotion categories: neutral, happiness, surprise, sadness, 

anger, disgust, fear, and contempt. The CK+ dataset consists of 593 video sequences from 123 subjects, 

categorized into seven emotion classes: anger, contempt, disgust, fear, happiness, sadness, and surprise. Images 

from the CK+ dataset were resized to 48×48 pixels to ensure data consistency, while images from the RAF-

DB and FerPlus datasets were resized to 100×100 pixels. All images were normalized to have zero mean and 

unit variance, which helps to standardize the data and reduce computational complexity. Additionally, various 

augmentation techniques were applied to increase the diversity of training data and improve the model's 

generalization ability. These techniques include random rotations within the range of -30 to 30 degrees, 

horizontal flipping, random cropping, resizing the images back to the appropriate dimensions (48×48 or 

100×100 pixels), and random adjustments to brightness, contrast, saturation, and hue. This approach aims to 

enrich data variety, enabling the model to recognize facial expressions under various conditions more 

accurately. 

 

3.2.  Model architecture 

The model architecture can be visualized in Figure 1. The DSN begins with several convolutional 

layers that extract spatial features from facial images, such as edges, textures, and patterns. Each convolutional 

layer is followed by batch normalization and rectified linear units (ReLU) activation to introduce non-linearity 

and stabilize training. Residual blocks learn deeper features and address the vanishing gradient problem. 

Each residual block consists of two convolutional layers with 3×3 kernels, followed by batch 

normalization and ReLU activation. Skip connections are added to allow gradients to flow directly through the 

network. The features produced by the DSN represent rich spatial information from facial images, which are 

then used as input to the temporal network. The DTN uses the spatial features extracted by the DSN and 

accumulates them over time to form a sequence representing the temporal evolution of facial expressions. This 

sequence of features is fed into Bi-LSTM layers to capture temporal dependencies and motion context. Bi-

LSTM processes the sequence in both forward and backward directions, considering past and future 

information, providing a more comprehensive view of facial expression changes over time. The mathematical 

equations for LSTM are as (1)-(6): 

 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 
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𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

 

𝐶̃ = tan(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3) 

 

𝐶𝑡 = 𝑓𝑡 ∗  𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃ (4) 

 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

 

ℎ𝑡 = 𝑜𝑡 ∗ tan(𝐶𝑡) (6) 

 

where 𝑓𝑡 is the forget gate, 𝑖𝑡 is the input gate, 𝐶̃ is the candidate cell state, 𝐶𝑡 is the cell state, 𝑜𝑡  is the output 

gate, and ℎ𝑡 is the hidden state output. 𝑊𝑓 ,𝑊𝑖, 𝑊𝐶 , 𝑊𝑜 and 𝑏𝑓, 𝑏𝑖, 𝑏𝐶 , 𝑏𝑜 are the weights and biases that are 

learned. The outputs from Bi-LSTM in both directions (forward and backward) are combined into a single 

representation: 

 

𝐻𝑡 = [ℎ⃗ 𝑡; ℎ⃖⃗𝑡] (7) 

 

where ℎ⃗ 𝑡  and ℎ⃖⃗𝑡 are the hidden states from the forward and backward directions, respectively. An attention 

mechanism is applied to the output of the Bi-LSTM layers to focus on the most relevant temporal features for 

expression recognition. This attention mechanism computes the attention scores ℯ𝑡  and attention weights 𝛼𝑡 as 

(8) and (9): 

 

ℯ𝑡 = 𝑣𝑇tan(𝑊ℎ𝐻𝑡 + 𝑏ℎ) (8) 

 

𝛼𝑡 =
exp (ℯ𝑡)

∑ exp (ℯ𝑘)𝑇
𝐾=1

 (9) 

 

where 𝑣 and 𝑊ℎ are the learned parameters. The attention output 𝑧 is: 
 

𝑧 = ∑ 𝛼𝑡
𝑇
𝑡=1 𝐻𝑡 (10) 

 

 

 
 

Figure 1. Deep residual Bi-LSTM fusion model 
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The temporal features from the DTN are then passed through several fully connected layers to map 

the features to the output space. Dropout layers with a dropout rate of 0.5 are used to prevent overfitting by 

randomly setting a fraction of the input units to zero during training [31]. A SoftMax activation function is 

applied in the final layer to produce a probability distribution over the expression classes. 

 

3.3.  Training process 

The training process involves several steps to ensure the model learns effectively and generalizes well 

to new data. Categorical cross-entropy loss is used to measure the difference between the predicted and true 

expression labels, making it suitable for multi-class classification tasks. The Adam optimizer, with an initial 

learning rate of 0.001, is employed for its adaptive learning rate and robustness across different types of datasets 

because it is able to adjust learning rates dynamically. This helps in converging quickly and efficiently, making 

it suitable for handling complex models and diverse datasets [32]. L2 regularization is applied to the weights 

to prevent overfitting, by adding a penalty to the loss function for large weights. The model is trained using 

10-fold cross-validation with a batch size of 4 for 200 epochs [33]. The training process in this study is designed 

with several key steps to ensure the model learns effectively and generalizes well to new data. Categorical 

cross-entropy loss is used to measure the difference between the model’s predictions and the actual expression 

labels, making it an ideal choice for multi-class classification tasks. The Adam optimizer is chosen with an 

initial learning rate of 0.001 due to its advantage in adjusting the learning rate adaptively and its robustness 

across various types of datasets. Adam’s ability to dynamically adjust the learning rate enables the model to 

converge faster and more efficiently, making it suitable for handling complex models and diverse datasets [32]. 

To prevent overfitting, L2 regularization is applied to the model weights, adding a penalty to the loss function 

when the weights become too large. The model is trained using the 10-fold cross-validation technique with a 

batch size of 4 for 200 epochs [33]. This approach ensures that the model can handle complex data while 

producing more accurate and reliable results. 

 

3.4.  Evaluation 

The model's performance is evaluated using several metrics, including accuracy, precision, recall, F1-

score, and receiver operating characteristic area under the curve (ROC AUC). Accuracy measures the overall 

correctness of the model's predictions, while precision represents the proportion of true positive predictions 

among all positive predictions. Recall indicates the proportion of true positive predictions among all actual 

positive instances, and the F1-score provides a balanced measure of precision and recall. ROC AUC is used to 

evaluate the model's ability to distinguish between classes, with higher values indicating better performance. 

A confusion matrix is generated to visualize the model's performance across different expression classes, 

showing the number of correct and incorrect predictions for each class. Additionally, the performance of deep 

residual Bi-LSTM fusion is compared with other state-of-the-art FER models, demonstrating its effectiveness 

in terms of accuracy, precision, recall, F1-score, and ROC AUC. In summary, the proposed deep residual Bi-

LSTM fusion method combines the advantages of CNNs for spatial feature extraction and Bi-LSTMs for 

capturing temporal dynamics, enhanced with residual blocks to prevent overfitting. This approach aims to 

achieve high accuracy and robust performance in FER tasks by learning discriminative spatial-temporal 

information and effectively handling temporal motion context. 

The model's performance is evaluated using several key metrics: accuracy, precision, recall, F1-score, 

and ROC AUC. Accuracy measures the correctness of the model's predictions, while precision indicates the 

proportion of true positive predictions among all positive predictions. Recall measures how many true positive 

predictions are made from all actual positive instances, while the F1-score balances precision and recall. ROC 

AUC assesses the model's ability to distinguish between classes, with higher values indicating better 

performance. A confusion matrix is generated to visualize the model's performance across different expression 

classes, showing the number of correct and incorrect predictions for each class. 

Additionally, the performance of the deep residual Bi-LSTM fusion model is compared to other state-

of-the-art FER models, demonstrating its superiority in terms of accuracy, precision, recall, F1-score, and ROC 

AUC. Overall, the proposed deep residual Bi-LSTM fusion method combines the strengths of CNNs for spatial 

feature extraction and Bi-LSTMs for capturing temporal dynamics, further enhanced by residual blocks to 

prevent overfitting. This approach is designed to achieve high accuracy and robust performance in FER tasks 

by learning discriminative spatial-temporal information and effectively handling temporal motion context. 

 

 

4. RESULTS AND DISCUSSION 

The training and testing results of the deep residual Bi-LSTM fusion method were evaluated using 

three main datasets: CK+, RAF-DB, and FerPlus, with evaluation metrics including accuracy, precision, recall, 

F1-score, and ROC AUC. The CK+ and RAF-DB datasets contain seven emotion classes: Class 0=anger, Class 

1=contempt, Class 2=disgust, Class 3=surprise, Class 4=happiness, Class 5=sadness, and Class 6=fear. 
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Meanwhile, the FerPlus dataset contains eight emotion classes: Class 0=anger, Class 1=contempt, Class 

2=disgust, Class 3=surprise, Class 4=happiness, Class 5=sadness, Class 6=fear, and Class 7=neutral. The 

distribution of samples for each class across the three datasets varies shown in Table 1. The CK+ dataset has a 

relatively balanced distribution, with the happiness class having the highest number of samples (69 samples) 

and the contempt class having the fewest (18 samples). On the other hand, the RAF-DB dataset has a larger 

overall sample size, with the happiness class having the most samples (7,489 samples) and the fear class the 

fewest (1,125 samples). The FerPlus dataset shows a more diverse distribution, with the happiness class having 

the most samples (8,989 samples) and the fear class having the fewest (3,012 samples). 

 

 

Table 1. Class distribution in datasets 
Class CK+ RAF-DB FERPlus 

0 45 4703 4002 

1 18 876 2716 
2 59 2820 3515 

3 25 3165 3090 

4 69 7489 8989 
5 28 2716 6077 

6 25 1125 3012 

7 - - 6466 

 

 

Figure 2 shows the loss function graphs for the training and validation processes on three different 

datasets: CK+, RAF-DB, and FERPlus. Each graph illustrates how the loss values decrease as the number of 

epochs increases. In Figure 2(a), which represents the CK+ dataset, the initial loss values are quite high but 

decrease rapidly at the beginning of the training. After around 50 epochs, the loss values stabilize close to zero, 

indicating that the model consistently reduces prediction errors. Figure 2(b), showing the graph for the RAF-

DB dataset, displays a similar pattern. The initial loss values are high but decrease quickly during the first 50 

epochs, reaching stability near zero afterward, suggesting that the model also effectively reduces prediction 

errors on this dataset. Meanwhile, Figure 2(c), depicting the graph for the FERPlus dataset, demonstrates a 

consistent downward trend. The loss values drop rapidly during the early training phase, then stabilize near 

zero after approximately 50 epochs. All three graphs show a consistent decline in loss values for training and 

validation data, indicating that the model learns well and reduces prediction errors over time. 

Figure 3 shows the accuracy graphs during training and validation on CK+, RAF-DB, and FERPlus 

datasets. In Figure 3(a), which represents the CK+ dataset, accuracy is initially low. However, it increases 

rapidly within the first ten epochs, then stabilizes near the maximum value, indicating that the model quickly 

achieves high accuracy and maintains it throughout the training process. Figure 3(b), representing the RAF-

DB dataset, shows a similar pattern, with accuracy rising sharply within the first ten epochs and stabilizing 

near the maximum value, suggesting that the model learns quickly and maintains optimal performance. In 

Figure 3(c), accuracy increases rapidly during the initial training phase for the FERPlus dataset. It stabilizes 

after about ten epochs, demonstrating the model’s ability to achieve and sustain high training and validation 

data accuracy. All three graphs indicate that the model can quickly improve accuracy during the early training 

phase and maintain stable, high performance throughout the process, demonstrating effective learning 

capability and optimal performance across the three datasets. 

Figure 4 shows the confusion matrix for classification using the CNN method on three different 

datasets: CK+, RAF-DB, and FERPlus, illustrating the model's performance in classifying various emotion 

classes. In Figure 4(a), which represents the CK+ dataset, the model successfully classifies most labels 

correctly, with Class 4 (happiness) having 185 correct predictions and Class 0 (anger) having 121 correct 

predictions, indicating good accuracy in recognizing emotions. Figure 4(b), which displays the RAF-DB 

dataset, shows a similar result with a high number of correct predictions along the diagonal, where Class 5 

(happiness) has 3,980 correct predictions, and Class 0 (anger) has 232 correct predictions, demonstrating the 

model's capability to handle a larger dataset. In Figure 4(c), representing the FERPlus dataset, the model also 

shows high accuracy, with Class 7 (neutral) having 980 correct predictions and Class 6 (fear) having 967 correct 

predictions. Overall, the CNN model demonstrates excellent classification performance across the three 

datasets, with the majority of correct predictions located along the diagonal of the confusion matrix, indicating 

the model's ability to recognize and classify emotions accurately. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 2. Loss function; (a) Ck+, (b) RAF-DB, and (c) FERPlus 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 3. Accuracy function: (a) Ck+, (b) RAF-DB, and (c) FERPlus 
 

 

Figure 5 shows the ROC curves for each fold across three different datasets: CK+, RAF-DB, and FERPlus, 

providing an overview of the model's ability to distinguish between emotion classes based on the true positive rate 

and false positive rate. In Figure 5(a), which represents the CK+ dataset, the ROC curve demonstrates variations in 

the model's performance for each emotion class. Some classes, such as Class 1 (contempt) and Class 4 (happiness), 

have higher AUC values of 0.73 and 0.71, indicating that the model can effectively differentiate between these 

classes. However, other classes, like Class 0 (anger), show a lower AUC of 0.58, suggesting that the model may 

struggle to distinguish this emotion from the others. Figure 5(b), which displays the RAF-DB dataset, reveals overall 

better performance, with nearly all classes having AUC values above 0.6. Class 5 (happiness) achieves the highest 

AUC of 0.85, demonstrating the model's ability to classify emotions more effectively in this dataset compared to 

CK+. Meanwhile, Figure 5(c), representing the FERPlus dataset, indicates that the model exhibits excellent 

performance, with most classes having AUC values above 0.8. Class 1 (contempt) and Class 3 (disgust) achieve the 

highest AUC values of 0.97 and 0.96, reflecting the model's strong capability in distinguishing these emotions. 

Overall, Figure 5 illustrates that the model delivers good performance in classifying emotions across all three 

datasets, with performance variations depending on the complexity and size of the datasets used. 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 4. Confusion matrix; (a) Ck+, (b) RAF-DB, and (c) FERPlus 

 

  

Table 2 presents a comparative analysis of various models and their performance across three datasets: 

CK+, RAF-DB, and FERPlus. The results indicate that deep residual Bi-LSTM fusion achieved exceptional 

accuracy, scoring 100% on the CK+ and RAF-DB datasets and 99.96% on FERPlus. In comparison, the highest 

scores from other models on CK+ include gACNN at 96.40% [11] and paCNN at 97.03% [11], while the 

SCAN-CNN model reached 97.31% on CK+ and 89.02% on RAF-DB [34], demonstrating competitive 

performance but not matching the top results of deep residual Bi-LSTM fusion. The IFGAN model achieved 

97.52% on CK+ [35], a novel feature decomposition and reconstruction learning (FDRL) achieved 99.54% 

[36], ViT-SE reported an impressive 99.80% [37], highlighting advancements in model architecture. On the 

RAF-DB dataset, models such as CIAO and Patt-Lite delivered notable accuracies of 95.05% and 95.55%, 
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respectively. The TransferFER model performed consistently across both RAF-DB and FERPlus with scores 

of 90.83% and 90.91% [26]. Overall, the data illustrates that while many models exhibit strong performance, 

the deep residual Bi-LSTM fusion method is the most effective across all datasets, showcasing its robustness 

and reliability in FER tasks. 

 

 

 
(a) 

 

 
(b) 

 

 
(c) 

  

Figure 5. ROC curve; (a) Ck+, (b) RAF-DB, and (c) FERPlus 
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Table 2. Comparison of accuracy with previous studies based on dataset 

Model 
Datasets (%) 

Ck+ RAF-DB FERPlus 

VTFF [9] - 881.4 88.81 

gACNN [11] 96.40 - - 

paCNN [11] 97.03 - - 
TransferFER [26]  90.91 90.83 

SCAN-CNN [34] 97.31 89.02 89.42 

IFGAN [35] 97.52 - - 
FDRL [36] 99.54 - - 

ViT-SE [37] 99.80 - - 

RAN [38]  86.90 89.16 
 ARM [39]  90.42 - 

Facial chirality [40]  91.20 - 

APViT [41]  91.98 90.86 
POSTER [42]  92.05 91.62 

POSTER++ [43]  92.21 - 

CIAO [44]  95.05 95.55 

Patt-Lite [45] 100 95.05 95.55 

Deep residual BiLSTM fusion 100 100 99.96 

  

 

5. CONCLUSION 

The deep residual Bi-LSTM fusion method has demonstrated superior performance in FER tasks, 

achieving higher or comparable accuracy to existing methods across the CK+, RAF-DB, and FERPlus datasets. 

By integrating the strengths of CNN for spatial feature extraction and Bi-LSTM for capturing temporal 

dynamics, along with the use of residual layers to address the vanishing gradient problem, the model achieved 

perfect accuracy on CK+ and RAF-DB, and nearly perfect accuracy on FERPlus. These results underscore the 

model's efficiency and reliability in accurately classifying diverse emotion classes. For future work, we aim to 

further enhance the model's robustness by incorporating additional real-world datasets, exploring transfer 

learning techniques, and optimizing the model's architecture to reduce computational complexity without 

compromising performance. This approach is expected to develop an even more versatile and practical solution 

for real-time FER applications. 
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