
Bulletin of Electrical Engineering and Informatics

Vol. 14, No. 2, April 2025, pp. 1570~1578

ISSN: 2302-9285, DOI: 10.11591/eei.v14i2.9123  1570

Journal homepage: http://beei.org

Hybrid algorithm for optimized clustering and load balancing

using deep Q reccurent neural networks in cloud computing

Nampally Vijay Kumar1,2, Satarupa Mohanty1, Prasant Kumar Pattnaik1
1School of Computer Engineering, KIIT Deemed to be University, Bhubaneswar, India

2Department of Computer Science and Business System, B V Raju Institute of Technology, Narsapur, Telangana, India

Article Info ABSTRACT

Article history:

Received Aug 9, 2024

Revised Nov 7, 2024

Accepted Nov 19, 2024

 Cloud services are among the technologies that are developing the fastest.

Additionally, it is acknowledged that load balancing poses a major obstacle

to reaching energy efficiency. Distributing the load among several resources

in order to provide the best possible services is the main purpose of load

balancing. The network's accessibility and dependability are increased

through the usage of fault tolerance. An approach for hybrid deep learning

(DL)-based load balancing is proposed in this paper. Tasks are first

distributed in a round-robin fashion to every virtual machine (VM). When

assessing whether a VM is overloaded or underloaded, the deep embedding

cluster (DEC) also considers the central processing unit (CPU), bandwidth,

memory, processing elements, and frequency scaling factors. For cloud load

balancing, the tasks completed on the overloaded VM are assigned to the

underloaded VM based on their value. To balance the load depending on

many aspects like supply, demand, capacity, load, resource utilization, and

fault tolerance, the deep Q recurrent neural network (DQRNN) is also

suggested. Additionally, load, capacity, resource consumption, and success

rate are used to evaluate the efficacy of this approach; optimum values of

0.147, 0.726, 0.527, and 0.895 are attained.

Keywords:

Cloud computing

Deep embedding clusters

Deep Q network

Recurrent neural networks

Resource allocation

This is an open access article under the CC BY-SA license.

Corresponding Author:

Nampally Vijay Kumar

School of Computer Engineering, KIIT Deemed to be University

Bhubaneswar, Odisha, India

Email: 1981034@kiit.ac.in

1. INTRODUCTION

The cloud platform is facing a variety of challenges in terms of resource allocation [1]-[3]. Due to

the fluctuating demand, resource misallocation may result in the overloading of certain virtual machines

(VM), while it is employed to servers are required to manage an extensive volume of requests as the cloud's

capacity expands [4]. The primary issue is the preservation of consistent performance during breakouts.

Cloud computing necessitates a diverse array of resources, including memory, storage, network, and central

processing unit (CPU) [5], [6]. Furthermore, the load balancing employed a variety of strategies to optimise

potential target hosts. It does not ensure superior task execution performance, although the immediate effect

may lead to increased resource utilisation [7]. The development of solutions that enable the system to

continuously operate at a reduced level without failing the performance of its elements is required for fault

tolerance [8]. It is one of the most critical challenges for the cloud to provide dependable services.

Additionally, the volume of requests that the cloud will receive will require fault tolerance to reduce the

incidence of errors and malfunctions. Additionally, cloud computing automatically adjusts the VM

configuration by harmonising the system burden as the workload increases or decreases [9]. Therefore, the

https://creativecommons.org/licenses/by-sa/4.0/

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Hybrid algorithm for optimized clustering and load balancing using deep Q … (Nampally Vijay Kumar)

1571

resource allocation also considers the energy consumed, load balancing, and fault tolerance. Consequently,

the proposed work is to address fault tolerance and load balancing in the cloud system.

The primary contribution of the research work is hydrid deep Q recurrent neural network (DQRNN)

based cloud system lod blancing algorithm. In this study, the proposed DQRNN is created for the effective

load balancing in the cloud platform. In this case, deep Q network (DQN) and deep recurrent neural

network (DRNN) are combined to model the DQRNN. In addition, the hybrid DQRNN is engineered to

manage the burden in accordance with a variety of factors, including supply, demand, capacity, load, fault

tolerance, and resource utilisation. There are six sections in the remaining portion of this work. Here,

section 2 covers the literare review. The cloud load balancing system is shown in section 3. Additionally, the

hybrid deep learning (DL)-enabled load-balancing mechanism is included in section 4. Section 5 describes

the results of the experiment, and section 6 provides an explanation of the conclusion.

2. LITERATURE SURVEY

The multiphase fault tolerance genetic algorithm (MFTGA) was created by Kanwal et al. [10] to

provide load balancing and fault tolerance in cloud environments. The MFTGA was created to connect the

appropriate VM to the users using the service level agreement (SLA). The cloud technology's task latency

was reduced by using this method. Nevertheless, it was unable to divide up the tasks between the mobile and

fog multiuser VM. The dual conditional moth flame algorithm (DC-MFA) based VM migration in the cloud

was developed by Verma [11]. Here, assessments were made of CPU usage, security, energy consumption,

migration costs, resource costs, and makespan. The model showed rapid convergence during the VM

distribution and selection process. Nevertheless, it saw less severe fluctuations when considering the specific

aim functions. The model showed rapid convergence during the VM distribution and selection process. When

considering the various objective functions during the load balancing of the VM migration, it saw lower

swings, nonetheless. The multi-resource load balancing algorithm (MrLBA) based load balancing in the

cloud [12]. In this case, the bottleneck task was successfully removed through the use of ant colony

optimization (ACO), which also improved resource allocation. It was built on the requirements and levels of

intensity for cloud computing workflow scheduling tasks. When modeling the scheduling algorithms in

scientific operations, this model did not take energy usage into account. Proactive load balance fault

tolerance (PLBFT) is a load balancing and fault tolerance technique for VM [13].

Here, a victim VM was transferred in the direction of the other host in order to balance the load on

the host where the troublesome VM was relocated. During VM migration, it improved the predictability of

errors. The memory and space faults needed to manage load balancing and failures in the cloud system were

left out of the model. The fault tolerant elastic resource management (FT-ERM) based fault tolerance system

[14]. A fault tolerance unit was incorporated in this model to help with the safer allocation of VM that are

prone to failure [15], [16]. In terms of failure prediction, this approach simultaneously predicts the VM's

resource use and proactively determines the failure state. On the other hand, reactive fault tolerance

techniques were not used such as N-Version Programming, which carries out the necessary failure tolerance

tasks.

3. LOAD BALANCING IN CLOUD COMPUTING

The provision of on-demand services to consumers, where all operations are carried out on the cloud

network, is known as cloud computing. Figure 1 discusses the system model for load balancing in a cloud

environment [17], [18]. The cloud is made up of a huge number of data centers, or physical machines (PMs),

each of which has a specific amount of processing capacity to carry out user tasks. In addition, the cloud user

has a lot of work on VM. Different workloads are assigned to VMs via load balancing, which also

continuously tracks the VMs' workloads [19]. Every operation's processing time determines the burden on the

VM [20]. In the meantime, each activity's processing time varies, and the task.

𝐿 = {𝜌𝑀1, 𝜌𝑀2, . . . , 𝜌𝑀𝑅 , . . . 𝜌𝑀𝑇} (1)

where, 𝐿 denotes the cloud, the first PM is represented by 𝜌𝑀1 and 𝜌𝑀𝑅 specifies the 𝑅𝑡ℎPM. Furthermore,

𝜌𝑀𝑅 is described as (2),

𝜌𝑀𝑅 = {𝜐1, . . . 𝜐ℎ , . . . , 𝜐𝑞} (2)

where, the first VM is specified as 𝜐1, 𝜐ℎ denotes the ℎ𝑡ℎVM, and the 𝑞𝑡ℎVM is specified as 𝜐𝑞.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 1570-1578

1572

Figure 1. System model for load balancing

Each VM is made up of processors that perform the task and the instructions to complete the user's

tasks, task reallocation, and bandwidth for allocating the tasks to the VMs. Moreover, the VM is defined

as (3):

𝜐ℎ = {𝜇ℎ, 𝛿ℎ, 𝐵ℎ , 𝐶ℎ, 𝛼ℎ} (3)

where, the frequency of a processor is denoted by 𝛼ℎ and 𝛿ℎ specifies the million instructions per second

(MIPS). Moreover, the bandwidth 𝐵ℎ, memory 𝜇ℎ, and CPU utilization 𝐶ℎ are contained in the VMs.

The task is characterized by the requirement of the user that is handled by the processors of VMs.

Every task has a priority and particular execution time. Hence, the VMs assign tasks based on these two

qualities. Moreover, the VM is allocated the task with the maximum priority and the shortest execution time.

The entire counting of the task required in the VM is represented as 𝑁, it is expressed as (4),

𝑁 = {𝑁1, 𝑁2, . . . , 𝑁𝑖 , . |. . 𝑁𝑗} (4)

where, the first task is denoted by 𝑁1, the second task is represented as 𝑁2. Here, the 𝑖𝑡ℎ and 𝑗𝑡ℎ task are

denoted as 𝑁𝑖 and 𝑁𝑗. Moreover, the execution time, task length, and priority are considered as the task

parameters.

4. PROPOSED DQRNN BASED RESOURCE ALLOCATION

The goal of the proposed model is to design a hybrid DL-based resource allocation and fault

tolerance. Initially, the tasks are assigned to the VM through a round-robin fashion. Afterwards, the VM

parameters, namely memory, CPU, bandwidth, processing elements and frequency scaling factor are

considered to classify the VM as overloaded or underloaded VMs using deep embedding cluster (DEC). The

overloaded VM tasks are sorted by priority, and it is assigned to the underloaded VM for balancing the load

in the cloud [21], [22]. Here, a hybrid DL network termed DQRNN is designed to balance the load using

different factors like capacity, supply, demand, load, fault tolerance, and resource utilization.

4.1. Steps for load balancing algorithm

The load balancing involved the following steps for assigning the load to the VM; i) assign the tasks

to the VMs via the round-robin approach, ii) classify the VM as overloaded or underloaded using the DEC

with VM parameters, iii) sort the task of overloaded VM by the priority level, and iv) allocate the task of the

overloaded VM to the underloaded VM for balancing the load on the cloud.

4.2. Virtual machine categorization using deep embedding cluster

DEC is a method that concurrently learns feature representations and cluster allocation. The VM

parameters like memory (𝜇ℎ), CPU utilization (𝐶ℎ), bandwidth (𝐵ℎ), frequency of the processor (𝛼ℎ), and

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Hybrid algorithm for optimized clustering and load balancing using deep Q … (Nampally Vijay Kumar)

1573

MIPS (𝛿ℎ) are applied to DEC. Here, the clustering layer communicates with the latent feature layer. Cluster

centers are used to initialize the weights of the clustering layer. Consider the set of points {𝑔𝑐 ∈ 𝐺}𝑐=1
𝑏 in the

cluster 𝐿, where each of them is indicated via the centroid 𝑒𝑓, in which 𝑓 = 1, . . . , 𝐿. Initially, the data is

transferred with a nonlinear mapping 𝑘𝜃: 𝐺 → 𝑉, where 𝐺 represents the data space and 𝑉 implies the latent

feature space, and the learnable parameters is specified by 𝜃. For diminishing the “curse of dimensionality,

dimension of 𝑉 is lesser than 𝐺. Moreover, the DEC is utilized to classify the data as overloaded or

underloaded.

4.3. Load balancing parameter for virtual machine

Load balancing enhances network capacity through the optimal utilization of available resources. As

a result, load balancing improves the network function more quickly. Moreover, the load balancing systems

enhanced the accessible resources. Here, the load balancing parameters like capacity, resource utilization,

load, supply, demand, and fault tolerance are considered for the load balancing of VMs [23].

− Capacity of ℎ𝑡ℎVM

The VM's capacit is determined by many factors such as the counts of processors, bandwidth, and

the amount of processor rules [24]. Here, the capacity 𝛽ℎ is given as (5):

𝛽ℎ =
1

𝑀1
[

𝛼ℎ∗𝜇ℎ∗𝐵ℎ∗𝐶ℎ∗𝛿ℎ

4×10
] (5)

where, the normalizing factor is represented as 𝑀1.

− Resource utilization of ℎ𝑡ℎVM
Resource allocation is employed for exploiting and assigning available resources as per the cloud

need. Hence, numerous kinds and quantities of resources must be allocated to fulfill the task. The resource

allocation is represented as 𝑟ℎ.

𝑟ℎ =
1

𝑁∗𝑀2
[∑ ∑ (

𝛼ℎ

𝜎1
+

𝜇ℎ

𝜎2
+

𝐵ℎ

𝜎3
+

𝐶ℎ

𝜎4
+

𝛿ℎ

𝜎5
)

𝑗
𝑖=1

𝑞
ℎ=1] (6)

where, 𝑀2 implies the normalizing factor, 𝑁 indicates the task, and 𝜎1 − 𝜎5 represents the constants.

− Load of ℎ𝑡ℎVM

The load estimation of PM is done by combining the loads of all VMs present on the PM. The

following mathematical expression is utilized for computing the VM's load parameter. Here, the load 𝑌ℎ is

expressed as (7):

𝑌ℎ =
1

𝑁∗𝑀3
[

∑ 𝜀𝑡
𝑖 ∗𝜌𝑀𝑖

ℎ∗𝑟ℎ𝑗
𝑖=1

𝜎ℎ] (7)

where, 𝑀3 denotes the normalizing factor, 𝜀𝑡
𝑖 specifies the task execution time, 𝜌𝑀𝑖

ℎ implies the PM, where

ℎ𝑡ℎVM is present, and 𝑟ℎ indicates the resource utilization. Moreover, the PM is expressed as (8):

𝜌𝑀𝑖
ℎ = {

1; 𝑖𝑓𝑖𝑡ℎ𝑡𝑎𝑠𝑘𝑖𝑛ℎ𝑡ℎ𝑉𝑀

0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} (8)

− Supply

Supply and demand are related to each other for the effectual resource allocation of VMs. Moreover,

the difference between the capacity and load is termed as supply. It is denoted as 𝑆ℎ.

𝑆ℎ = 𝛽ℎ − 𝑌ℎ (9)

− Demand

The quantities of resources required by the VM is termed as demand, which is represented as 𝐷ℎ.

𝐷ℎ = 1 − 𝑆ℎ (10)

− Fault tolerance

Fault tolerance is defined as the capacity of the network to run consistently in instances of system

failure and it provides greater robustness and reliability to the system. Here, the fault tolerance is denoted as 𝐹ℎ.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 1570-1578

1574

𝐹ℎ = ∑ 𝛼ℎ ∗ 𝐵ℎ ∗ 𝐶ℎ
𝑅∈ℎ (11)

where, the 𝑅𝑡ℎPM and ℎ𝑡ℎVM are considered.

4.4. Hybrid deep learning model-based cloud load balancing

In the load balancing, the proposed hybrid DQRNN model is developed. Moreover, the proposed

DQRNN model is made by the combination of DQN [25], [26] and DRNN. Here, the task 𝑁 is applied as the

input of the DQN, in which the outcome ℜ1 is attained on the output terminal of the DQN. Following that,

the DQN output ℜ1 and the load balancing parameter 𝐴 is applied to the fusion and regression layer.

Moreover, the load balancing parameter 𝐴 contains the VM parameters and task parameters. The output of

this layer is specified by ℜ2. Afterwards, the outcome ℜ2 is given as the input of the DRN layer, which

offers the output ℜ3. Here, the outcome ℜ3 is considered as the output of the proposed DQRNN. The

structure of the proposed DQRNN is portrayed.

4.4.1. Deep Q network model

DQN uses the Q-learning technique, which is one of the frequently employed reinforcement

learning (RL) techniques. The DQN structure, which includes the convolution, dropout, Maxpooling, flatten,

and dense layer. The predicted discounted cumulative reward is denoted as the action value function of RL.

𝑄𝑙
𝜋(𝐴𝑙 , 𝑤𝑙) = 𝐽[∑ 𝜂𝑝𝑥𝑙+𝑝|∞

𝑝=0 𝐴𝑙 = 𝐴, 𝑤𝑙 = 𝑤; 𝜋] (12)

where, 𝐽 represents the expectation. The optimum action-value function is termed as

 𝐽∗(𝐴, 𝑤) = 𝑚𝑎𝑥𝜋 𝑄𝜋 (𝐴, 𝑤), which attains the Bellman optimal expression.

Q-learning is a well-known value-based RL method that estimates the ideal action value function via

the upgraded expression. The rule for updating this expression is given by:

𝑄𝑙+1(𝐴𝑙 , 𝑤𝑙) = 𝑄𝑙(𝐴𝑙 , 𝑤𝑙) + 𝜒𝑙(𝐴𝑙 , 𝑤𝑙)(𝑥𝑙 + 𝜂 𝑚𝑎𝑥𝑤 𝑄𝑙 (𝐴𝑙+1, 𝑤) − 𝑄𝑙(𝐴𝑙 , 𝑤𝑙)) (13)

where, 𝜒𝑙(𝐴𝑙, 𝑤𝑙) implies a learning rate. The action value function is estimated using the function

approximation, which is defined by 𝜃. In general, the parameter can be optimized by reducing the loss

function shown:

𝐸𝑙(𝜃𝑙) = 𝐻(ℜ1 − 𝑄(𝐴𝑙, 𝑤𝑙; 𝜃𝑙))
2
 (14)

where, ℜ1 = 𝑥𝑙 + 𝜂 𝑚𝑎𝑥𝑤 𝑄 (𝐴𝑙+1, 𝑤; 𝜃𝑙) shows the objective value, in which the updated rule of gradient

descent is given by:

𝜃𝑙+1 = 𝜃𝑙 + 𝜒𝑙(ℜ1 − 𝑄(𝐴𝑙 , 𝑤𝑙; 𝜃𝑙))𝛻𝜃𝑙
𝑄(𝐴𝑙 , 𝑤𝑙 ; 𝜃𝑙) (15)

The present action value function 𝑄(𝐴𝑙, 𝑤𝑙; 𝜃𝑙) estimates the output ℜ1, which is represented by:

ℜ1 = 𝑥𝑙 + 𝜂 𝑚𝑎𝑥𝑤 𝑄 (𝐴𝑙+1, 𝑤; 𝜃𝑙
−) (16)

ℜ1 = 𝑥𝑙 + 𝜂𝑄(𝐴𝑙+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑄 (𝐴𝑙+1, 𝑤; 𝜃𝑙
−)𝜃𝑙

−) (17)

where, 𝜃𝑙
− shows the network parameter. Furthermore (22) represents the outcome of DQN.

4.4.2. Deep Q recurrent neural network model

In the DQRNN layer, the outcome of DQN (ℜ1) and the load balancing parameter (𝐴) is applied as

the input. In this layer, the fusion and regression process are performed to combine the DQN output ℜ1 and

the load balancing parameter 𝐴. After this process, the outcome ℜ2 is generated in the DQRNN layer. The

fusion and regression are mainly utilized to enhance the accuracy and minimized the overfitting of the hybrid

network model. Furthermore, the outcome of the DQRNN layer on the 𝑋𝑡ℎ interval is expressed by:

ℜ2 = ℓ ∗ ∑ 𝐴ℑƛℑ
𝜁
ℑ=1 +

1

2
ℓℜ1 (18)

where, ƛ represents the weight and 𝐴 implies the fused feature.

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Hybrid algorithm for optimized clustering and load balancing using deep Q … (Nampally Vijay Kumar)

1575

4.4.3. Deep recurrent neural network model

DRNN is a type of highly connected neural network, which is comprised of input, long short-term

memory (LSTM), dense, and dropout layers. The outcome of the hidden layer is sent back into its input;

hence the input is an integration of the current and the prior layer. However, the gradient typically disappears

during the learning phases. Here, the gradient reflects an adjustment in all weights concerning the error.

Therefore, the utilization of LSTM units is an effective solution for the issue of vanishing gradients. It

contains gated recurrent units (GRUs) and the fully connected hidden layers. The use of the LSTM unit aids

in the preservation of inaccurate data that is back-propagated via the layers. Moreover, LSTM units can learn

long-term dependencies to decrease the gradient difficulties. The fundamental features of an LSTM are an

input gate, a neuron with a self-recurrent connection, a forget gate and an output. Moreover, the outcome of

the DRNN layer is given as (19):

ℜ3 = ƛ(𝐼𝐺𝑅𝑈+𝐼𝐻𝐿+1)ℜ2
(𝐼𝐺𝑅𝑈+𝐼𝐻𝐿+1)

+ 𝐾(𝐼𝐺𝑅𝑈+𝐼𝐻𝐿+1) (19)

where, the output of the DRNN layer is considered as the outcome of the proposed DQRNN. The terms 𝐼𝐺𝑅𝑈

and 𝐼𝐻𝐿 specifies the count of GRU and the hidden layers. Moreover, the weight is denoted by ƛ and the bias

is termed as 𝐾.

5. RESULTS AND DISCUSSION

The experimental assessment of proposed DQRNN-based load balancing is attained by different

numbers of VMs and PMs as well as different metrics. Moreover, the implementation tool, performance

evaluation metrics, and experimental outcomes are also described. The performance of the proposed DQRNN

is evaluated by metrics like capacity, load, resource utilization, and success rate; i) load: the load parameter is

described in (7); ii) capacity: the capacity metric is defined in (5); iii) resource utilization: the allocation of

required resources to the VM is defined as resource allocation, which is denoted in (6); and iv) success rate:

success rate is defined as the proportion of success among the total counts of attempts to perform the task.

5.1. Compative analysis and interpretation

In comparative assessment, the proposed DQRNN-based load balancing process is compared to the

existing approaches like MFTGA, MRLBA, PLBFT, and FT-ERM to show the efficiency of the proposed

approach. The performance estimation process of existing algorithms like MFTGA, MrLBA, PLBFT, and

FT-ERM. In the comparative valuation, the performance of the proposed DQRNN and the existing methods are

estimated through performance estimating measures. Here, the outcomes are obtained at 10 PM with 25 VM,

15 PM with 20 VM, and 30 PM with 45 VM. In the study, we have executed the results using Python tool.

The comparative estimation of the proposed DQRNN-based load balancing using 10 PM with

25 VM is shown in Figure 2. Here, the comparative performance is attained for different task sizes and the

metrics like load, capacity, resource utilization, and success rate are considered. Figure 2(a) deliberates the

comparative estimation regarding load. Considering the task size=1000, the load of the proposed DQRNN is

0.300, whereas the load of MFTGA, MrLBA, PLBFT, and FT-ERM are 0.576, 0.516, 0.435, and 0.387. The

valuation related to capacity is shown in Figure 2(b). For the task size of 500, the MFTGA, MrLBA, PLBFT,

FT-ERM, and proposed DQRNN got the capacity of 0.195, 0.266, 0.308, 0.386, and 0.457. Furthermore,

Figure 2(c) shows the valuation in connection with resource utilization. For the task size of 1500, the

resource utilization of the proposed DQRNN is 0.457, whereas the resource utilization of MFTGA is 0.708,

MrLBA is 0.637, PLBFT is 0.607 and FT-ERM is 0.526. Similarly, the evaluation for success rate is depicted

in Figure 2(d). Considering the task size of 1500, the success rate values like 0.817, 0.835, 0.851, 0.866, and

0.883 are attained by the MFTGA, MrLBA, PLBFT, FT-ERM, and proposed DQRNN. Similarly, assessment

is done using 15 PM with 20 VM and 30 PM with 45 VM.

5.2. Comparative analysis

Table 1 explains the comparative analysis for the proposed DQRNN-based load balancing for the

existing approaches. Here, the proposed model is estimated in different numbers of PMs and VMs with

respect to different task size. For the different task size, the performance is computed by the load, capacity,

resource utilization, and success rate measures. From this estimation, we considered 500 number of tasks and

it is revealed that, the optimum values are obtained in 10 PM with 25 VMs. Here, the load of the proposed

DQRNN is 0.147, while the load of MFTGA is 0.347, MrLBA is 0.297, PLBFT is 0.245 and FT-ERM is

0.207. Moreover, the proposed DQRNN attained a capacity of 0.726, while the capacity of MFTGA,

MrLBA, PLBFT, and FT-ERM are 0.427, 0.507, 0.527, and 0.627. For resource utilization-based analysis,

the ideal values 0.767, 0.707, 0.68, 0.598, and 0.527 are attained by the MFTGA, MrLBA, PLBFT, FT-ERM,

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 1570-1578

1576

and the proposed DQRNN. Furthermore, the success rate of the proposed DQRNN is 0.895, while, the other

methods got a success rate of 0.840, 0.852, 0.861, and 0.875. Similarly, the superior values of load, capacity,

resource utilization and success rate of the proposed DQRNN using 15 PM with 20 VMs are 0.223, 0.794,

0.561, and 0.904. Furthermore, better values like 0.203, 0.760, 0.614, and 0.916 are attained in 30 PM with

45 VMs. Hence, the efficient utilization of the proposed hybrid DL model offered better performance due to

the efficient allocation of VMs.

(a) (b)

(c) (d)

Figure 2. Comparative assessment of proposed DQRNN using 10 PM with 25 VM; (a) energy, (b) capacity,

(c) resource utilization, and (d) success rate

Table 1. Comparative discussion of proposed DQRNN with MFTGA, MrLBA, PLBFT, and FT-ERM
Variations Metrics MFTGA MrLBA PLBFT FT-ERM Proposed DQRNN

10 PMs and 25 VMs
w.r.t 500 tasks

Load 0.347 0.297 0.245 0.207 0.147
Capacity 0.427 0.507 0.527 0.627 0.726

Resource utilization 0.767 0.707 0.687 0.598 0.527

Success rate 0.840 0.852 0.861 0.875 0.895
15 PMs and 20 VMs

w.r.t 500 tasks

Load 0.373 0.333 0.310 0.283 0.223

Capacity 0.505 0.565 0.615 0.703 0.794

Resource utilization 0.796 0.735 0.695 0.631 0.561
Success rate 0.849 0.862 0.870 0.883 0.904

30 PMs and 45 VMs

w.r.t 500 tasks

Load 0.375 0.316 0.251 0.233 0.203

Capacity 0.451 0.516 0.571 0.665 0.760
Resource utilization 0.829 0.757 0.714 0.677 0.614

Success rate 0.876 0.885 0.890 0.899 0.916

Bulletin of Electr Eng & Inf ISSN: 2302-9285 

Hybrid algorithm for optimized clustering and load balancing using deep Q … (Nampally Vijay Kumar)

1577

6. CONCLUSION

Cloud computing is an emerging computer approach for facilitating more services through the

internet while eliminating the need for local data processing. Cloud computing allows the user to access the

storage or devices as a service. Moreover, the increasing demand for cloud resources prevents service

availability, which causes performance degradation, higher energy consumption and load imbalance. As a

result, a hybrid DL model for load balancing and fault tolerance for cloud platforms is devised in this work.

In this process, the tasks are allocated to each VM on a round-robin fashion. Furthermore, the DEC considers

VM components such as memory, CPU, bandwidth, processing elements, and frequency scaling factors for

classifying the VMs as overloaded or underloaded. The tasks done in the overloaded VM are prioritized, and

the overloaded VM is assigned to the underloaded VM for cloud load balancing. Furthermore, the hybrid

DQRNN is developed to balance the load based on several aspects such as supply, demand, capacity, load,

fault tolerance, and resource utilization. In addition, the effectiveness of the proposed model is measured by

load, capacity, resource usage, and success rate, with the finest values 0.147, 0.726, 0.527, and 0.895 are

achieved. The proposed method is applicable in data traffic, network traffic, and internet traffic. The

DQRNN offered superior performance in network traffic and computer servers. Load balancing offers

improved scalability, response time, and throughput, while fault tolerance increases the applications'

robustness, availability, and reliability.

REFERENCES
[1] A. Belgacem, S. Mahmoudi, and M. Kihl, “Intelligent multi-agent reinforcement learning model for resources allocation in cloud

computing,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 6, pp. 2391–2404, 2022, doi:

10.1016/j.jksuci.2022.03.016.
[2] S.-L. Chen, Y.-Y. Chen, and S.-H. Kuo, “CLB: A novel load balancing architecture and algorithm for cloud services,” Computers

& Electrical Engineering, vol. 58, pp. 154-160, 2017, doi: 10.1016/j.compeleceng.2016.01.029.

[3] J. Ge, Q. He, and Y. Fang, “Cloud computing task scheduling strategy based on improved differential evolution algorithm,” AIP
Conference Proceedings, 2017, doi: 10.1063/1.4981634.

[4] S. S. George and R. S. Pramila, “Improved whale social optimization algorithm and deep fuzzy clustering for optimal and QoS-

aware load balancing in cloud computing,” International Journal of Bio-Inspired Computation, vol. 22, no. 1, pp. 40-52, 2023,
doi: 10.1504/IJBIC.2023.133508.

[5] A. Y. Gital, A. S. Ismail, M. Chen, and H. Chiroma, “A framework for the design of cloud based collaborative virtual

environment architecture,” in Proceedings of the International MultiConference of Engineers and Computer Scientists, Hong
Kong, 2014, vol. 1.

[6] M. B. Gorji, M. Mozaffar, J. N. Heidenreich, J. Cao, and D. Mohr, “On the potential of recurrent neural networks for modeling

path dependent plasticity,” Journal of the Mechanics and Physics of Solids, vol. 143, p. 103972, 2020, doi:
10.1016/j.jmps.2020.103972.

[7] N. Thapliyal and P. Dimri, “Load Balancing in Cloud Computing Based on Honey Bee Foraging Behavior and Load Balance

Min-Min Scheduling Algorithm,” International Journal of Electrical and Electronics Research, vol. 10, no. 1, doi:
10.37391/IJEER.100101.

[8] K. Lu et al., “Fault-tolerant service level agreement lifecycle management in clouds using actor system,” Future Generation

Computer Systems, vol. 54, pp. 247-259, 2016, doi: 10.1016/j.future.2015.03.016.
[9] P. R. Bhaladhare and D. C. Jinwala, “A clustering approach for the-diversity model in privacy preserving data mining using

fractional calculus-bacterial foraging optimization algorithm,” Advances in Computer Engineering, vol. 2014, no. 1, 2014, doi:
10.1155/2014/396529.

[10] S. Kanwal, Z. Iqbal, F. Al-Turjman, A. Irtaza, and M. A. Khan, “Multiphase fault tolerance genetic algorithm for VM and task

scheduling in datacenter,” Information Processing & Management, vol. 58, no. 5, p. 102676, 2021, doi:
10.1016/j.ipm.2021.102676.

[11] G. Verma, “Secure VM migration in cloud: multi-criteria perspective with improved optimization model,” Wireless Personal

Communications, vol. 124, pp. 75–102, 2022, doi: 10.1007/s11277-021-09319-w.

[12] A. Muteeh, M. Sardaraz, and M. Tahir, “MrLBA: multi-resource load balancing algorithm for cloud computing using ant colony

optimization,” Cluster Computing, vol. 24, no. 4, pp. 3135-3145, 2021, doi: 10.1007/s10586-021-03322-3.

[13] S. M.A. Attallah, M. B. Fayek, S. M. Nassar, and E. E. Hemayed, “Proactive load balancing fault tolerance algorithm in cloud
computing,” Concurrency and Computation: Practice and Experience, vol. 33, no. 10, p. e6172, 2021.

[14] D. Saxena, I. Gupta, A. K. Singh and C. -N. Lee, “A Fault Tolerant Elastic Resource Management Framework Toward High

Availability of Cloud Services,” in IEEE Transactions on Network and Service Management, vol. 19, no. 3, pp. 3048-3061, Sep.
2022, doi: 10.1109/TNSM.2022.3170379.

[15] M. Xu, W. Tian, and R. Buyya, “A survey on load balancing algorithms for virtual machines placement in cloud computing,”

Concurrency and Computation: Practice and Experience, vol. 29, no. 12, p. e4123, 2017, doi: 10.1002/cpe.4123.
[16] J. Xie, R. Girshick, and A. Farhadi, “Unsupervised deep embedding for clustering analysis,” Proceedings of the 33rd

International Conference on Machine Learning, pp. 478-487, 2016.

[17] V. Siruvoru, S. Aparna, N. V. Kumar, and V. Siruvoru, “A Review towards Fault-tolerable Load Balancing in Cloud Computing,”
International Conference on Intelligent Systems for Communication, IoT and Security (ICISCoIS), Coimbatore, India, 2023, pp.

25-30, doi: 10.1109/ICISCoIS56541.2023.10100345.

[18] V. Siruvoru and S. Aparna, “Issues in Cloud Load balancing Fault-Tolerance: Review and Challenges,” Third International
Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India, 2023, pp. 435-443, doi:

10.1109/ICAIS56108.2023.10073738.

[19] V. Siruvoru and S. Aparna, “Harmonic Migration Algorithm for Virtual Machine Migration and Switching Strategy in Cloud
Computing,” Concurrency and Computation: Practice and Experience, vol. 37, no. 1, p. e8320, Jan. 2025, doi: 10.1002/cpe.8320.

  ISSN: 2302-9285

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 1570-1578

1578

[20] V. Siruvoru and S. Aparna, “Hybrid deep learning and optimized clustering mechanism for load balancing and fault tolerance in

cloud computing,” Network: Computation in Neural Systems, vol. 9, no. 1, pp. 1–22, 2024, doi:
10.1080/0954898X.2024.2369137.

[21] V. Polepally and K. S. Chatrapati, “Dragonfly optimization and constraint measure-based load balancing in cloud computing,”

Cluster Computing, vol. 22, no. 1, pp. 1099-1111, 2019, doi: 10.1007/s10586-017-1056-4.
[22] S. Ray and A. De Sarkar, “Execution analysis of load balancing algorithms in cloud computing environment,” International

Journal on Cloud Computing: Services and Architecture (IJCCSA), vol. 2, no. 5, pp. 1-13, 2012, doi: 10.5121/ijccsa.2012.2501.

[23] D. Saxena and A. K. Singh, “OFP-TM: an online VM failure prediction and tolerance model towards high availability of cloud
computing environments,” The Journal of Supercomputing, vol. 78, no. 6, pp. 8003-8024, 2022, doi: 10.1007/s11227-021-04235-

z.

[24] A. Soni, G. Vishwakarma, and Y. K. Jain, “A bee colony based multi-objective load balancing technique for cloud computing
environment,” International Journal of Computer Applications, vol. 114, no. 4, pp. 19-25, 2015, doi: 10.5120/19967-1825.

[25] H. Sasaki, T. Horiuchi and S. Kato, “A study on vision-based mobile robot learning by deep Q-network,” 2017 56th Annual

Conference of the Society of Instrument and Control Engineers of Japan (SICE), Kanazawa, Japan, 2017, pp. 799-804, doi:
10.23919/SICE.2017.8105597.

[26] C. H. Tran, T. K. Bui, and T. V. Pham, “Virtual machine migration policy for multi-tier application in cloud computing based on

Q-learning algorithm,” Computing, vol. 104, no. 6, pp. 1285-1306, 2022, doi: 10.1007/s00607-021-01047-0.

BIOGRAPHIES OF AUTHORS

Nampally Vijay Kumar completed B.Tech in Computer science and

engineering, M.Tech in Software Engineering at JNTUH. He is pursuing Ph.D. from Kalinga

Institute of Industrial Technology under the guidance of Dr. Satarupa Mohanty. He is currently

working as an Assistant professor in the department of Computer Science and Business

System, B V Raju Institute of Technology, Narsapur, Medak, Telangana. He is having 18

years of teaching experience in different engineering colleges. He has published 15 research

articles through international conferences and journals. He can be contacted at email:

1981034@kiit.ac.in.

Dr. Satarupa Mohanty currently working as an Associate Professor, in School

of Computer Engineering, KIIT University, Bhubaneswar. She received B.Tech., M.Tech., and

Ph.D. degrees in Computer Engineering from KIIT University, in 2002, 2006 and 2017

respectively. Her research area includes: algorithm analysis, parallel computing, machine

learning, and bioinformatics. She has edited series of books in her credit. She can be contacted

at email: satarupafcs@kiit.ac.in.

Dr. Prasant Kumar Pattnaik Ph.D. (Computer Science), Fellow IETE, Senior

Member IEEE is a Professor at the School of Computer Engineering, KIIT Deemed

University, Bhubaneswar. He has more than a decade of teaching and research experience. He

has published numbers of Research Papers in peer-reviewed International Journals and

Conferences. He also published many edited book volumes in Springer, IGI Global and Wiley

Publication and he has co-authored the popular computer science and engineering text books.

His areas of interest include mobile computing, cloud computing, cyber security, intelligent

systems, and brain computer interface. He can be contacted at email:

patnaikprasantfcs@kiit.ac.in.

https://orcid.org/0000-0002-3174-5115
https://scholar.google.com/citations?hl=en&user=LDOpPpAAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=58237336200
https://www.webofscience.com/wos/author/record/ABH-2019-2020
https://orcid.org/0000-0002-1434-7158
https://orcid.org/0000-0002-4566-8077
https://scholar.google.co.in/citations?user=b_iZVxMAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=7004711101
https://publons.com/researcher/3457184/prasant-kumar-pattnaik/

