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 Cloud services are among the technologies that are developing the fastest. 

Additionally, it is acknowledged that load balancing poses a major obstacle 

to reaching energy efficiency. Distributing the load among several resources 

in order to provide the best possible services is the main purpose of load 

balancing. The network's accessibility and dependability are increased 

through the usage of fault tolerance. An approach for hybrid deep learning 

(DL)-based load balancing is proposed in this paper. Tasks are first 

distributed in a round-robin fashion to every virtual machine (VM). When 

assessing whether a VM is overloaded or underloaded, the deep embedding 

cluster (DEC) also considers the central processing unit (CPU), bandwidth, 

memory, processing elements, and frequency scaling factors. For cloud load 

balancing, the tasks completed on the overloaded VM are assigned to the 

underloaded VM based on their value. To balance the load depending on 

many aspects like supply, demand, capacity, load, resource utilization, and 

fault tolerance, the deep Q recurrent neural network (DQRNN) is also 

suggested. Additionally, load, capacity, resource consumption, and success 

rate are used to evaluate the efficacy of this approach; optimum values of 

0.147, 0.726, 0.527, and 0.895 are attained. 
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1. INTRODUCTION 

The cloud platform is facing a variety of challenges in terms of resource allocation [1]-[3]. Due to 

the fluctuating demand, resource misallocation may result in the overloading of certain virtual machines 

(VM), while it is employed to servers are required to manage an extensive volume of requests as the cloud's 

capacity expands [4]. The primary issue is the preservation of consistent performance during breakouts. 

Cloud computing necessitates a diverse array of resources, including memory, storage, network, and central 

processing unit (CPU) [5], [6]. Furthermore, the load balancing employed a variety of strategies to optimise 

potential target hosts. It does not ensure superior task execution performance, although the immediate effect 

may lead to increased resource utilisation [7]. The development of solutions that enable the system to 

continuously operate at a reduced level without failing the performance of its elements is required for fault 

tolerance [8]. It is one of the most critical challenges for the cloud to provide dependable services. 

Additionally, the volume of requests that the cloud will receive will require fault tolerance to reduce the 

incidence of errors and malfunctions. Additionally, cloud computing automatically adjusts the VM 

configuration by harmonising the system burden as the workload increases or decreases [9]. Therefore, the 
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resource allocation also considers the energy consumed, load balancing, and fault tolerance. Consequently, 

the proposed work is to address fault tolerance and load balancing in the cloud system.  

The primary contribution of the research work is hydrid deep Q recurrent neural network (DQRNN) 

based cloud system lod blancing algorithm. In this study, the proposed DQRNN is created for the effective 

load balancing in the cloud platform. In this case, deep Q network (DQN) and deep recurrent neural 

network (DRNN) are combined to model the DQRNN. In addition, the hybrid DQRNN is engineered to 

manage the burden in accordance with a variety of factors, including supply, demand, capacity, load, fault 

tolerance, and resource utilisation. There are six sections in the remaining portion of this work. Here,  

section 2 covers the literare review. The cloud load balancing system is shown in section 3. Additionally, the 

hybrid deep learning (DL)-enabled load-balancing mechanism is included in section 4. Section 5 describes 

the results of the experiment, and section 6 provides an explanation of the conclusion. 

 

 

2. LITERATURE SURVEY 

The multiphase fault tolerance genetic algorithm (MFTGA) was created by Kanwal et al. [10] to 

provide load balancing and fault tolerance in cloud environments. The MFTGA was created to connect the 

appropriate VM to the users using the service level agreement (SLA). The cloud technology's task latency 

was reduced by using this method. Nevertheless, it was unable to divide up the tasks between the mobile and 

fog multiuser VM. The dual conditional moth flame algorithm (DC-MFA) based VM migration in the cloud 

was developed by Verma [11]. Here, assessments were made of CPU usage, security, energy consumption, 

migration costs, resource costs, and makespan. The model showed rapid convergence during the VM 

distribution and selection process. Nevertheless, it saw less severe fluctuations when considering the specific 

aim functions. The model showed rapid convergence during the VM distribution and selection process. When 

considering the various objective functions during the load balancing of the VM migration, it saw lower 

swings, nonetheless. The multi-resource load balancing algorithm (MrLBA) based load balancing in the 

cloud [12]. In this case, the bottleneck task was successfully removed through the use of ant colony 

optimization (ACO), which also improved resource allocation. It was built on the requirements and levels of 

intensity for cloud computing workflow scheduling tasks. When modeling the scheduling algorithms in 

scientific operations, this model did not take energy usage into account. Proactive load balance fault 

tolerance (PLBFT) is a load balancing and fault tolerance technique for VM [13].  

Here, a victim VM was transferred in the direction of the other host in order to balance the load on 

the host where the troublesome VM was relocated. During VM migration, it improved the predictability of 

errors. The memory and space faults needed to manage load balancing and failures in the cloud system were 

left out of the model. The fault tolerant elastic resource management (FT-ERM) based fault tolerance system 

[14]. A fault tolerance unit was incorporated in this model to help with the safer allocation of VM that are 

prone to failure [15], [16]. In terms of failure prediction, this approach simultaneously predicts the VM's 

resource use and proactively determines the failure state. On the other hand, reactive fault tolerance 

techniques were not used such as N-Version Programming, which carries out the necessary failure tolerance 

tasks.  

 

 

3. LOAD BALANCING IN CLOUD COMPUTING 

The provision of on-demand services to consumers, where all operations are carried out on the cloud 

network, is known as cloud computing. Figure 1 discusses the system model for load balancing in a cloud 

environment [17], [18]. The cloud is made up of a huge number of data centers, or physical machines (PMs), 

each of which has a specific amount of processing capacity to carry out user tasks. In addition, the cloud user 

has a lot of work on VM. Different workloads are assigned to VMs via load balancing, which also 

continuously tracks the VMs' workloads [19]. Every operation's processing time determines the burden on the 

VM [20]. In the meantime, each activity's processing time varies, and the task. 

 

𝐿 = {𝜌𝑀1, 𝜌𝑀2, . . . , 𝜌𝑀𝑅 , . . . 𝜌𝑀𝑇} (1) 

 

where, 𝐿 denotes the cloud, the first PM is represented by 𝜌𝑀1 and 𝜌𝑀𝑅 specifies the 𝑅𝑡ℎPM. Furthermore, 

𝜌𝑀𝑅 is described as (2), 

 

𝜌𝑀𝑅 = {𝜐1, . . . 𝜐ℎ , . . . , 𝜐𝑞} (2) 

 

where, the first VM is specified as 𝜐1, 𝜐ℎ denotes the ℎ𝑡ℎVM, and the 𝑞𝑡ℎVM is specified as 𝜐𝑞. 
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Figure 1. System model for load balancing 

 

 

Each VM is made up of processors that perform the task and the instructions to complete the user's 

tasks, task reallocation, and bandwidth for allocating the tasks to the VMs. Moreover, the VM is defined  

as (3): 

 

𝜐ℎ = {𝜇ℎ, 𝛿ℎ, 𝐵ℎ , 𝐶ℎ, 𝛼ℎ} (3) 

 

where, the frequency of a processor is denoted by 𝛼ℎ and 𝛿ℎ specifies the million instructions per second 

(MIPS). Moreover, the bandwidth 𝐵ℎ, memory 𝜇ℎ, and CPU utilization 𝐶ℎ are contained in the VMs. 

The task is characterized by the requirement of the user that is handled by the processors of VMs. 

Every task has a priority and particular execution time. Hence, the VMs assign tasks based on these two 

qualities. Moreover, the VM is allocated the task with the maximum priority and the shortest execution time. 

The entire counting of the task required in the VM is represented as 𝑁, it is expressed as (4), 

 

𝑁 = {𝑁1, 𝑁2, . . . , 𝑁𝑖 , . |. . 𝑁𝑗} (4) 

 

where, the first task is denoted by 𝑁1, the second task is represented as 𝑁2. Here, the 𝑖𝑡ℎ and 𝑗𝑡ℎ  task are 

denoted as 𝑁𝑖 and 𝑁𝑗. Moreover, the execution time, task length, and priority are considered as the task 

parameters. 

 

 

4. PROPOSED DQRNN BASED RESOURCE ALLOCATION  

The goal of the proposed model is to design a hybrid DL-based resource allocation and fault 

tolerance. Initially, the tasks are assigned to the VM through a round-robin fashion. Afterwards, the VM 

parameters, namely memory, CPU, bandwidth, processing elements and frequency scaling factor are 

considered to classify the VM as overloaded or underloaded VMs using deep embedding cluster (DEC). The 

overloaded VM tasks are sorted by priority, and it is assigned to the underloaded VM for balancing the load 

in the cloud [21], [22]. Here, a hybrid DL network termed DQRNN is designed to balance the load using 

different factors like capacity, supply, demand, load, fault tolerance, and resource utilization. 

 

4.1.  Steps for load balancing algorithm 

The load balancing involved the following steps for assigning the load to the VM; i) assign the tasks 

to the VMs via the round-robin approach, ii) classify the VM as overloaded or underloaded using the DEC 

with VM parameters, iii) sort the task of overloaded VM by the priority level, and iv) allocate the task of the 

overloaded VM to the underloaded VM for balancing the load on the cloud. 

 

4.2.  Virtual machine categorization using deep embedding cluster 

DEC is a method that concurrently learns feature representations and cluster allocation. The VM 

parameters like memory (𝜇ℎ), CPU utilization (𝐶ℎ), bandwidth (𝐵ℎ), frequency of the processor (𝛼ℎ), and 
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MIPS (𝛿ℎ) are applied to DEC. Here, the clustering layer communicates with the latent feature layer. Cluster 

centers are used to initialize the weights of the clustering layer. Consider the set of points {𝑔𝑐 ∈ 𝐺}𝑐=1
𝑏  in the 

cluster 𝐿, where each of them is indicated via the centroid 𝑒𝑓, in which 𝑓 = 1, . . . , 𝐿. Initially, the data is 

transferred with a nonlinear mapping 𝑘𝜃: 𝐺 → 𝑉, where 𝐺 represents the data space and 𝑉 implies the latent 

feature space, and the learnable parameters is specified by 𝜃. For diminishing the “curse of dimensionality, 

dimension of 𝑉 is lesser than 𝐺. Moreover, the DEC is utilized to classify the data as overloaded or 

underloaded. 

 

4.3.  Load balancing parameter for virtual machine 

Load balancing enhances network capacity through the optimal utilization of available resources. As 

a result, load balancing improves the network function more quickly. Moreover, the load balancing systems 

enhanced the accessible resources. Here, the load balancing parameters like capacity, resource utilization, 

load, supply, demand, and fault tolerance are considered for the load balancing of VMs [23]. 

− Capacity of ℎ𝑡ℎVM 

The VM's capacit is determined by many factors such as the counts of processors, bandwidth, and 

the amount of processor rules [24]. Here, the capacity 𝛽ℎ is given as (5): 

 

𝛽ℎ =
1

𝑀1
[

𝛼ℎ∗𝜇ℎ∗𝐵ℎ∗𝐶ℎ∗𝛿ℎ

4×10
]  (5) 

 

where, the normalizing factor is represented as 𝑀1. 

− Resource utilization of ℎ𝑡ℎVM 
Resource allocation is employed for exploiting and assigning available resources as per the cloud 

need. Hence, numerous kinds and quantities of resources must be allocated to fulfill the task. The resource 

allocation is represented as 𝑟ℎ. 

 

𝑟ℎ =
1

𝑁∗𝑀2
[∑ ∑ (

𝛼ℎ

𝜎1
+

𝜇ℎ

𝜎2
+

𝐵ℎ

𝜎3
+

𝐶ℎ

𝜎4
+

𝛿ℎ

𝜎5
)

𝑗
𝑖=1

𝑞
ℎ=1 ]  (6) 

 

where, 𝑀2 implies the normalizing factor, 𝑁 indicates the task, and 𝜎1 − 𝜎5 represents the constants. 

− Load of ℎ𝑡ℎVM 

The load estimation of PM is done by combining the loads of all VMs present on the PM. The 

following mathematical expression is utilized for computing the VM's load parameter. Here, the load 𝑌ℎ  is 

expressed as (7): 

 

𝑌ℎ =
1

𝑁∗𝑀3
[

∑ 𝜀𝑡
𝑖 ∗𝜌𝑀𝑖

ℎ∗𝑟ℎ𝑗
𝑖=1

𝜎ℎ ]  (7) 

 

where, 𝑀3 denotes the normalizing factor, 𝜀𝑡
𝑖 specifies the task execution time, 𝜌𝑀𝑖

ℎ  implies the PM, where 

ℎ𝑡ℎVM is present, and 𝑟ℎ indicates the resource utilization. Moreover, the PM is expressed as (8): 

 

𝜌𝑀𝑖
ℎ = {

1; 𝑖𝑓𝑖𝑡ℎ𝑡𝑎𝑠𝑘𝑖𝑛ℎ𝑡ℎ𝑉𝑀

0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}  (8) 

 

− Supply 

Supply and demand are related to each other for the effectual resource allocation of VMs. Moreover, 

the difference between the capacity and load is termed as supply. It is denoted as 𝑆ℎ. 

 

𝑆ℎ = 𝛽ℎ − 𝑌ℎ  (9) 

 

− Demand 

The quantities of resources required by the VM is termed as demand, which is represented as 𝐷ℎ. 

 

𝐷ℎ = 1 − 𝑆ℎ  (10) 

 

− Fault tolerance 

Fault tolerance is defined as the capacity of the network to run consistently in instances of system 

failure and it provides greater robustness and reliability to the system. Here, the fault tolerance is denoted as 𝐹ℎ. 
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𝐹ℎ = ∑ 𝛼ℎ ∗ 𝐵ℎ ∗ 𝐶ℎ
𝑅∈ℎ   (11) 

 

where, the 𝑅𝑡ℎPM and ℎ𝑡ℎVM are considered. 

 

4.4.  Hybrid deep learning model-based cloud load balancing  

In the load balancing, the proposed hybrid DQRNN model is developed. Moreover, the proposed 

DQRNN model is made by the combination of DQN [25], [26] and DRNN. Here, the task 𝑁 is applied as the 

input of the DQN, in which the outcome ℜ1 is attained on the output terminal of the DQN. Following that, 

the DQN output ℜ1 and the load balancing parameter 𝐴 is applied to the fusion and regression layer. 

Moreover, the load balancing parameter 𝐴 contains the VM parameters and task parameters. The output of 

this layer is specified by ℜ2. Afterwards, the outcome ℜ2 is given as the input of the DRN layer, which 

offers the output ℜ3. Here, the outcome ℜ3 is considered as the output of the proposed DQRNN. The 

structure of the proposed DQRNN is portrayed. 

 

4.4.1. Deep Q network model 

DQN uses the Q-learning technique, which is one of the frequently employed reinforcement 

learning (RL) techniques. The DQN structure, which includes the convolution, dropout, Maxpooling, flatten, 

and dense layer. The predicted discounted cumulative reward is denoted as the action value function of RL. 

 

𝑄𝑙
𝜋(𝐴𝑙 , 𝑤𝑙) = 𝐽[∑ 𝜂𝑝𝑥𝑙+𝑝|∞

𝑝=0 𝐴𝑙 = 𝐴, 𝑤𝑙 = 𝑤; 𝜋]  (12) 

 

where, 𝐽 represents the expectation. The optimum action-value function is termed as 

 𝐽∗(𝐴, 𝑤) = 𝑚𝑎𝑥𝜋 𝑄𝜋 (𝐴, 𝑤), which attains the Bellman optimal expression. 

Q-learning is a well-known value-based RL method that estimates the ideal action value function via 

the upgraded expression. The rule for updating this expression is given by: 

 

𝑄𝑙+1(𝐴𝑙 , 𝑤𝑙) = 𝑄𝑙(𝐴𝑙 , 𝑤𝑙) + 𝜒𝑙(𝐴𝑙 , 𝑤𝑙)(𝑥𝑙 + 𝜂 𝑚𝑎𝑥𝑤 𝑄𝑙 (𝐴𝑙+1, 𝑤) − 𝑄𝑙(𝐴𝑙 , 𝑤𝑙))  (13) 

 

where, 𝜒𝑙(𝐴𝑙, 𝑤𝑙) implies a learning rate. The action value function is estimated using the function 

approximation, which is defined by 𝜃. In general, the parameter can be optimized by reducing the loss 

function shown: 

 

𝐸𝑙(𝜃𝑙) = 𝐻(ℜ1 − 𝑄(𝐴𝑙, 𝑤𝑙; 𝜃𝑙))
2
  (14) 

 

where, ℜ1 = 𝑥𝑙 + 𝜂 𝑚𝑎𝑥𝑤 𝑄 (𝐴𝑙+1, 𝑤; 𝜃𝑙) shows the objective value, in which the updated rule of gradient 

descent is given by: 

 

𝜃𝑙+1 = 𝜃𝑙 + 𝜒𝑙(ℜ1 − 𝑄(𝐴𝑙 , 𝑤𝑙; 𝜃𝑙))𝛻𝜃𝑙
𝑄(𝐴𝑙 , 𝑤𝑙 ; 𝜃𝑙)  (15) 

 

The present action value function 𝑄(𝐴𝑙, 𝑤𝑙; 𝜃𝑙) estimates the output ℜ1, which is represented by: 

 

ℜ1 = 𝑥𝑙 + 𝜂 𝑚𝑎𝑥𝑤 𝑄 (𝐴𝑙+1, 𝑤; 𝜃𝑙
−)  (16) 

 

ℜ1 = 𝑥𝑙 + 𝜂𝑄(𝐴𝑙+1, 𝑎𝑟𝑔𝑚𝑎𝑥𝑤 𝑄 (𝐴𝑙+1, 𝑤; 𝜃𝑙
−)𝜃𝑙

−)  (17) 

 

where, 𝜃𝑙
− shows the network parameter. Furthermore (22) represents the outcome of DQN. 

 

4.4.2. Deep Q recurrent neural network model 

In the DQRNN layer, the outcome of DQN (ℜ1) and the load balancing parameter (𝐴) is applied as 

the input. In this layer, the fusion and regression process are performed to combine the DQN output ℜ1 and 

the load balancing parameter 𝐴. After this process, the outcome ℜ2 is generated in the DQRNN layer. The 

fusion and regression are mainly utilized to enhance the accuracy and minimized the overfitting of the hybrid 

network model. Furthermore, the outcome of the DQRNN layer on the 𝑋𝑡ℎ interval is expressed by: 

 

ℜ2 = ℓ ∗ ∑ 𝐴ℑƛℑ
𝜁
ℑ=1 +

1

2
ℓℜ1  (18) 

 

where, ƛ represents the weight and 𝐴 implies the fused feature.  
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4.4.3. Deep recurrent neural network model 

DRNN is a type of highly connected neural network, which is comprised of input, long short-term 

memory (LSTM), dense, and dropout layers. The outcome of the hidden layer is sent back into its input; 

hence the input is an integration of the current and the prior layer. However, the gradient typically disappears 

during the learning phases. Here, the gradient reflects an adjustment in all weights concerning the error. 

Therefore, the utilization of LSTM units is an effective solution for the issue of vanishing gradients. It 

contains gated recurrent units (GRUs) and the fully connected hidden layers. The use of the LSTM unit aids 

in the preservation of inaccurate data that is back-propagated via the layers. Moreover, LSTM units can learn 

long-term dependencies to decrease the gradient difficulties. The fundamental features of an LSTM are an 

input gate, a neuron with a self-recurrent connection, a forget gate and an output. Moreover, the outcome of 

the DRNN layer is given as (19): 

 

ℜ3 = ƛ(𝐼𝐺𝑅𝑈+𝐼𝐻𝐿+1)ℜ2
(𝐼𝐺𝑅𝑈+𝐼𝐻𝐿+1)

+ 𝐾(𝐼𝐺𝑅𝑈+𝐼𝐻𝐿+1) (19) 

 

where, the output of the DRNN layer is considered as the outcome of the proposed DQRNN. The terms 𝐼𝐺𝑅𝑈 

and 𝐼𝐻𝐿  specifies the count of GRU and the hidden layers. Moreover, the weight is denoted by ƛ and the bias 

is termed as 𝐾. 

 

 

5. RESULTS AND DISCUSSION 

The experimental assessment of proposed DQRNN-based load balancing is attained by different 

numbers of VMs and PMs as well as different metrics. Moreover, the implementation tool, performance 

evaluation metrics, and experimental outcomes are also described. The performance of the proposed DQRNN 

is evaluated by metrics like capacity, load, resource utilization, and success rate; i) load: the load parameter is 

described in (7); ii) capacity: the capacity metric is defined in (5); iii) resource utilization: the allocation of 

required resources to the VM is defined as resource allocation, which is denoted in (6); and iv) success rate: 

success rate is defined as the proportion of success among the total counts of attempts to perform the task. 

 

5.1.  Compative analysis and interpretation  

In comparative assessment, the proposed DQRNN-based load balancing process is compared to the 

existing approaches like MFTGA, MRLBA, PLBFT, and FT-ERM to show the efficiency of the proposed 

approach. The performance estimation process of existing algorithms like MFTGA, MrLBA, PLBFT, and  

FT-ERM. In the comparative valuation, the performance of the proposed DQRNN and the existing methods are 

estimated through performance estimating measures. Here, the outcomes are obtained at 10 PM with 25 VM,  

15 PM with 20 VM, and 30 PM with 45 VM. In the study, we have executed the results using Python tool. 

The comparative estimation of the proposed DQRNN-based load balancing using 10 PM with  

25 VM is shown in Figure 2. Here, the comparative performance is attained for different task sizes and the 

metrics like load, capacity, resource utilization, and success rate are considered. Figure 2(a) deliberates the 

comparative estimation regarding load. Considering the task size=1000, the load of the proposed DQRNN is 

0.300, whereas the load of MFTGA, MrLBA, PLBFT, and FT-ERM are 0.576, 0.516, 0.435, and 0.387. The 

valuation related to capacity is shown in Figure 2(b). For the task size of 500, the MFTGA, MrLBA, PLBFT, 

FT-ERM, and proposed DQRNN got the capacity of 0.195, 0.266, 0.308, 0.386, and 0.457. Furthermore, 

Figure 2(c) shows the valuation in connection with resource utilization. For the task size of 1500, the 

resource utilization of the proposed DQRNN is 0.457, whereas the resource utilization of MFTGA is 0.708, 

MrLBA is 0.637, PLBFT is 0.607 and FT-ERM is 0.526. Similarly, the evaluation for success rate is depicted 

in Figure 2(d). Considering the task size of 1500, the success rate values like 0.817, 0.835, 0.851, 0.866, and 

0.883 are attained by the MFTGA, MrLBA, PLBFT, FT-ERM, and proposed DQRNN. Similarly, assessment 

is done using 15 PM with 20 VM and 30 PM with 45 VM. 

 

5.2.  Comparative analysis 

Table 1 explains the comparative analysis for the proposed DQRNN-based load balancing for the 

existing approaches. Here, the proposed model is estimated in different numbers of PMs and VMs with 

respect to different task size. For the different task size, the performance is computed by the load, capacity, 

resource utilization, and success rate measures. From this estimation, we considered 500 number of tasks and 

it is revealed that, the optimum values are obtained in 10 PM with 25 VMs. Here, the load of the proposed 

DQRNN is 0.147, while the load of MFTGA is 0.347, MrLBA is 0.297, PLBFT is 0.245 and FT-ERM is 

0.207. Moreover, the proposed DQRNN attained a capacity of 0.726, while the capacity of MFTGA, 

MrLBA, PLBFT, and FT-ERM are 0.427, 0.507, 0.527, and 0.627. For resource utilization-based analysis, 

the ideal values 0.767, 0.707, 0.68, 0.598, and 0.527 are attained by the MFTGA, MrLBA, PLBFT, FT-ERM, 
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and the proposed DQRNN. Furthermore, the success rate of the proposed DQRNN is 0.895, while, the other 

methods got a success rate of 0.840, 0.852, 0.861, and 0.875. Similarly, the superior values of load, capacity, 

resource utilization and success rate of the proposed DQRNN using 15 PM with 20 VMs are 0.223, 0.794, 

0.561, and 0.904. Furthermore, better values like 0.203, 0.760, 0.614, and 0.916 are attained in 30 PM with  

45 VMs. Hence, the efficient utilization of the proposed hybrid DL model offered better performance due to 

the efficient allocation of VMs. 

 

 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 2. Comparative assessment of proposed DQRNN using 10 PM with 25 VM; (a) energy, (b) capacity, 

(c) resource utilization, and (d) success rate 

 

 

Table 1. Comparative discussion of proposed DQRNN with MFTGA, MrLBA, PLBFT, and FT-ERM 
Variations Metrics MFTGA MrLBA PLBFT FT-ERM Proposed DQRNN 

10 PMs and 25 VMs 
w.r.t 500 tasks 

Load 0.347 0.297 0.245 0.207 0.147 
Capacity 0.427 0.507 0.527 0.627 0.726 

Resource utilization 0.767 0.707 0.687 0.598 0.527 

Success rate 0.840 0.852 0.861 0.875 0.895 
15 PMs and 20 VMs 

w.r.t 500 tasks 

Load 0.373 0.333 0.310 0.283 0.223 

Capacity 0.505 0.565 0.615 0.703 0.794 

Resource utilization 0.796 0.735 0.695 0.631 0.561 
Success rate 0.849 0.862 0.870 0.883 0.904 

30 PMs and 45 VMs 

w.r.t 500 tasks 

Load 0.375 0.316 0.251 0.233 0.203 

Capacity 0.451 0.516 0.571 0.665 0.760 
Resource utilization 0.829 0.757 0.714 0.677 0.614 

Success rate 0.876 0.885 0.890 0.899 0.916 
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6. CONCLUSION 

Cloud computing is an emerging computer approach for facilitating more services through the 

internet while eliminating the need for local data processing. Cloud computing allows the user to access the 

storage or devices as a service. Moreover, the increasing demand for cloud resources prevents service 

availability, which causes performance degradation, higher energy consumption and load imbalance. As a 

result, a hybrid DL model for load balancing and fault tolerance for cloud platforms is devised in this work. 

In this process, the tasks are allocated to each VM on a round-robin fashion. Furthermore, the DEC considers 

VM components such as memory, CPU, bandwidth, processing elements, and frequency scaling factors for 

classifying the VMs as overloaded or underloaded. The tasks done in the overloaded VM are prioritized, and 

the overloaded VM is assigned to the underloaded VM for cloud load balancing. Furthermore, the hybrid 

DQRNN is developed to balance the load based on several aspects such as supply, demand, capacity, load, 

fault tolerance, and resource utilization. In addition, the effectiveness of the proposed model is measured by 

load, capacity, resource usage, and success rate, with the finest values 0.147, 0.726, 0.527, and 0.895 are 

achieved. The proposed method is applicable in data traffic, network traffic, and internet traffic. The 

DQRNN offered superior performance in network traffic and computer servers. Load balancing offers 

improved scalability, response time, and throughput, while fault tolerance increases the applications' 

robustness, availability, and reliability. 
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