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Due to limited space and regulations, food labels often lack information on
micronutrients, i.e., vitamins and minerals. Accurately predicting missing
these micronutrient data is essential yet challenging. This study explores the
feasibility of using machine learning to predict these missing nutrients based
on a limited reported nutrient (protein and carbs). Using the Tabel Komposisi

Pangan Indonesia (TKPI) dataset, we evaluated the performance of 12

diverse classifiers to predict binary classes ("low" or "high") for 13 target
Keywords: micronutrients. Random forest emerged as the best performing classifier
with an average accuracy of 0.7421 across all target nutrients. Additionally,
we introduced feature engineering techniques by incorporating polynomial
and ratio features to enhance model performance. Minimum redundancy
acl maximum relevance (MRMR) feature selection was then applied to identify
Minimum redundancy the most informative features. This approach boosted the average accuracy
maximum relevance feature of the random forest classifier to 0.7591. These findings highlight the
selection efficacy of feature engineering and selection in enhancing nutrient prediction
Nutrient prediction models, demonstrating the potential to improve consumer knowledge about

unknown nutrients in food.
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1. INTRODUCTION

Complete nutritional information on food labels is crucial for consumers to make informed dietary
choices [1], [2]. Food labels provide essential data about the macronutrients (such as carbohydrates, proteins,
and fats) and micronutrients (such as vitamins and minerals) contained in food products. This information
helps consumers maintain balanced diets, manage specific health conditions, and adhere to dietary guidelines.
For example, individuals with conditions such as diabetes, hypertension, or cardiovascular disease rely on
accurate nutritional labels to manage their intake of sugar, sodium, and fat [3], [4]. In addition, personalized
food recommender systems can utilize this nutritional information to suggest healthier meal options tailored
to individual dietary needs [5].

However, current food labels often lack comprehensive data, particularly for micronutrients.
Regulatory guidelines typically mandate the inclusion of macronutrient information and a select few
micronutrients, leaving many vitamins and minerals unreported. As a case in point, the Indonesian regulation
"Peraturan Badan Pengawas Obat Dan Makanan Nomor 26 Tahun 2021 Tentang Informasi Nilai Gizi Pada
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Label Pangan Olahan (2021 Regulation of the National Agency of Drug and Food Control Number 26 on
Nutritional Information on Processed Food Labels)" [6] specifies that the mandatory nutrients that must be
reported on food labels are total energy, total fat, saturated fat, protein, total carbohydrates, sugars, and salt
(sodium). As a result, many food companies only fulfill these minimum requirements. Furthermore,
companies may also omit many nutrients due to space constraints on packaging and the cost of extensive
nutritional testing. Consequently, consumers may not have access to crucial information needed for optimal
nutrition.

The challenge of incomplete or missing nutrient data on food labels is further compounded when
only a limited number of input features are available. Previously, Razavi and Xue [7] experimented with
regression and classification models to predict vitamins and minerals from 14 other nutrients commonly
available on food labels. However, that study was conducted in the USA, where there are more mandatory
nutrient requirements on labels. There is a need for a study that is interested in models that can work with
less input features.

Existing research efforts aimed at predicting nutrient content have explored various approaches. For
instance, some methods use computer vision techniques to analyze food images and predict nutrient
composition based on visual features [8]-[13]. Other approaches involve parsing recipe ingredients and
quantities to calculate nutritional values [14]-[18]. While these methods can be effective, they require
specific types of input data that are not always readily available or practical for all food products.

Given these constraints, our study aims to develop models capable of predicting unreported
micronutrients using a minimal set of input features: energy, protein, fat, carbohydrate, fiber, and natrium
(sodium). By focusing on these commonly available nutrients, we aim to provide a practical solution for
improving customer knowledge about the nutritional content of food. This approach allows consumers to
gain additional and more useful information regarding the nutrients in their food without the need for
extensive and costly testing. To achieve this, it is important to compare various machine learning classifiers
to determine which performs best with the limited input features. Additionally, feature engineering
techniques and feature selection can enhance the model's predictive capabilities [19]. This study makes two
key contributions: i) an evaluation of 12 machine learning classifiers for nutrient prediction from limited
input features, with random forest emerging as the best performer and ii) an improvement in prediction
accuracy through the addition of ratio and second-degree polynomial features, combined with minimum
redundancy maximum relevance (MRMR) feature selection.

In the following sections, we present a comprehensive examination of our approach to nutrient
prediction. Section 2 outlines the method, including the dataset description, feature engineering techniques,
and the application of mMRMR feature selection. We then detail the experimental setup and classifier
comparison in section 3. Section 4 presents the results and discussion, providing a comparison of classifier
performance and the impact of feature engineering on predictive accuracy. Finally, section 5 offers
conclusions, as well as the implications of our findings and potential avenues for future research.

2. METHOD
2.1. Dataset

The data for this study is based on the Tabel Komposisi Pangan Indonesia (TKPI) 2017 [20], a
comprehensive database that provides detailed nutritional information about various foods commonly
consumed in Indonesia. It contains 1,146 food items categorized into 14 groups. Each entry in the dataset
includes the name of the food item, portion size, and amounts of various nutrients per 100 grams or per
serving.

For this study, we use 6 features as input variables (energy, protein, fat, carbohydrate, fiber, and
sodium) and 13 features as target variables (calcium, phosphorus, iron, potassium, copper, zinc, retinol, beta-
carotene, total carotenoids, thiamin, riboflavin, niacin, and vitamin C). Many of the variables have missing
values and most variables exhibit a highly right-skewed distribution. The statistics of these variables are
shown in Table 1.

2.2. Polynomial features
Polynomial features are a feature engineering technique used to capture non-linear relationships
between input variables and the target variable. This method creates new features by combining existing
features through multiplication, allowing the model to learn more complex patterns in the data [21], [22].
In general, for a set of n features [xi, Xz, ..., Xa], second-degree polynomial features include:
— The original features: Xi, Xa, ..., Xa
— Squared terms: xi2, X22, ..., Xn2
— Interaction terms: X1X2, X1X3, ..., Xi1Xn, X2X3, ..., X2Xp, ..., Xn-1Xn
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Table 1. Data description of all features in the dataset

Feature names ;I'ype of Empty  Mean Star)dz?\rd Minimum 25%  50% 75%  Maximum
eatures deviation
Energy (cal) input 0 198.45 162.39 8 74 142.5 320 902
Protein (g) input 1 9.67 11.51 0 1.7 4.8 14.5 74.3
Fat (g) input 1 7.40 13.70 0 05 2 8.1 100
Carbohydrate (g) input 0 23.76 25.00 0 4.7 13 35.575 94
Fiber (g) input 221 2.75 4.55 0 0.1 14 34 46.5
Sodium (mg) input 40 15241  338.66 0 20 60 153 4608
Calcium (mg) target 40 166.18 217.29 0 43 97 202.75 1976
Phosphorus (mg) target 43 3.38 5.78 0 0.8 1.9 3.8 96.4
Iron (mg) target 282 214.70 713.30 0 7 345 164 11998
Potassium (mg) target 323 341.31 625.95 0 91 227  404.35 11890
Copper (mg) target 351 11.07 160.13 0 0.1 0.2 0.4 4303.45
Zinc (mg) target 347 1.42 3.26 0 0.3 0.7 15 60
Retinol (mcg) target 605 246.63 1575.52 0 0 0 39 24242
Beta-carotene (mcg) target 467 634.94 2083.39 0 0 11 168.5 30200
Total caretenoids (mcg) target 539 122521  2778.66 0 0 87 936 28000
Thiamin (mg) target 88 0.40 6.15 0 0.05 0.1 0.27 200
Riboflavin (mg) target 350 0.21 1.08 0 0.03 0.1 0.2 29.47
Niacin (mg) target 339 1.99 5.63 0 0.2 0.8 21 136.5
Vitamin C (mg) target 289 11.63 26.15 0 0 0 11 230
The general formula for creating second-degree polynomial features is:
Po(X1, X2,y Xn) = [X1, X200, Xn, X175, %27, o0, X%, X1X2, X1 X3, - o, X1 X, X2X3, .., X2Xnyy - o, Xno1Xn] (1)

In this study, we apply second-degree polynomial features to our dataset of nutritional information. With our six

input features (energy, protein, fat, carbohydrate, fiber, and sodium), we generate the following new features:

— Squared terms: energy?, protein?, fat2, carbohydrate?, fiber?, sodiumz2.

— Interaction terms: energyxprotein, energyxfat, energyxcarbohydrate, energyxfiber, energyxsodium,
proteinxfat, proteinxcarbohydrate, proteinxfiber, proteinxsodium, fatxcarbohydrate, fatxfiber,
fatxsodium, carbohydratexfiber, carbohydratexsodium, fiberxsodium.

These polynomial features expand our original set of 6 features with an additional 21 features

(6 squared+15 interaction terms). This expansion allows our models to capture more complex relationships in

the data. For instance, it might reveal that the effect of protein on a certain micronutrient depends on the level

of fat, which would be captured by the proteinxfat interaction term.

2.3. Ratio features

Ratio features are calculated to capture the proportional relationships between different variables [21].
These features help in identifying and emphasizing the relative importance of one variable with respect to
another, providing deeper insights into the data. In this study, ratio features were engineered using the six input
variables: energy, protein, fat, carbohydrate, fiber, and sodium. Ratio features used in this study are shown in
Table 2. These features aim to enhance the model's ability to predict the target nutrients by providing additional
context about the relationships between these nutrients. With the addition of ratio features, our dataset was
expanded into a total of 39 features (6 original features+21 polynomial features+12 ratio features). Note that in
this study, all new features are calculated using the standardized values of the original features.

2.4. Minimum redundancy maximum relevance feature selection

The mRMR algorithm was employed for feature selection in this study. mRMR is an efficient and
effective method that aims to select a subset of features that are highly relevant to the target variable while
minimizing redundancy among the selected features [23]. The mRMR algorithm operates on two key
principles: maximizing the mutual information between selected features and the target variable (maximum
relevance), and minimizing the mutual information between pairs of selected features (minimum
redundancy). This approach helps identify features that are both informative and non-redundant [24].

The selection process begins by calculating the mutual information between each feature and the
target variable. The feature with the highest mutual information is selected first. Subsequent features are
chosen based on a trade-off between their relevance to the target and their redundancy with already selected
features. This trade-off is quantified using the mutual information quotient (M1Q) criterion:

max[ 1Gey) ] )

1
$2xjes(xix))
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where 1(xi; y) represents the mutual information between feature x; and the target y, and I(xi; X;) is the mutual
information between features x; and x;. S is the set of already selected features.

By selecting features that provide unique and relevant information, mRMR helps reduce
dimensionality, mitigate overfitting, and improve model interpretability while maintaining predictive power.
The Python package pyrmr [25] is used to do the feature selection in this study.

Table 2. Generated ratio features in this study

Ratio features Formula
Protein to fat ratio Protein
Fat
Carbohydrate to protein ratio Carbohydrate
Protein
Carbohydrate to fat ratio Carbohydrate
Fat
Energy to protein ratio Energy
Protein
Energy to fat ratio Energy
Fat
Energy to carbohydrate ratio Energy
Carbohydrate
Carbohydrate to fiber ratio Carbohydrate
Fiber
Energy to fiber ratio Energy
Fiber
Protein to carb and fat ratio Protein

Carbohydrate + Fat

Protein to total nutrients ratio Protein
Energy + Fat + Carbohydrate

Fat to total nutrients ratio Fat
Energy + Fat + Carbohydrate

Carbohydrate to total nutrients ratio Carbohydrate
Energy + Fat + Carbohydrate

2.5. Experimental setup

The experimental setup for this study (Figure 1) involved two distinct phases: i) classifier
comparison and ii) feature engineering combined with feature selection. The first phase aimed to evaluate the
performance of various classifiers using the original features from the dataset, while the second phase
focused on enhancing the classifier performance through the introduction of new features and feature
selection techniques. Initially, the data was prepared individually for each target variable, as a separate
classification model was developed for each nutrient (i.e., iron, calcium, and phosphorus). The data
preprocessing involved handling missing values using median imputation for input variables and removing
instances with missing values in the target variable. Additionally, data standardization was performed using
z-score normalization [26] to ensure that all features contributed equally to the classification process. Each
target variable, originally numerical, was transformed into a binary classification problem by applying a
threshold based on the median value, dividing the data into "high" and "low" categories.

In the first phase, twelve different classifiers were trained and evaluated to determine the most
effective model for predicting unreported nutrients. The classifiers included logistic regression, decision tree,
random forest, gradient boosting, linear support vector machines (SVM), radial basis function SVM (RBF
SVM), K-nearest neighbors, Naive Bayes, AdaBoost, extra trees, XGBoost, and LightGBM. Hyperparameter
tuning was performed for each classifier using a grid search on a subset of the data. This ensured that the
optimal settings for each model were identified before evaluating their performance on the entire dataset. The
classifiers' performance was assessed using accuracy as the main metric, with the process repeated five times
using different seeds for train-test splits. The average accuracy from these iterations was reported as the final
performance measure for each target-classifier pair. The random forest classifier emerged as the best
performer with the highest average accuracy across all target nutrients.
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Figure 1. Flowchart of the research method

The second phase of the experiments involved feature engineering and feature selection, focusing
solely on the random forest classifier identified as the best model in the first phase. Second degree
polynomial features were created by squaring each original feature, while multiplying pairs of original
features. Additionally, various ratio features were derived, such as the protein-to-fat ratio, carbohydrate-to-
protein ratio, and energy-to-fiber ratio (Table 2). These new features aimed to capture more complex
relationships between the original input variables, potentially improving the model's ability to predict the
target nutrients.

Given the high dimensionality resulting from the feature engineering process, not all newly
generated features were beneficial for the classification tasks. Therefore, a feature selection step was
necessary to identify the most informative features while discarding redundant or irrelevant ones. The
MRMR technique was employed for this purpose. mMRMR is computationally efficient, making it suitable for
handling the increased number of features generated during the feature engineering process.

After selecting the most informative features using mRMR, the random forest classifier was
retrained and subjected to hyperparameter tuning, similar to the first phase. This ensured that the classifier
was optimized for the new feature set. The performance of the classifier with the engineered and selected
features was then evaluated using the same methodology as in the first phase, with accuracy averaged over
five train-test splits with different seeds.

3. RESULTS AND DISCUSSION

In this section, we present the outcomes of our experiments, focusing on the performance of various
classifiers and the impact of feature engineering and selection techniques. As mentioned in the previous
section, we conducted in two phases of experiments: i) the first phase involved evaluating twelve different
machine learning classifiers using the original features and ii) the second phase focused on improving the
best-performing classifier, random forest, by incorporating polynomial and ratio features followed by mRMR
feature selection.

Improving nutrient prediction models with polynomial and ratio features and mRMR ... (Fatma Indriani)
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3.1. Performance of 12 classifiers

The results of our comparison across 12 different classifiers reveal significant insights into their
performance for predicting micronutrient content in foods. Notably, the random forest algorithm emerged as the
top performer, achieving the highest average accuracy of 0.7420 across all micronutrients (Figure 2). This
performance was closely followed by other ensemble methods, with extra trees and LightGBM securing the
second and third positions with average accuracies of 0.7393 and 0.7372, respectively. In contrast, naive Bayes
demonstrated the lowest average accuracy of 0.6402, significantly underperforming compared to the ensemble
methods. This significant difference in performance, with the best classifier outperforming the worst by
approximately 10 percentage points, underscores the importance of algorithm selection in this domain.

0.800

0.775

0.7372

0.7255 0.7247

Average Accuracy

Classifier

Figure 2. Average accuracy by classifier

Ensemble methods, namely random forest, extra trees, LightGBM, XGBoost, AdaBoost, and
gradient boosting, generally perform better in this study than single classifiers. Extra trees, random forest,
and LightGBM perform consistently across most micronutrients (Figure 3). This suggests that their ability to
combine multiple weak learners into a strong predictor is well-suited to the complex relationships inherent in
nutritional data. The consistent performance further reinforces the robustness of these ensemble approaches
for this specific prediction task.

Classifier Iran Beta Phosphorus Potassium  Calcium Total Miacin Retinol  Riboflavin Zinc Copper Thiamine VitaminC
Carotene Carotenoid

Logistic Regression 0.6742 0.6971 0.8324 0.6485 = 0.6333 0.6180 0.6568 0.7651 0.6675  0.7000 0.6931  0.6019 0.8000
Decision Tree 0.6416 0.6397 0.7730 0.6486 0.6607 0.6074 0.7945 0.6650 0.7100 0.6736 0.8000
Random Farest 07284 0.7294 0.8279  0.6667 06728 | 0E8S1|  0.8367 0.7157  0.7028  0.8477
Gradient Boosting 0,7050 0.6341 08117 0.7117 0.6393 0,6901 0.8055 0.7100 0.7730 0,7031 0.6717 0,8349
Linear S\ 0.6706 0.7059 0.8315 0.6436 | 0.6225 0.6180 0.6335 0.7761 0.6750  0.7263 06792  0.5925 0.8256
REF 5%/h 0,6851 0.7382 0.8261 0.6364 0.6892 0.6705 0.6432 0.8220 0.6888 0.7625 0.6931 0.6764 0.8453
K-Mearest Meighbors 0.7077 0.7412 0.8243 0.6376 0.6694 0.6656 06667 0.8459 0.6750 0.7763 0.7006 0.6774 0.8442
Naive Bayes 0.6679

0.7054 0.6840 0.8186

AdaBoost 0.6509 0.6344 0.6852 0.8422 0.6912 0.7750

ExtraTrees 0.8225 0.6606 0.7216 0.6836 0,6802 0.8367 0.6938 0.7737 0.6963 0.6925
HGBoost 0,7204 0,7303 0.8306 0.6642 0.7126 0.6541 0.6877 0.8404 0.7012 0.7662 0.6792 0.6962 0.8477
Light GBI 0,71439 0.7263 0.8189 0.6582 0.7117 0.6885 0.6741 0.8404 0.7088 0.7730 0.7063 0.8453

Figure 3. Accuracy of individual nutrients from different classifiers

Our results also highlight considerable variation in prediction accuracy across different
micronutrients. For instance, vitamin C and phosphorus generally exhibited higher prediction accuracies
across all classifiers, while Thiamin and Niacin proved more challenging to predict accurately. This variation
suggests that certain micronutrients may have stronger or more linear relationships with the input features,
making them easier to predict, while others may have more complex or weaker relationships, leading to
greater challenges for prediction.
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3.2. Performance of feature engineering and minimum redundancy maximum relevance selection

The second phase of our experiment is focusing on enhancing the random forest classifier through
feature engineering and mRMR selection. The combined approach led to a notable increase in average
accuracy from 0.7421 to 0.7591, representing an improvement of 1.7 percentage points (Figure 4). This
enhancement is notable given that feature engineering alone, without mMRMR selection, actually resulted in a
slight decrease in performance to 0.7372.
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0.7591
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0.7475
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Average Accuracy
o
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&

o
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N}

0.70
RF RF+FE RF+FE+mRMR

Figure 4. Comparison of average accuracy with and without FE+mRMR

Upon applying feature engineering, modest improvements were observed in the prediction accuracy
of several micronutrients, including beta carotene, potassium, calcium, and zinc (Figure 5). However, the
impact was not uniformly positive, with slight decreases noted for iron, phosphorus, and vitamin C. This
suggests that feature engineering alone may not consistently enhance predictive performance across all
micronutrients.

. Original
= wWith FE
= \With FE+mRMR

Accuracy
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Micronutrients

Figure 5. Comparison of average accuracy with and without FE+mRMR across micronutrients

The subsequent application of mMRMR feature selection in conjunction with feature engineering
yielded more pronounced improvements. Notably, phosphorus, potassium, and total carotenoids exhibited
substantial gains in prediction accuracy. This indicates that the mRMR algorithm effectively identified the
most relevant features from the expanded feature set, mitigating potential noise introduced by feature
engineering.

Interestingly, some micronutrients, such as beta carotene and copper, showed no change or slight
decreases in accuracy following the mRMR process. This underscores the complex nature of nutrient
interactions and the challenges in developing a universally effective prediction model. Vitamin C consistently
maintained the highest prediction accuracy across all methods, suggesting a robust relationship between this
nutrient and the input features.

3.3. Analysis of selected features

The total number of features available for selection was 39, yet most nutrients required fewer than
this maximum for optimal prediction (Table 3). This indicates efficient feature selection tailored to each
nutrient's needs. Polynomial features, with up to 20 selected for nutrients like retinol, significantly contribute
to capturing complex, nonlinear relationships.

Improving nutrient prediction models with polynomial and ratio features and mRMR ... (Fatma Indriani)
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Table 3. Types of features selected based on nutrient target
Features selected
Total  Original features  Polynomial features  Ratio features

Nutrient target

Calcium 22 2 11 9
Phosphorus 7 0 3 4
Iron 27 3 15 9
Potanssium 9 0 5 4
Copper 33 6 19 8
Zinc 22 3 11 8
Retinol 36 5 20 11
Beta Carotene 14 2 5 7
Total Carotenoids 26 5 12 9
Thiamine 8 1 3 4
Riboflavin 11 1 5 5
Niacin 31 4 17 10
Vitamin C 10 1 5 4

Ratio and polynomial features, which capture non-linear relationships and interactions, are
consistently chosen over original features across most nutrients. Notably, the number of selected features
varies considerably across nutrients, indicating differing levels of complexity in nutrient prediction. Some
nutrients require more features, suggesting more complex relationships with food components, while others
can be predicted with fewer features. For instance, retinol and copper required 36 and 33 features
respectively, suggesting intricate relationships within these nutrients that demand a broader array of features
to model accurately. On the other hand, nutrients like phosphorus and thiamin, which needed only 7 and 8
features respectively, indicate simpler predictive models.

The analysis of the most and least selected features reveals important insights into the feature
selection process and its impact on nutrient prediction models. The top 10 most selected features include a
balanced mix of polynomial and ratio features, such as "Energy to Carb_Ratio" and "FIBER_Squared,"
highlighting the importance of capturing non-linear relationships and nutrient proportions (Table 4). Protein-
related features, like "Proten_x_Fiber" and "Protein_to_Fat_Ratio," are particularly prominent, underscoring
the critical role that protein interactions play in accurate nutrient prediction. This balanced contribution
suggests that both polynomial and ratio features significantly enhance the model's ability to predict complex
nutrient relationships, improving overall accuracy.

Table 4. Ten most selected features

Feature name Feature type  Number of times selected
Energy_to_Carb_Ratio ratio 11
Protein_to_Fat_Ratio ratio 11
FIBER_Squared polynomial 11
Carb_to_Total_Nutrients_Ratio ratio 10
PROTEIN_x_FIBER polynomial 10
Carb_to_Protein_Ratio ratio 10
Protein_to_Carb_to_Fat_Ratio ratio 10
ENERGY original 9
SODIUM_Squared polynomial 9
PROTEIN_Squared polynomial 9

On the other hand, the least selected features (Table 5), including original features like "FAT" and
"FIBER," indicate that engineered features generally provide more valuable information than original data
alone. The underutilization of certain polynomial features, such as "CARB_Squared" and
"ENERGY_Squared," suggests that not all quadratic transformations contribute equally to model
performance. Additionally, the limited selection of some ratio features, like "Energy to Fiber Ratio,"
implies that specific nutrient ratios may be less relevant in this dataset. These findings emphasize the
importance of context-specific feature selection, where certain interactions are less influential across different
nutrient predictions, highlighting the need for tailored approaches to feature engineering in nutritional
analysis.

3.4. Comparison with related work

Our study shares similarities with Razavi and Xue work [7] in predicting unreported nutrients using
machine learning, but offers several unique contributions. While both studies aim to enhance nutritional
information availability, our approach is tailored to more restrictive labeling requirements, using only six
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input features based on Indonesia's mandatory labeling. This makes our model more applicable in contexts
with limited nutritional data.

Table 5. Ten least selected features

Feature name Feature type  Number of times selected
FAT x_CARB polynomial 5
ENERGY_x_FAT polynomial 4
FAT_Squared polynomial 4
FIBER original 4
Energy_to_Protein_Ratio  ratio 3
Energy_to_Fiber_Ratio ratio 3
CARB_x_FIBER polynomial 3
ENERGY_Squared polynomial 2
CARB_Squared polynomial 2
FAT original 1

We evaluated a broader range of classifiers (12 vs. 7), providing a more comprehensive comparison
of machine learning approaches for this task. Our best-performing model, random forest, achieved an average
accuracy of 0.7591 across all target nutrients after feature engineering and mRMR selection. This
performance, while slightly lower than Razavi and Xue [7] reported accuracies (>0.80), is notable given our
fewer input features and binary classification approach (Table 6).

Table 6. Comparison with related research

Aspect This research Razavi and Xue [7]
Dataset TKPI 2017 (Indonesian) FNDDS (US)
Number of input/independent features 6 14
Number of instances (food items) 1146 5624
Target variables 13 micronutrients 15 micronutrients
Classification approach Binary (high/low) Ternary (low/medium/high)
Number of classifiers evaluated 12 7
Best performing classifier Random forest GBM and random forest
Feature engineering Polynomial and ratio features None
Feature selection mRMR None
Average accuracy (best model) 0.76 Not mentioned
Highest accuracy for single nutrient 0.86 (phosphorus), 0.85 (vitamin C), 0.84 (retinol)  0.94 (vitamin B12, phosphorus)
Lowest accuracy for single nutrient 0.70 (potassium) 0.81 (vitamin E)

The performance difference can be attributed to several factors. Firstly, our use of fewer input
features naturally constrains the available information for prediction. Secondly, our binary classification
(high/low) versus their three-class approach (high/medium/low) presents a different challenge, potentially
affecting accuracy metrics. Lastly, differences in datasets (TKPI vs FNDDS) and target nutrients may
contribute to performance variations.

Despite these challenges, our study demonstrates the feasibility of nutrient prediction even with
highly limited input data. The introduction of polynomial and ratio features, combined with mRMR selection,
offers a novel approach to improving model performance in this context. This method could be particularly
valuable in regions where comprehensive nutritional labeling is not mandatory.

4. CONCLUSION

This study demonstrated the potential of using machine learning and feature engineering to predict
unreported micronutrients from a limited set of input features. Using the TKPI dataset, we successfully
evaluated the performance of twelve classifiers and found that random forest provided the highest accuracy.
Additionally, the incorporation of polynomial and ratio features, along with mRMR feature selection,
significantly enhanced model performance, increasing the average accuracy from 0.7421 to 0.7595.

Despite these promising results, several limitations must be acknowledged. One primary limitation
is the dataset composition, which consists mainly of single food ingredients. This restricts the generalizability
of the models to more complex food items or commercial packaged foods, which often contain a mix of
ingredients and additives not represented in the TKPI dataset. The absence of commercial packaged foods in
the dataset further constrains the applicability of the findings to everyday consumer products, where the
nutrient composition might differ significantly. Another limitation is the relatively small size of the dataset,
with 1,146 food items. Although the models performed well within this context, larger datasets could provide
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more robust and reliable results. Moreover, the binary classification approach, while simplifying the problem,
might overlook subtle variations in nutrient levels that could be captured in a more granular analysis.

Future work should aim to address these limitations by expanding the dataset to include a more
diverse range of food items, particularly commercial packaged foods. This would enhance the model's
generalizability and relevance to real-world applications. Additionally, further research could explore the
integration of more advanced feature engineering techniques and the inclusion of additional contextual
information, such as food categories, or cooking methods. These information could provide more robust
models, contributing to better-informed dietary choices for consumers. Overall, this study lays a foundation
for future research aimed at improving nutrient prediction models.
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