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Facial emotion recognition (FER) is a crucial task in human communication.
Various face emotion recognition models were introduced but often struggle
with generalization across different datasets and handling subtle variations in
expressions. This study aims to develop the deep residual bidirectional long
short-term memory (Bi-LSTM) fusion method to improve FER accuracy. This
method combines the strengths of convolutional neural networks (CNN) for
spatial feature extraction and Bi-LSTM for capturing temporal dynamics,
using residual layers to address the vanishing gradient problem. Testing was
performed on three face emotion datasets, and a comparison was made with
seventeen models. The results show perfect accuracy on the extended Cohn-
Kanade (CK+) and the real-world affective faces database (RAF-DB) datasets
and almost perfect accuracy on the face expression recognition plus
(FERPIus) dataset. However, the receiver operating characteristic (ROC)
curve for the CK+ dataset shows some inconsistencies, indicating potential
overfitting. In contrast, the ROC curves for the RAF-DB and FERPlus

datasets are consistent with the high accuracy achieved. The proposed method
has proven highly efficient and reliable in classifying various facial
expressions, making it a robust solution for FER applications.
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1. INTRODUCTION

Facial expressions are an important part of human nonverbal communication, where facial muscle
movements express emotions such as happiness, sadness, anger, surprise, fear, and disgust [1]. The ability to
recognize facial expressions automatically, known as facial emotion recognition (FER), has garnered
significant attention due to its potential in various applications, such as education and healthcare [2]. For
instance, schools can use FER to assess teaching effectiveness, while hospitals can apply it to analyze patients'
psychological conditions. Moreover, advancements in graphics processing unit (GPU) technology and the
increasing use of FER across various fields have further boosted the popularity of this technology [2]. However,
despite its great potential, FER faces several complex problems compared to other image classification tasks.
The main problems are inter-class similarities and intra-class differences. Inter-class similarities refer to the
difficulty in distinguishing between similar facial expressions, such as anger and disgust [3]. On the other hand,
intra-class differences occur due to variations in expressions among individuals with different facial structures,
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genders, ages, and ethnicities [4]. These variations limit how well the model generalizes, reducing its accuracy
and reliability [5].

Researchers have developed various models to tackle these challenges, such as EfficientFace [6],
dynamic attention network-generative adversarial network (DAN-GAN) [7], emotion-network (EMO-Net) [8],
transfer learning-based facial emotion recognition (TransFER) [9], and lightweight facial emotion recognition
(LiteFER) [10]. Although these models have improved FER accuracy, they still need help recognizing negative
expressions effectively due to dataset imbalances and other limitations. Additionally, models like Occlusion-
Aware convolutional neural networks (CNN) [11], Pseudo-3D CNN [12], and vision transformer (ViT) [13]
are designed to handle challenging situations, such as when parts of the face are obscured or when the face is
viewed from difficult angles. While these models provide partial solutions, further refinement is necessary to
address more complex real-world scenarios. To solve these issues, researchers have suggested that using larger
neural networks can improve FER performance. Models such as emotion transformer [14], DAN [15], and
HybridNet [16] have shown excellent results but require significant computational power. In contrast, models
like MobileEmotionNet [17], TinyFaceNet [18], Light-FER [19], multi-scale feature fusion network [20],
residual masking network [21], and Context-Aware FER [22]. Pyramid attention [23], which are more
lightweight and efficient, are suitable for devices with limited resources without sacrificing too much accuracy.
These models provide more efficient solutions for situations with limited computational resources [17]-[23].
In addition, researchers have proposed hybrid models to combine the advantages of various deep learning
techniques. For example, the CNN-long short-term memory (CNN-LSTM) hybrid model integrates CNN for
visual feature extraction with LSTM for processing temporal data, improving FER accuracy [24]. Another
model, dual-stream CNN [25], processes spatial and temporal information simultaneously through two parallel
convolutional streams, making it better at capturing the dynamics of facial expressions. However, despite
various approaches, many models still face difficulty recognizing negative expressions. EfficientNet-B3 [26],
deep comprehensive multi-patch network [27], spatio-temporal convolutional network [28], and transformer-
ResNet [28] have also proven effective in FER [26]-[28]. Adaptive graph convolutional network [29] and
temporal FER focus on capturing temporal dynamics [30].

One promising approach to improving FER involves incorporating temporal information in facial
images. Recurrent neural networks (RNN), particularly CNN-LSTM, effectively process sequential data and
capture the temporal dynamics of facial expressions [31]. By feeding CNN-extracted features as input to
LSTM, the model can encode temporal data dynamics while learning visual and temporal patterns. This
approach increases classification accuracy compared to FER methods that rely solely on static images. Recent
research by Liang et al. [31] introduced the deep convolution bidirectional long short-term memory (Bi-LSTM)
fusion model, which includes three main components: deep spatial network (DSN) for extracting key features
from image locations, deep temporal network (DTN) for monitoring changes over time, and recurrent networks
to combine spatial and temporal information for a comprehensive understanding of the situation. This model
achieved over 95% accuracy on the extended Cohn-Kanade (CK+) dataset after 10.000 training epochs.
However, its reliance on advanced GPUs and large datasets makes it difficult to implement on a larger scale.
This study aims to develop a deep residual Bi-LSTM fusion model by incorporating residual blocks from a
residual network (ResNet) into the deep convolution Bi-LSTM fusion model to address these issues. This
modification aims to reduce the risk of overfitting and improve the model's overall performance, particularly
in recognizing both positive and negative expressions more effectively.

2. RELATED WORK

Research on FER has resulted in various models designed to address different challenges and improve
accuracy and efficiency. EfficientFace is a model designed with an efficient architecture to overcome
limitations in FER and achieve high accuracy [6]. DAN-GAN combines dual attention and generative
adversarial networks to enhance image quality and classification of facial expressions [7]. EMO-Net uses deep
neural networks to extract important features from facial images and classify them into different expression
categories [8]. Transfer leverages the capabilities of transformers in handling long-term dependencies in
sequential data, thereby improving FER accuracy [9]. LiteFER is designed for limited-resource devices,
enabling fast and accurate FER [10]. However, these models still struggle to detect subtle variations in facial
expressions and generalize well across different datasets.

Several other models have been developed to address specific challenges in FER. Occlusion-. CNN
uses specialized convolutional techniques to handle situations where parts of the face are obscured [11], while
Pseudo-3D CNN combines spatial and temporal information to capture the dynamics of facial expressions [12].
VIiT applies transformer architecture to divide facial images into small patches and process them in parallel
[13]. Emotion transformer and DAN utilize the power of transformers and dynamic attention mechanisms to
improve FER accuracy by focusing on key features in the images [14], [15].
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Several hybrid models have also been developed to capitalize on various deep learning techniques.
HybridNet integrates CNN for visual feature extraction with RNN for temporal data processing, improving
both accuracy and efficiency in FER [16]. MobileEmotionNet and TinyFaceNet are designed for mobile
devices and loT with lightweight architectures, allowing fast and accurate recognition even with limited
resources [17], [18]. Light-FER focuses on computational efficiency by using compression and optimization
techniques in neural networks [19]. Multi-scale feature fusion network integrates information from different
image scales to improve FER accuracy [20].

Other effective models for FER include residual masking network, which combines residual and
masking techniques to focus on important facial features [21], and Context-Aware FER, which uses contextual
information to enhance recognition accuracy [22]. Pyramid attention network leverages pyramid attention
mechanisms to capture critical features at various resolution levels [23]. CNN-LSTM hybrid model and dual-
stream CNN combine the strengths of CNN and LSTM to process spatial and temporal information
simultaneously, making them more effective at capturing the dynamics of facial expressions [24], [25]. Models
such as EfficientNet-B3, deep comprehensive multi-patch network, spatio-temporal convolutional network,
and transformer-ResNet have also proven effective in FER by combining neural network and transformer
techniques to process both visual and temporal data [26]-[28]. Adaptive graph convolutional network and
temporal FER focus on capturing temporal dynamics and relationships between features in facial images,
thereby improving overall recognition accuracy [29], [30].

3. METHOD

The proposed model, deep residual Bi-LSTM fusion, aims to enhance FER performance by leveraging
spatial-temporal information and using residual blocks to prevent overfitting. This method combines the
strengths of CNN for feature extraction and Bi-LSTM for capturing temporal dynamics.

3.1. Data preprocessing

This study used three main datasets: real-world affective faces database (RAF-DB), face expression
recognition plus (FERPIus), and CK+. The RAF-DB dataset contains approximately 30,000 facial images
classified into seven basic emotion categories: surprise, fear, disgust, happiness, sadness, anger, and neutral.
Meanwhile, the FerPlus dataset extends the FER2013 dataset with 28,709 training images, 3,589 validation
images, and 3,589 test images labeled with eight emotion categories: neutral, happiness, surprise, sadness,
anger, disgust, fear, and contempt. The CK+ dataset consists of 593 video sequences from 123 subjects,
categorized into seven emotion classes: anger, contempt, disgust, fear, happiness, sadness, and surprise. Images
from the CK+ dataset were resized to 48x48 pixels to ensure data consistency, while images from the RAF-
DB and FerPlus datasets were resized to 100x100 pixels. All images were normalized to have zero mean and
unit variance, which helps to standardize the data and reduce computational complexity. Additionally, various
augmentation techniques were applied to increase the diversity of training data and improve the model's
generalization ability. These techniques include random rotations within the range of -30 to 30 degrees,
horizontal flipping, random cropping, resizing the images back to the appropriate dimensions (48x48 or
100x100 pixels), and random adjustments to brightness, contrast, saturation, and hue. This approach aims to
enrich data variety, enabling the model to recognize facial expressions under various conditions more
accurately.

3.2. Model architecture

The model architecture can be visualized in Figure 1. The DSN begins with several convolutional
layers that extract spatial features from facial images, such as edges, textures, and patterns. Each convolutional
layer is followed by batch normalization and rectified linear units (ReLU) activation to introduce non-linearity
and stabilize training. Residual blocks learn deeper features and address the vanishing gradient problem.

Each residual block consists of two convolutional layers with 3x3 kernels, followed by batch
normalization and ReLU activation. Skip connections are added to allow gradients to flow directly through the
network. The features produced by the DSN represent rich spatial information from facial images, which are
then used as input to the temporal network. The DTN uses the spatial features extracted by the DSN and
accumulates them over time to form a sequence representing the temporal evolution of facial expressions. This
sequence of features is fed into Bi-LSTM layers to capture temporal dependencies and motion context. Bi-
LSTM processes the sequence in both forward and backward directions, considering past and future
information, providing a more comprehensive view of facial expression changes over time. The mathematical
equations for LSTM are as (1)-(6):

fe = U(Wf [he—1, xe] + bf) 1)
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i = oW~ [he—y, x] + by) )
C = tan(W, - [hy_y, x¢] + be) 3)
Co=fr* Cooqy+ipxC 4)
0r = 0(Wp * [he—y, %] + by,) ()
he = o, * tan(C;) (6)

where f, is the forget gate, i, is the input gate, C is the candidate cell state, C, is the cell state, o, is the output
gate, and h, is the hidden state output. W, W;, W, W, and by, b;, b, b, are the weights and biases that are

learned. The outputs from Bi-LSTM in both directions (forward and backward) are combined into a single
representation:

H, = [Flt; (Et] )

where k, and h, are the hidden states from the forward and backward directions, respectively. An attention
mechanism is applied to the output of the Bi-LSTM layers to focus on the most relevant temporal features for
expression recognition. This attention mechanism computes the attention scores e; and attention weights a; as
(8) and (9):

e, = vitan(W,H, + by,) 8)

_ exp (e¢) (9)

a =
E T SF_ exp (ep)

where v and W,, are the learned parameters. The attention output z is:

z=YI_,a H, (10)
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Figure 1. Deep residual Bi-LSTM fusion model
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The temporal features from the DTN are then passed through several fully connected layers to map
the features to the output space. Dropout layers with a dropout rate of 0.5 are used to prevent overfitting by
randomly setting a fraction of the input units to zero during training [31]. A SoftMax activation function is
applied in the final layer to produce a probability distribution over the expression classes.

3.3. Training process

The training process involves several steps to ensure the model learns effectively and generalizes well
to new data. Categorical cross-entropy loss is used to measure the difference between the predicted and true
expression labels, making it suitable for multi-class classification tasks. The Adam optimizer, with an initial
learning rate of 0.001, is employed for its adaptive learning rate and robustness across different types of datasets
because it is able to adjust learning rates dynamically. This helps in converging quickly and efficiently, making
it suitable for handling complex models and diverse datasets [32]. L2 regularization is applied to the weights
to prevent overfitting, by adding a penalty to the loss function for large weights. The model is trained using
10-fold cross-validation with a batch size of 4 for 200 epochs [33]. The training process in this study is designed
with several key steps to ensure the model learns effectively and generalizes well to new data. Categorical
cross-entropy loss is used to measure the difference between the model’s predictions and the actual expression
labels, making it an ideal choice for multi-class classification tasks. The Adam optimizer is chosen with an
initial learning rate of 0.001 due to its advantage in adjusting the learning rate adaptively and its robustness
across various types of datasets. Adam’s ability to dynamically adjust the learning rate enables the model to
converge faster and more efficiently, making it suitable for handling complex models and diverse datasets [32].
To prevent overfitting, L2 regularization is applied to the model weights, adding a penalty to the loss function
when the weights become too large. The model is trained using the 10-fold cross-validation technique with a
batch size of 4 for 200 epochs [33]. This approach ensures that the model can handle complex data while
producing more accurate and reliable results.

3.4. Evaluation

The model's performance is evaluated using several metrics, including accuracy, precision, recall, F1-
score, and receiver operating characteristic area under the curve (ROC AUC). Accuracy measures the overall
correctness of the model's predictions, while precision represents the proportion of true positive predictions
among all positive predictions. Recall indicates the proportion of true positive predictions among all actual
positive instances, and the F1-score provides a balanced measure of precision and recall. ROC AUC is used to
evaluate the model's ability to distinguish between classes, with higher values indicating better performance.
A confusion matrix is generated to visualize the model's performance across different expression classes,
showing the number of correct and incorrect predictions for each class. Additionally, the performance of deep
residual Bi-LSTM fusion is compared with other state-of-the-art FER models, demonstrating its effectiveness
in terms of accuracy, precision, recall, F1-score, and ROC AUC. In summary, the proposed deep residual Bi-
LSTM fusion method combines the advantages of CNNs for spatial feature extraction and Bi-LSTMs for
capturing temporal dynamics, enhanced with residual blocks to prevent overfitting. This approach aims to
achieve high accuracy and robust performance in FER tasks by learning discriminative spatial-temporal
information and effectively handling temporal motion context.

The model's performance is evaluated using several key metrics: accuracy, precision, recall, F1-score,
and ROC AUC. Accuracy measures the correctness of the model's predictions, while precision indicates the
proportion of true positive predictions among all positive predictions. Recall measures how many true positive
predictions are made from all actual positive instances, while the F1-score balances precision and recall. ROC
AUC assesses the model's ability to distinguish between classes, with higher values indicating better
performance. A confusion matrix is generated to visualize the model's performance across different expression
classes, showing the number of correct and incorrect predictions for each class.

Additionally, the performance of the deep residual Bi-LSTM fusion model is compared to other state-
of-the-art FER models, demonstrating its superiority in terms of accuracy, precision, recall, F1-score, and ROC
AUC. Overall, the proposed deep residual Bi-LSTM fusion method combines the strengths of CNNs for spatial
feature extraction and Bi-LSTMs for capturing temporal dynamics, further enhanced by residual blocks to
prevent overfitting. This approach is designed to achieve high accuracy and robust performance in FER tasks
by learning discriminative spatial-temporal information and effectively handling temporal motion context.

4. RESULTS AND DISCUSSION

The training and testing results of the deep residual Bi-LSTM fusion method were evaluated using
three main datasets: CK+, RAF-DB, and FerPlus, with evaluation metrics including accuracy, precision, recall,
F1-score, and ROC AUC. The CK+ and RAF-DB datasets contain seven emotion classes: Class 0=anger, Class
1=contempt, Class 2=disgust, Class 3=surprise, Class 4=happiness, Class 5=sadness, and Class 6=fear.
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Meanwhile, the FerPlus dataset contains eight emotion classes: Class O=anger, Class 1=contempt, Class
2=disgust, Class 3=surprise, Class 4=happiness, Class 5=sadness, Class 6=fear, and Class 7=neutral. The
distribution of samples for each class across the three datasets varies shown in Table 1. The CK+ dataset has a
relatively balanced distribution, with the happiness class having the highest number of samples (69 samples)
and the contempt class having the fewest (18 samples). On the other hand, the RAF-DB dataset has a larger
overall sample size, with the happiness class having the most samples (7,489 samples) and the fear class the
fewest (1,125 samples). The FerPlus dataset shows a more diverse distribution, with the happiness class having
the most samples (8,989 samples) and the fear class having the fewest (3,012 samples).

Table 1. Class distribution in datasets
Class CK+ RAF-DB FERPlus

0 45 4703 4002
1 18 876 2716
2 59 2820 3515
3 25 3165 3090
4 69 7489 8989
5 28 2716 6077
6 25 1125 3012
7 - - 6466

Figure 2 shows the loss function graphs for the training and validation processes on three different
datasets: CK+, RAF-DB, and FERPIus. Each graph illustrates how the loss values decrease as the number of
epochs increases. In Figure 2(a), which represents the CK+ dataset, the initial loss values are quite high but
decrease rapidly at the beginning of the training. After around 50 epochs, the loss values stabilize close to zero,
indicating that the model consistently reduces prediction errors. Figure 2(b), showing the graph for the RAF-
DB dataset, displays a similar pattern. The initial loss values are high but decrease quickly during the first 50
epochs, reaching stability near zero afterward, suggesting that the model also effectively reduces prediction
errors on this dataset. Meanwhile, Figure 2(c), depicting the graph for the FERPIus dataset, demonstrates a
consistent downward trend. The loss values drop rapidly during the early training phase, then stabilize near
zero after approximately 50 epochs. All three graphs show a consistent decline in loss values for training and
validation data, indicating that the model learns well and reduces prediction errors over time.

Figure 3 shows the accuracy graphs during training and validation on CK+, RAF-DB, and FERPIus
datasets. In Figure 3(a), which represents the CK+ dataset, accuracy is initially low. However, it increases
rapidly within the first ten epochs, then stabilizes near the maximum value, indicating that the model quickly
achieves high accuracy and maintains it throughout the training process. Figure 3(b), representing the RAF-
DB dataset, shows a similar pattern, with accuracy rising sharply within the first ten epochs and stabilizing
near the maximum value, suggesting that the model learns quickly and maintains optimal performance. In
Figure 3(c), accuracy increases rapidly during the initial training phase for the FERPIus dataset. It stabilizes
after about ten epochs, demonstrating the model’s ability to achieve and sustain high training and validation
data accuracy. All three graphs indicate that the model can quickly improve accuracy during the early training
phase and maintain stable, high performance throughout the process, demonstrating effective learning
capability and optimal performance across the three datasets.

Figure 4 shows the confusion matrix for classification using the CNN method on three different
datasets: CK+, RAF-DB, and FERPIus, illustrating the model's performance in classifying various emotion
classes. In Figure 4(a), which represents the CK+ dataset, the model successfully classifies most labels
correctly, with Class 4 (happiness) having 185 correct predictions and Class 0 (anger) having 121 correct
predictions, indicating good accuracy in recognizing emotions. Figure 4(b), which displays the RAF-DB
dataset, shows a similar result with a high number of correct predictions along the diagonal, where Class 5
(happiness) has 3,980 correct predictions, and Class 0 (anger) has 232 correct predictions, demonstrating the
model's capability to handle a larger dataset. In Figure 4(c), representing the FERPIus dataset, the model also
shows high accuracy, with Class 7 (neutral) having 980 correct predictions and Class 6 (fear) having 967 correct
predictions. Overall, the CNN model demonstrates excellent classification performance across the three
datasets, with the majority of correct predictions located along the diagonal of the confusion matrix, indicating
the model's ability to recognize and classify emotions accurately.
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Figure 2. Loss function; (a) Ck+, (b) RAF-DB, and (c) FERPIus
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Figure 5 shows the ROC curves for each fold across three different datasets: CK+, RAF-DB, and FERPIus,
providing an overview of the model's ability to distinguish between emotion classes based on the true positive rate
and false positive rate. In Figure 5(a), which represents the CK+ dataset, the ROC curve demonstrates variations in
the model's performance for each emotion class. Some classes, such as Class 1 (contempt) and Class 4 (happiness),
have higher AUC values of 0.73 and 0.71, indicating that the model can effectively differentiate between these
classes. However, other classes, like Class 0 (anger), show a lower AUC of 0.58, suggesting that the model may
struggle to distinguish this emotion from the others. Figure 5(b), which displays the RAF-DB dataset, reveals overall
better performance, with nearly all classes having AUC values above 0.6. Class 5 (happiness) achieves the highest
AUC of 0.85, demonstrating the model's ability to classify emotions more effectively in this dataset compared to
CK+. Meanwhile, Figure 5(c), representing the FERPIus dataset, indicates that the model exhibits excellent
performance, with most classes having AUC values above 0.8. Class 1 (contempt) and Class 3 (disgust) achieve the
highest AUC values of 0.97 and 0.96, reflecting the model's strong capability in distinguishing these emotions.
Overall, Figure 5 illustrates that the model delivers good performance in classifying emotions across all three
datasets, with performance variations depending on the complexity and size of the datasets used.
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Figure 4. Confusion matrix; (a) Ck+, (b) RAF-DB, and (c) FERPIlus

Table 2 presents a comparative analysis of various models and their performance across three datasets:
CK+, RAF-DB, and FERPIus. The results indicate that deep residual Bi-LSTM fusion achieved exceptional
accuracy, scoring 100% on the CK+ and RAF-DB datasets and 99.96% on FERPIlus. In comparison, the highest
scores from other models on CK+ include gACNN at 96.40% [11] and paCNN at 97.03% [11], while the
SCAN-CNN model reached 97.31% on CK+ and 89.02% on RAF-DB [34], demonstrating competitive
performance but not matching the top results of deep residual Bi-LSTM fusion. The IFGAN model achieved
97.52% on CK+ [35], a novel feature decomposition and reconstruction learning (FDRL) achieved 99.54%
[36], ViT-SE reported an impressive 99.80% [37], highlighting advancements in model architecture. On the
RAF-DB dataset, models such as CIAO and Patt-Lite delivered notable accuracies of 95.05% and 95.55%,
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respectively. The TransferFER model performed consistently across both RAF-DB and FERPIlus with scores
of 90.83% and 90.91% [26]. Overall, the data illustrates that while many models exhibit strong performance,
the deep residual Bi-LSTM fusion method is the most effective across all datasets, showcasing its robustness
and reliability in FER tasks.
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Figure 5. ROC curve; (a) Ck+, (b) RAF-DB, and (c) FERPIus
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Table 2. Comparison of accuracy with previous studies based on dataset
Datasets (%)

Model Ck+ RAF-DB _FERPIUs

VTFF [9] - 881.4 88.81
gACNN [11] 96.40 - -
paCNN [11] 97.03 - -
TransferFER [26] 90.91 90.83
SCAN-CNN [34] 97.31 89.02 89.42
IFGAN [35] 97.52 - -
FDRL [36] 99.54

VIiT-SE [37] 99.80 - -
RAN [38] 86.90 89.16
ARM [39] 90.42 -
Facial chirality [40] 91.20 -
APVIT [41] 91.98 90.86
POSTER [42] 92.05 91.62
POSTER++ [43] 92.21 -
CIAO [44] 95.05 95.55
Patt-Lite [45] 100 95.05 95.55
Deep residual BiLSTM fusion 100 100 99.96

5. CONCLUSION

The deep residual Bi-LSTM fusion method has demonstrated superior performance in FER tasks,
achieving higher or comparable accuracy to existing methods across the CK+, RAF-DB, and FERPIlus datasets.
By integrating the strengths of CNN for spatial feature extraction and Bi-LSTM for capturing temporal
dynamics, along with the use of residual layers to address the vanishing gradient problem, the model achieved
perfect accuracy on CK+ and RAF-DB, and nearly perfect accuracy on FERPIlus. These results underscore the
model's efficiency and reliability in accurately classifying diverse emotion classes. For future work, we aim to
further enhance the model's robustness by incorporating additional real-world datasets, exploring transfer
learning techniques, and optimizing the model's architecture to reduce computational complexity without
compromising performance. This approach is expected to develop an even more versatile and practical solution
for real-time FER applications.
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