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 Due to limited space and regulations, food labels often lack information on 

micronutrients, i.e., vitamins and minerals. Accurately predicting missing 

these micronutrient data is essential yet challenging. This study explores the 

feasibility of using machine learning to predict these missing nutrients based 

on a limited reported nutrient (protein and carbs). Using the Tabel Komposisi 

Pangan Indonesia (TKPI) dataset, we evaluated the performance of 12 

diverse classifiers to predict binary classes ("low" or "high") for 13 target 

micronutrients. Random forest emerged as the best performing classifier 

with an average accuracy of 0.7421 across all target nutrients. Additionally, 

we introduced feature engineering techniques by incorporating polynomial 

and ratio features to enhance model performance. Minimum redundancy 

maximum relevance (mRMR) feature selection was then applied to identify 

the most informative features. This approach boosted the average accuracy 

of the random forest classifier to 0.7591. These findings highlight the 

efficacy of feature engineering and selection in enhancing nutrient prediction 

models, demonstrating the potential to improve consumer knowledge about 

unknown nutrients in food. 

Keywords: 

Classification 

Feature engineering 

Machine learning 

Minimum redundancy 

maximum relevance feature 

selection 

Nutrient prediction 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Fatma Indriani 

Department of Computer Science, Faculty of Mathematics and Natural Sciences 

Lambung Mangkurat University  

A. Yani Street Km 36, Banjarbaru, Banjarmasin, Indonesia  

Email: f.indriani@ulm.ac.id 

 

 

1. INTRODUCTION 

Complete nutritional information on food labels is crucial for consumers to make informed dietary 

choices [1], [2]. Food labels provide essential data about the macronutrients (such as carbohydrates, proteins, 

and fats) and micronutrients (such as vitamins and minerals) contained in food products. This information 

helps consumers maintain balanced diets, manage specific health conditions, and adhere to dietary guidelines. 

For example, individuals with conditions such as diabetes, hypertension, or cardiovascular disease rely on 

accurate nutritional labels to manage their intake of sugar, sodium, and fat [3], [4]. In addition, personalized 

food recommender systems can utilize this nutritional information to suggest healthier meal options tailored 

to individual dietary needs [5]. 

However, current food labels often lack comprehensive data, particularly for micronutrients. 

Regulatory guidelines typically mandate the inclusion of macronutrient information and a select few 

micronutrients, leaving many vitamins and minerals unreported. As a case in point, the Indonesian regulation 

"Peraturan Badan Pengawas Obat Dan Makanan Nomor 26 Tahun 2021 Tentang Informasi Nilai Gizi Pada 

https://creativecommons.org/licenses/by-sa/4.0/
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Label Pangan Olahan (2021 Regulation of the National Agency of Drug and Food Control Number 26 on 

Nutritional Information on Processed Food Labels)" [6] specifies that the mandatory nutrients that must be 

reported on food labels are total energy, total fat, saturated fat, protein, total carbohydrates, sugars, and salt 

(sodium). As a result, many food companies only fulfill these minimum requirements. Furthermore, 

companies may also omit many nutrients due to space constraints on packaging and the cost of extensive 

nutritional testing. Consequently, consumers may not have access to crucial information needed for optimal 

nutrition. 

The challenge of incomplete or missing nutrient data on food labels is further compounded when 

only a limited number of input features are available. Previously, Razavi and Xue [7] experimented with 

regression and classification models to predict vitamins and minerals from 14 other nutrients commonly 

available on food labels. However, that study was conducted in the USA, where there are more mandatory 

nutrient requirements on labels. There is a need for a study that is interested in models that can work with 

less input features. 

Existing research efforts aimed at predicting nutrient content have explored various approaches. For 

instance, some methods use computer vision techniques to analyze food images and predict nutrient 

composition based on visual features [8]-[13]. Other approaches involve parsing recipe ingredients and 

quantities to calculate nutritional values [14]-[18]. While these methods can be effective, they require 

specific types of input data that are not always readily available or practical for all food products. 

Given these constraints, our study aims to develop models capable of predicting unreported 

micronutrients using a minimal set of input features: energy, protein, fat, carbohydrate, fiber, and natrium 

(sodium). By focusing on these commonly available nutrients, we aim to provide a practical solution for 

improving customer knowledge about the nutritional content of food. This approach allows consumers to 

gain additional and more useful information regarding the nutrients in their food without the need for 

extensive and costly testing. To achieve this, it is important to compare various machine learning classifiers 

to determine which performs best with the limited input features. Additionally, feature engineering 

techniques and feature selection can enhance the model's predictive capabilities [19]. This study makes two 

key contributions: i) an evaluation of 12 machine learning classifiers for nutrient prediction from limited 

input features, with random forest emerging as the best performer and ii) an improvement in prediction 

accuracy through the addition of ratio and second-degree polynomial features, combined with minimum 

redundancy maximum relevance (mRMR) feature selection. 

In the following sections, we present a comprehensive examination of our approach to nutrient 

prediction. Section 2 outlines the method, including the dataset description, feature engineering techniques, 

and the application of mRMR feature selection. We then detail the experimental setup and classifier 

comparison in section 3. Section 4 presents the results and discussion, providing a comparison of classifier 

performance and the impact of feature engineering on predictive accuracy. Finally, section 5 offers 

conclusions, as well as the implications of our findings and potential avenues for future research. 

 

 

2. METHOD 

2.1.  Dataset 

The data for this study is based on the Tabel Komposisi Pangan Indonesia (TKPI) 2017 [20], a 

comprehensive database that provides detailed nutritional information about various foods commonly 

consumed in Indonesia. It contains 1,146 food items categorized into 14 groups. Each entry in the dataset 

includes the name of the food item, portion size, and amounts of various nutrients per 100 grams or per 

serving.  

For this study, we use 6 features as input variables (energy, protein, fat, carbohydrate, fiber, and 

sodium) and 13 features as target variables (calcium, phosphorus, iron, potassium, copper, zinc, retinol, beta-

carotene, total carotenoids, thiamin, riboflavin, niacin, and vitamin C). Many of the variables have missing 

values and most variables exhibit a highly right-skewed distribution. The statistics of these variables are 

shown in Table 1. 

 

2.2.  Polynomial features 

Polynomial features are a feature engineering technique used to capture non-linear relationships 

between input variables and the target variable. This method creates new features by combining existing 

features through multiplication, allowing the model to learn more complex patterns in the data [21], [22]. 

In general, for a set of n features [x₁, x₂, ..., xₙ], second-degree polynomial features include: 

− The original features: x₁, x₂, ..., xₙ 

− Squared terms: x₁², x₂², ..., xₙ² 

− Interaction terms: x₁x₂, x₁x₃, ..., x₁xₙ, x₂x₃, ..., x₂xₙ, ..., xₙ₋₁xₙ 
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Table 1. Data description of all features in the dataset 

Feature names 
Type of 
features 

Empty Mean 
Standard 
deviation 

Minimum 25% 50% 75% Maximum 

Energy (cal) input 0 198.45 162.39 8 74 142.5 320 902 

Protein (g) input 1 9.67 11.51 0 1.7 4.8 14.5 74.3 

Fat (g) input 1 7.40 13.70 0 0.5 2 8.1 100 
Carbohydrate (g) input 0 23.76 25.00 0 4.7 13 35.575 94 

Fiber (g) input 221 2.75 4.55 0 0.1 1.4 3.4 46.5 

Sodium (mg) input 40 152.41 338.66 0 20 60 153 4608 
Calcium (mg) target 40 166.18 217.29 0 43 97 202.75 1976 

Phosphorus (mg) target 43 3.38 5.78 0 0.8 1.9 3.8 96.4 

Iron (mg) target 282 214.70 713.30 0 7 34.5 164 11998 
Potassium (mg) target 323 341.31 625.95 0 91 227 404.35 11890 

Copper (mg) target 351 11.07 160.13 0 0.1 0.2 0.4 4303.45 

Zinc (mg) target 347 1.42 3.26 0 0.3 0.7 1.5 60 
Retinol (mcg) target 605 246.63 1575.52 0 0 0 39 24242 

Beta-carotene (mcg) target 467 634.94 2083.39 0 0 11 168.5 30200 

Total caretenoids (mcg) target 539 1225.21 2778.66 0 0 87 936 28000 

Thiamin (mg) target 88 0.40 6.15 0 0.05 0.1 0.27 200 

Riboflavin (mg) target 350 0.21 1.08 0 0.03 0.1 0.2 29.47 

Niacin (mg) target 339 1.99 5.63 0 0.2 0.8 2.1 136.5 
Vitamin C (mg) target 289 11.63 26.15 0 0 0 11 230 

 

 

The general formula for creating second-degree polynomial features is: 

 

𝑃₂(𝑥₁, 𝑥₂, . . . , 𝑥ₙ)  =  [𝑥₁, 𝑥₂, . . . , 𝑥ₙ, 𝑥₁², 𝑥₂², . . . , 𝑥ₙ², 𝑥₁𝑥₂, 𝑥₁𝑥₃, . . . , 𝑥₁𝑥ₙ, 𝑥₂𝑥₃, . . . , 𝑥₂𝑥ₙ, . . . , 𝑥ₙ₋₁𝑥ₙ](1) 

 

In this study, we apply second-degree polynomial features to our dataset of nutritional information. With our six 

input features (energy, protein, fat, carbohydrate, fiber, and sodium), we generate the following new features: 

− Squared terms: energy², protein², fat², carbohydrate², fiber², sodium². 

− Interaction terms: energy×protein, energy×fat, energy×carbohydrate, energy×fiber, energy×sodium, 

protein×fat, protein×carbohydrate, protein×fiber, protein×sodium, fat×carbohydrate, fat×fiber, 

fat×sodium, carbohydrate×fiber, carbohydrate×sodium, fiber×sodium. 

These polynomial features expand our original set of 6 features with an additional 21 features  

(6 squared+15 interaction terms). This expansion allows our models to capture more complex relationships in 

the data. For instance, it might reveal that the effect of protein on a certain micronutrient depends on the level 

of fat, which would be captured by the protein×fat interaction term. 

 

2.3.  Ratio features 

Ratio features are calculated to capture the proportional relationships between different variables [21]. 

These features help in identifying and emphasizing the relative importance of one variable with respect to 

another, providing deeper insights into the data. In this study, ratio features were engineered using the six input 

variables: energy, protein, fat, carbohydrate, fiber, and sodium. Ratio features used in this study are shown in 

Table 2. These features aim to enhance the model's ability to predict the target nutrients by providing additional 

context about the relationships between these nutrients. With the addition of ratio features, our dataset was 

expanded into a total of 39 features (6 original features+21 polynomial features+12 ratio features). Note that in 

this study, all new features are calculated using the standardized values of the original features. 

 

2.4.  Minimum redundancy maximum relevance feature selection 

The mRMR algorithm was employed for feature selection in this study. mRMR is an efficient and 

effective method that aims to select a subset of features that are highly relevant to the target variable while 

minimizing redundancy among the selected features [23]. The mRMR algorithm operates on two key 

principles: maximizing the mutual information between selected features and the target variable (maximum 

relevance), and minimizing the mutual information between pairs of selected features (minimum 

redundancy). This approach helps identify features that are both informative and non-redundant [24]. 

The selection process begins by calculating the mutual information between each feature and the 

target variable. The feature with the highest mutual information is selected first. Subsequent features are 

chosen based on a trade-off between their relevance to the target and their redundancy with already selected 

features. This trade-off is quantified using the mutual information quotient (MIQ) criterion: 
 

max [
𝐼(𝑥𝑖;𝑦)

1

𝑆
∑ 𝐼(𝑥𝑖;𝑥𝑗)𝑥𝑗∈𝑆

]  (2) 
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where I(xi; y) represents the mutual information between feature xi and the target y, and I(xi; xj) is the mutual 

information between features xi and xj. S is the set of already selected features. 

By selecting features that provide unique and relevant information, mRMR helps reduce 

dimensionality, mitigate overfitting, and improve model interpretability while maintaining predictive power. 

The Python package pyrmr [25] is used to do the feature selection in this study.  
 

 

Table 2. Generated ratio features in this study 
Ratio features Formula 

Protein to fat ratio 𝑃𝑟𝑜𝑡𝑒𝑖𝑛

𝐹𝑎𝑡
 

  

Carbohydrate to protein ratio 𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒

𝑃𝑟𝑜𝑡𝑒𝑖𝑛
 

  
Carbohydrate to fat ratio 𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒

𝐹𝑎𝑡
 

  

Energy to protein ratio 𝐸𝑛𝑒𝑟𝑔𝑦

𝑃𝑟𝑜𝑡𝑒𝑖𝑛
 

  

Energy to fat ratio 𝐸𝑛𝑒𝑟𝑔𝑦

𝐹𝑎𝑡
 

  

Energy to carbohydrate ratio 𝐸𝑛𝑒𝑟𝑔𝑦

𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒
 

  

Carbohydrate to fiber ratio 𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒

𝐹𝑖𝑏𝑒𝑟
 

  

Energy to fiber ratio 𝐸𝑛𝑒𝑟𝑔𝑦

𝐹𝑖𝑏𝑒𝑟
 

  

Protein to carb and fat ratio 𝑃𝑟𝑜𝑡𝑒𝑖𝑛

𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒 + 𝐹𝑎𝑡
 

  

Protein to total nutrients ratio 𝑃𝑟𝑜𝑡𝑒𝑖𝑛

𝐸𝑛𝑒𝑟𝑔𝑦 + 𝐹𝑎𝑡 + 𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒
 

  

Fat to total nutrients ratio 𝐹𝑎𝑡

𝐸𝑛𝑒𝑟𝑔𝑦 + 𝐹𝑎𝑡 + 𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒
 

  

Carbohydrate to total nutrients ratio 𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒

𝐸𝑛𝑒𝑟𝑔𝑦 + 𝐹𝑎𝑡 + 𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒
 

 

 

2.5.  Experimental setup 

The experimental setup for this study (Figure 1) involved two distinct phases: i) classifier 

comparison and ii) feature engineering combined with feature selection. The first phase aimed to evaluate the 

performance of various classifiers using the original features from the dataset, while the second phase 

focused on enhancing the classifier performance through the introduction of new features and feature 

selection techniques. Initially, the data was prepared individually for each target variable, as a separate 

classification model was developed for each nutrient (i.e., iron, calcium, and phosphorus). The data 

preprocessing involved handling missing values using median imputation for input variables and removing 

instances with missing values in the target variable. Additionally, data standardization was performed using 

z-score normalization [26] to ensure that all features contributed equally to the classification process. Each 

target variable, originally numerical, was transformed into a binary classification problem by applying a 

threshold based on the median value, dividing the data into "high" and "low" categories. 

In the first phase, twelve different classifiers were trained and evaluated to determine the most 

effective model for predicting unreported nutrients. The classifiers included logistic regression, decision tree, 

random forest, gradient boosting, linear support vector machines (SVM), radial basis function SVM (RBF 

SVM), K-nearest neighbors, Naive Bayes, AdaBoost, extra trees, XGBoost, and LightGBM. Hyperparameter 

tuning was performed for each classifier using a grid search on a subset of the data. This ensured that the 

optimal settings for each model were identified before evaluating their performance on the entire dataset. The 

classifiers' performance was assessed using accuracy as the main metric, with the process repeated five times 

using different seeds for train-test splits. The average accuracy from these iterations was reported as the final 

performance measure for each target-classifier pair. The random forest classifier emerged as the best 

performer with the highest average accuracy across all target nutrients.  
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Figure 1. Flowchart of the research method 
 
 

The second phase of the experiments involved feature engineering and feature selection, focusing 

solely on the random forest classifier identified as the best model in the first phase. Second degree 

polynomial features were created by squaring each original feature, while multiplying pairs of original 

features. Additionally, various ratio features were derived, such as the protein-to-fat ratio, carbohydrate-to-

protein ratio, and energy-to-fiber ratio (Table 2). These new features aimed to capture more complex 

relationships between the original input variables, potentially improving the model's ability to predict the 

target nutrients. 

Given the high dimensionality resulting from the feature engineering process, not all newly 

generated features were beneficial for the classification tasks. Therefore, a feature selection step was 

necessary to identify the most informative features while discarding redundant or irrelevant ones. The 

mRMR technique was employed for this purpose. mRMR is computationally efficient, making it suitable for 

handling the increased number of features generated during the feature engineering process. 

After selecting the most informative features using mRMR, the random forest classifier was 

retrained and subjected to hyperparameter tuning, similar to the first phase. This ensured that the classifier 

was optimized for the new feature set. The performance of the classifier with the engineered and selected 

features was then evaluated using the same methodology as in the first phase, with accuracy averaged over 

five train-test splits with different seeds. 

 

 

3. RESULTS AND DISCUSSION 

In this section, we present the outcomes of our experiments, focusing on the performance of various 

classifiers and the impact of feature engineering and selection techniques. As mentioned in the previous 

section, we conducted in two phases of experiments: i) the first phase involved evaluating twelve different 

machine learning classifiers using the original features and ii) the second phase focused on improving the 

best-performing classifier, random forest, by incorporating polynomial and ratio features followed by mRMR 

feature selection. 
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3.1.  Performance of 12 classifiers 

The results of our comparison across 12 different classifiers reveal significant insights into their 

performance for predicting micronutrient content in foods. Notably, the random forest algorithm emerged as the 

top performer, achieving the highest average accuracy of 0.7420 across all micronutrients (Figure 2). This 

performance was closely followed by other ensemble methods, with extra trees and LightGBM securing the 

second and third positions with average accuracies of 0.7393 and 0.7372, respectively. In contrast, naive Bayes 

demonstrated the lowest average accuracy of 0.6402, significantly underperforming compared to the ensemble 

methods. This significant difference in performance, with the best classifier outperforming the worst by 

approximately 10 percentage points, underscores the importance of algorithm selection in this domain. 
 

 

 
 

Figure 2. Average accuracy by classifier 
 

 

Ensemble methods, namely random forest, extra trees, LightGBM, XGBoost, AdaBoost, and 

gradient boosting, generally perform better in this study than single classifiers. Extra trees, random forest, 

and LightGBM perform consistently across most micronutrients (Figure 3). This suggests that their ability to 

combine multiple weak learners into a strong predictor is well-suited to the complex relationships inherent in 

nutritional data. The consistent performance further reinforces the robustness of these ensemble approaches 

for this specific prediction task. 
 

 

 
 

Figure 3. Accuracy of individual nutrients from different classifiers  
 
 

Our results also highlight considerable variation in prediction accuracy across different 

micronutrients. For instance, vitamin C and phosphorus generally exhibited higher prediction accuracies 

across all classifiers, while Thiamin and Niacin proved more challenging to predict accurately. This variation 

suggests that certain micronutrients may have stronger or more linear relationships with the input features, 

making them easier to predict, while others may have more complex or weaker relationships, leading to 

greater challenges for prediction. 
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3.2.  Performance of feature engineering and minimum redundancy maximum relevance selection 

The second phase of our experiment is focusing on enhancing the random forest classifier through 

feature engineering and mRMR selection. The combined approach led to a notable increase in average 

accuracy from 0.7421 to 0.7591, representing an improvement of 1.7 percentage points (Figure 4). This 

enhancement is notable given that feature engineering alone, without mRMR selection, actually resulted in a 

slight decrease in performance to 0.7372. 
 

 

 
 

Figure 4. Comparison of average accuracy with and without FE+mRMR 
 

 

Upon applying feature engineering, modest improvements were observed in the prediction accuracy 

of several micronutrients, including beta carotene, potassium, calcium, and zinc (Figure 5). However, the 

impact was not uniformly positive, with slight decreases noted for iron, phosphorus, and vitamin C. This 

suggests that feature engineering alone may not consistently enhance predictive performance across all 

micronutrients. 
 

 

 
 

Figure 5. Comparison of average accuracy with and without FE+mRMR across micronutrients 
 

 

The subsequent application of mRMR feature selection in conjunction with feature engineering 

yielded more pronounced improvements. Notably, phosphorus, potassium, and total carotenoids exhibited 

substantial gains in prediction accuracy. This indicates that the mRMR algorithm effectively identified the 

most relevant features from the expanded feature set, mitigating potential noise introduced by feature 

engineering. 

Interestingly, some micronutrients, such as beta carotene and copper, showed no change or slight 

decreases in accuracy following the mRMR process. This underscores the complex nature of nutrient 

interactions and the challenges in developing a universally effective prediction model. Vitamin C consistently 

maintained the highest prediction accuracy across all methods, suggesting a robust relationship between this 

nutrient and the input features. 

 

3.3.  Analysis of selected features  

The total number of features available for selection was 39, yet most nutrients required fewer than 

this maximum for optimal prediction (Table 3). This indicates efficient feature selection tailored to each 

nutrient's needs. Polynomial features, with up to 20 selected for nutrients like retinol, significantly contribute 

to capturing complex, nonlinear relationships.  
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Table 3. Types of features selected based on nutrient target 

Nutrient target 
Features selected 

Total Original features Polynomial features Ratio features 

Calcium 22 2 11 9 

Phosphorus 7 0 3 4 

Iron 27 3 15 9 
Potanssium 9 0 5 4 

Copper 33 6 19 8 

Zinc 22 3 11 8 
Retinol 36 5 20 11 

Beta Carotene 14 2 5 7 

Total Carotenoids 26 5 12 9 
Thiamine 8 1 3 4 

Riboflavin 11 1 5 5 

Niacin 31 4 17 10 
Vitamin C 10 1 5 4 

 

 

Ratio and polynomial features, which capture non-linear relationships and interactions, are 

consistently chosen over original features across most nutrients. Notably, the number of selected features 

varies considerably across nutrients, indicating differing levels of complexity in nutrient prediction. Some 

nutrients require more features, suggesting more complex relationships with food components, while others 

can be predicted with fewer features. For instance, retinol and copper required 36 and 33 features 

respectively, suggesting intricate relationships within these nutrients that demand a broader array of features 

to model accurately. On the other hand, nutrients like phosphorus and thiamin, which needed only 7 and 8 

features respectively, indicate simpler predictive models. 

The analysis of the most and least selected features reveals important insights into the feature 

selection process and its impact on nutrient prediction models. The top 10 most selected features include a 

balanced mix of polynomial and ratio features, such as "Energy_to_Carb_Ratio" and "FIBER_Squared," 

highlighting the importance of capturing non-linear relationships and nutrient proportions (Table 4). Protein-

related features, like "Proten_x_Fiber" and "Protein_to_Fat_Ratio," are particularly prominent, underscoring 

the critical role that protein interactions play in accurate nutrient prediction. This balanced contribution 

suggests that both polynomial and ratio features significantly enhance the model's ability to predict complex 

nutrient relationships, improving overall accuracy. 
 
 

Table 4. Ten most selected features 
Feature name Feature type Number of times selected 

Energy_to_Carb_Ratio ratio 11 

Protein_to_Fat_Ratio ratio 11 
FIBER_Squared polynomial 11 

Carb_to_Total_Nutrients_Ratio ratio 10 

PROTEIN_x_FIBER polynomial 10 
Carb_to_Protein_Ratio ratio 10 

Protein_to_Carb_to_Fat_Ratio ratio 10 
ENERGY original 9 

SODIUM_Squared polynomial 9 

PROTEIN_Squared polynomial 9 

 
 

On the other hand, the least selected features (Table 5), including original features like "FAT" and 

"FIBER," indicate that engineered features generally provide more valuable information than original data 

alone. The underutilization of certain polynomial features, such as "CARB_Squared" and 

"ENERGY_Squared," suggests that not all quadratic transformations contribute equally to model 

performance. Additionally, the limited selection of some ratio features, like "Energy_to_Fiber_Ratio," 

implies that specific nutrient ratios may be less relevant in this dataset. These findings emphasize the 

importance of context-specific feature selection, where certain interactions are less influential across different 

nutrient predictions, highlighting the need for tailored approaches to feature engineering in nutritional 

analysis. 

 

3.4.  Comparison with related work 

Our study shares similarities with Razavi and Xue work [7] in predicting unreported nutrients using 

machine learning, but offers several unique contributions. While both studies aim to enhance nutritional 

information availability, our approach is tailored to more restrictive labeling requirements, using only six 
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input features based on Indonesia's mandatory labeling. This makes our model more applicable in contexts 

with limited nutritional data. 

 

 

Table 5. Ten least selected features 
Feature name Feature type Number of times selected 

FAT_x_CARB polynomial 5 

ENERGY_x_FAT polynomial 4 
FAT_Squared polynomial 4 

FIBER original 4 

Energy_to_Protein_Ratio ratio 3 
Energy_to_Fiber_Ratio ratio 3 

CARB_x_FIBER polynomial 3 

ENERGY_Squared polynomial 2 
CARB_Squared polynomial 2 

FAT original 1 

 

 

We evaluated a broader range of classifiers (12 vs. 7), providing a more comprehensive comparison 

of machine learning approaches for this task. Our best-performing model, random forest, achieved an average 

accuracy of 0.7591 across all target nutrients after feature engineering and mRMR selection. This 

performance, while slightly lower than Razavi and Xue [7] reported accuracies (>0.80), is notable given our 

fewer input features and binary classification approach (Table 6). 
 

 

Table 6. Comparison with related research 
Aspect This research Razavi and Xue [7] 

Dataset TKPI 2017 (Indonesian) FNDDS (US) 
Number of input/independent features 6 14 

Number of instances (food items) 1146 5624 

Target variables 13 micronutrients 15 micronutrients 
Classification approach Binary (high/low) Ternary (low/medium/high) 

Number of classifiers evaluated 12 7 

Best performing classifier Random forest GBM and random forest 
Feature engineering Polynomial and ratio features None 

Feature selection mRMR None 

Average accuracy (best model) 0.76 Not mentioned 
Highest accuracy for single nutrient 0.86 (phosphorus), 0.85 (vitamin C), 0.84 (retinol) 0.94 (vitamin B12, phosphorus) 

Lowest accuracy for single nutrient 0.70 (potassium) 0.81 (vitamin E) 

 

 

The performance difference can be attributed to several factors. Firstly, our use of fewer input 

features naturally constrains the available information for prediction. Secondly, our binary classification 

(high/low) versus their three-class approach (high/medium/low) presents a different challenge, potentially 

affecting accuracy metrics. Lastly, differences in datasets (TKPI vs FNDDS) and target nutrients may 

contribute to performance variations. 

Despite these challenges, our study demonstrates the feasibility of nutrient prediction even with 

highly limited input data. The introduction of polynomial and ratio features, combined with mRMR selection, 

offers a novel approach to improving model performance in this context. This method could be particularly 

valuable in regions where comprehensive nutritional labeling is not mandatory. 

 

 

4. CONCLUSION 

This study demonstrated the potential of using machine learning and feature engineering to predict 

unreported micronutrients from a limited set of input features. Using the TKPI dataset, we successfully 

evaluated the performance of twelve classifiers and found that random forest provided the highest accuracy. 

Additionally, the incorporation of polynomial and ratio features, along with mRMR feature selection, 

significantly enhanced model performance, increasing the average accuracy from 0.7421 to 0.7595. 

Despite these promising results, several limitations must be acknowledged. One primary limitation 

is the dataset composition, which consists mainly of single food ingredients. This restricts the generalizability 

of the models to more complex food items or commercial packaged foods, which often contain a mix of 

ingredients and additives not represented in the TKPI dataset. The absence of commercial packaged foods in 

the dataset further constrains the applicability of the findings to everyday consumer products, where the 

nutrient composition might differ significantly. Another limitation is the relatively small size of the dataset, 

with 1,146 food items. Although the models performed well within this context, larger datasets could provide 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 1407-1417 

1416 

more robust and reliable results. Moreover, the binary classification approach, while simplifying the problem, 

might overlook subtle variations in nutrient levels that could be captured in a more granular analysis. 

Future work should aim to address these limitations by expanding the dataset to include a more 

diverse range of food items, particularly commercial packaged foods. This would enhance the model's 

generalizability and relevance to real-world applications. Additionally, further research could explore the 

integration of more advanced feature engineering techniques and the inclusion of additional contextual 

information, such as food categories, or cooking methods. These information could provide more robust 

models, contributing to better-informed dietary choices for consumers. Overall, this study lays a foundation 

for future research aimed at improving nutrient prediction models. 
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