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The capacitated vehicle routing problem (CVRP), where vehicle capacity
constraints limit the load carried per route for multiple vehicles, is addressed
using an optimized genetic algorithm (GA) framework. This work focuses
on finding the best configuration of GA by systematically evaluating 12
distinct GA variants, differing in adaptive mutation rates and route-splitting
strategies. The framework integrates adaptive mutation rates and novel
route-splitting approaches—greedy, dynamic programming (DP), and
heuristic—to enhance computational efficiency and solution quality.
Experiments on six CVRP instances of varying complexity, encompassing
differences in problem size, vehicle capacity, and geographical distribution,
demonstrate the heuristic approach’s effectiveness. It achieves solutions
within 2%-5% of the optimal cost of DP while being 34 times faster.
Adaptive techniques reduce costs by up to 20% compared to standard GAs
and heuristics. The framework’s scalability is evident in large-scale

instances such as the 200-customer case, where the heuristic method
balances cost (414.17) and computation time (0.003 seconds). The
developed software is openly available at GitHub, providing a robust tool for
addressing practical logistics challenges.
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1. INTRODUCTION

Vehicle routing problem (VRP) is a fundamental problem in logistics and supply chain
management, where the objective is to determine the most efficient routes for a fleet of vehicles to deliver
goods to a set of customers from a central depot [1], [2]. This problem has numerous industrial applications
and has been widely studied since its introduction by Dantzig and Ramser [3]. Among the various forms of
VRP, the capacitated vehicle routing problem (CVRP) is particularly significant due to the additional
constraint of vehicle capacity, which must not be exceeded. The CVRP involves determining a set of routes
for vehicles, each with a limited carrying capacity, to service a set of customers with known demands at
minimal cost [4], [5].

The CVRP is formally defined on an undirected graph G = (V, A) where V represents the set of
vertices (the depot and customers), and A represents the arcs between these vertices. Each arc has an
associated cost, typically representing the distance or time required to travel between vertices. The objective
is to minimize the total cost while ensuring that each customer's demand is met and that no vehicle exceeds
its capacity [6], [7]- Accorsi and Vigo [8] introduced a fast and scalable heuristic for the solution of large-
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scale CVRPs, focusing on computational time based on the iterated local search paradigm and integrating an
effective execution of established acceleration methods for local search engines with many novel algorithmic
elements, whose functions and effects are thoroughly examined. Ma et al. [9] studied a learning-to-search
solver for routing problems, focusing on both optimal solutions and computational efficiency. Overall, the
CVRP has been a focal point of research due to its combinatorial complexity and practical importance.
Efficient solutions to the CVRP can lead to significant cost savings and operational efficiencies across
various industries, including transportation, logistics, and distribution.

The CVRP presents a critical challenge in optimizing routes for multiple vehicles with limited
carrying capacity. Despite extensive research, existing approaches, including genetic algorithms (GAs) and
hybrid metaheuristics, often fail to balance solution quality and computational efficiency for large-scale
instances, suffering from premature convergence, limited solution diversity, and scalability challenges
[9], [10]. These limitations hinder practical applicability in complex logistics scenarios, necessitating a novel
approach that enhances diversity, scalability, and efficiency. Unlike prior studies, which often emphasize
either cost optimization [6] or computational speed [8], this study addresses these gaps by proposing an
advanced GA framework that integrates adaptive mutation rates and innovative route-splitting strategies.
This approach is designed to achieve a balanced trade-off between cost minimization and computational
speed while improving convergence and scalability for large-scale CVRP instances. The objectives are:

a. To design an efficient GA tailored for the CVRP, incorporating optimized crossover and mutation
strategies.

b. To evaluate the performance of the proposed algorithm against selected instances and compare it with
existing approaches.

¢. To investigate the impact of route-splitting techniques and adaptive mutation rates on the efficiency and
effectiveness of the GA.

This study contributes to the CVRP literature by optimizing an existing GA framework through the
systematic evaluation of 12 configurations that integrate adaptive mutation rates and three innovative route-
splitting strategies—greedy, dynamic programming (DP), and heuristic. The proposed approach achieves up
to 20% cost reduction and improved scalability over traditional GAs [11], [12], while addressing premature
convergence and solution diversity limitations observed in prior work [10]. It also offers a balanced trade-off
between cost and computational efficiency for large-scale instances compared to existing heuristics [8], [9].

The remainder of the paper is structured as follows. Section 2 reviews related work, positioning the
proposed framework within existing CVRP literature. Section 3 presents the mathematical formulation of the
CVRP, defining the problem’s constraints and objectives. Section 4 details the methodology, covering the
dataset, chromosome encoding, route-splitting strategies, population initialization, crossover, mutation, and
experimental setup. Section 5 presents the results, comparing route-splitting strategies, analyzing the impact
of adaptive techniques, and evaluating solution performance across CVRP instances. Section 6 discusses the
findings, their implications, and limitations. Section 7 concludes with a summary of contributions and
directions for future research.

2. RELATED WORKS

Over the decades, numerous approaches have been developed to solve the CVRP, ranging from
exact algorithms to heuristics and metaheuristics. Among these, GAs have been widely applied to solve the
VRP and its variants [13], including the CVRP. GAs is inspired by the process of natural selection and
genetics, by using mechanisms such as selection, crossover, and mutation to evolve solutions over successive
generations. Numerous studies have demonstrated the effectiveness of GAs in producing high-quality
solutions for CVRP. They have been widely applied to the VRP and its variants. For instance,
Baker and Ayechew [11] demonstrated the application of a GA to the basic VRP, highlighting its
competitiveness in terms of computing time and solution quality. Their work set the stage for further
enhancements and hybrid approaches.

Hybrid metaheuristics have been particularly effective in improving the performance of GAs for
solving the CVRP. For example, Nazif and Lee [12] introduced an optimized crossover GA that combines the
GA with an optimized crossover mechanism designed by a complete undirected bipartite graph. This
approach showed competitive results compared to other heuristics, demonstrating the potential of hybrid
strategies in enhancing solution quality and computational efficiency.

Another significant contribution comes from the work on hybrid metaheuristics that integrate
various optimization techniques. A study by Berger and Mohamed [14] proposed a hybrid GA for the CVRP,
combining elements of local search and GAs to improve performance. Similarly, a chicken swarm
optimization with GA and a hybrid chicken swarm optimization with a tabu search algorithm were
introduced by Niazy et al. [15], [16] for solving the CVRP. This approach integrates the exploration
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capabilities of chicken swarm optimization with the intensification mechanisms of tabu search, yielding
superior results in benchmark tests. They effectively reduced delivery costs while satisfying capacity
constraints, highlighting the benefits of combining metaheuristic techniques. Additionally, Cuk et al. [17]
proposed a hybrid GA and artificial bee colony method to train feedforward multi-layer perceptron,
addressing premature convergence, which offers insights for enhancing GA exploration in optimization
problems. Similarly, Zivkovic et al. [18] developed a hybrid GA and machine learning approach to optimize
neuro-fuzzy systems for COVID-19 case prediction, demonstrating the versatility of hybrid GAs in time-
series optimization.

Recent advancements also include the integration of fuzzy clustering methods with GAs. Zhu [10]
proposed an improved GA based on fuzzy C-means clustering to solve the CVRP. This approach decomposes
the large-scale VRP into smaller subproblems, improving the efficiency and robustness of the algorithm.
Similarly, Halim et al. [19] introduced a GA-based feature selection method for intrusion detection systems,
achieving high classification accuracy by optimizing feature subsets, which highlights the potential of GAs in
high-dimensional optimization tasks. Additionally, the use of optimized crossover and mutation strategies has
been shown to enhance the performance of GAs, as demonstrated in the study by Nazif and Lee [12], which
highlighted the importance of maintaining genetic diversity and avoiding premature convergence.
Wahab et al. [20] proposed an enhanced GA for mobile robot path planning, incorporating novel population
initialization and combined genetic operators to improve path quality and convergence, offering relevant
techniques for CVRP’s initialization and operator design.

Furthermore, ant colony optimization has been effectively applied to the VRP and its variants
[21], [22], including the CVRP. Ahmed et al. [23] proposed an enhanced ant colony system algorithm that
yielded competitive results compared to other heuristics. Similarly, Hendrawan et al. [24] addressed the
complexity of generating optimal multi-day travel itineraries by framing the problem as a CVRP with a Time
Window. Using a hybrid ant colony system and brainstorm optimization (ACS-BSO) algorithm, their study
demonstrated the hybrid ACS-BSO algorithm’s superiority over conventional in optimizing various travel
attributes.

As aforementioned, the CVRP represents a critical challenge in logistics, where optimizing routes
for vehicles with limited carrying capacity is paramount. Despite extensive research since its introduction [3],
existing approaches often face trade-offs between solution quality and computational efficiency for large
scales [9]. While many studies have leveraged GAs and hybrid metaheuristic methods to improve CVRP
solutions, these approaches frequently encounter limitations, such as premature convergence, lack of solution
diversity, or inefficiency in scaling to larger instances [10]. We aim to address these gaps by introducing a
novel GA framework that integrates adaptive mutation rates and advanced route-splitting techniques. By
focusing on partial randomness during initialization and heuristic methods for route splitting, we seek to
enhance solution diversity and convergence rates. Unlike prior studies, which often emphasize either cost
optimization [6] or computational speed [8], this research aims to achieve a balanced trade-off suitable for
large-scale CVRP scenarios. Furthermore, the investigation explores the practical implications of adaptive
strategies and hybrid initialization on solution quality, highlighting novel contributions to the field of
combinatorial optimization by focusing on the impact of chromosome representation and adaptive mutation
rate on the performance of GAs in solving the CVRP, building on the foundations laid by previous studies.
By addressing these objectives, we aim to contribute to the fields of combinatorial optimization and logistics
management, providing a robust and efficient solution for the CVRP. The next section provides a detailed
mathematical formulation of the CVRP problem.

3. MATHEMATICAL FORMULATION OF THE CVRP

The CVRP is mathematically formulated to define the optimization problem addressed by the
proposed GA. This formulation models the CVRP on a graph, specifying constraints and objectives to ensure
efficient route optimization. The following sections describe the graph structure, parameters, decision
variables, objective function, and constraints, with detailed explanations of each component’s role and the
meaning of all variables involved, maintaining an objective perspective.

3.1. Graph structure and parameters

The CVRP is defined on an undirected graph G=(V, A), where V denotes the set of nodes and A
denotes the set of arcs. The node set V={0, 1, 2,..., n} comprises the depot, labeled as node 0, and n
customers, labeled from 1 to n, where n represents the total number of customers. Each node i €V represents
either the depot (i=0) or a customer (i=1, 2,..., n), and each node j €V similarly represents another node in
the graph. The arcs in A represent possible routes between pairs of nodes, including between the depot and
customers, with each arc (i, j) € A associated with a cost cjj, typically representing the distance or travel time
between nodes i and j. The set K represents the fleet of identical vehicles available to serve customers, each
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with a fixed capacity Q, which limits the total demand a vehicle can carry. Each customer i €{1, 2,..., n} has
a demand ¢, indicating the quantity of goods to be delivered. These parameters establish the problem’s
structure, ensuring that routes account for travel costs, vehicle availability, capacity limits, and customer
demands.

3.2. Decision variables

The formulation employs two primary decision variables to represent routing and load decisions.
The binary variable xij indicates whether vehicle k €K travels directly from node i to node j along arc (i, j) €
A: it equals 1 if the arc is used by vehicle k, and 0 otherwise. This variable determines the structure of the
routes assigned to each vehicle. The variable yix represents the cumulative load carried by vehicle k after
visiting node i, tracking the total demand serviced along its route to ensure compliance with the capacity
constraint Q. These variables facilitate the optimization of customer assignments to vehicle routes and the
management of vehicle loads.

3.3. Objective function
The objective of the CVRP is to minimize the total cost of all vehicle routes, expressed as (1):

minimize Yxex X.(i,j)ea CijXijk (1)

This function computes the sum of the costs cij for all arcs (i, j) traversed by any vehicle k, where xjx=1.
Minimizing this sum identifies the most cost-efficient set of routes that satisfies all constraints, aligning with
practical logistics goals such as reducing fuel consumption or travel time.

3.4. Constraints

The CVRP includes several constraints to ensure feasible and practical solutions:
a. Customer visit constraint
Each customer must be visited exactly once by one vehicle, enforced by:

Ykek Ljev,j=i Xijk = 1, Vi € {1,2,...,n} @)

This constraint ensures that for each customer i (from 1 to n), exactly one vehicle k travels to it from some
node j, guaranteeing that every customer’s demand is met without duplication.
b. Load constraint and sub-tour elimination

To manage vehicle loads and prevent sub-tours (cycles excluding the depot), the following
constraint is applied:

Vi = Ve + 45— QL —xijx), VK€K, (i,)) EA i #j,j#0 ©)

This ensures that if vehicle k travels from node i to node j (xix=1), the load after visiting j (yjx) is at least the
load after visiting i (yi) plus the demand at j (q;). The term Q(1-xiik) deactivates the constraint when the arc is
not used (xix=0), and it prevents sub-tours by enforcing consistent load accumulation tied to the depot.
c. Depot load constraint

At the depot (node 0), each vehicle starts with no load:

Yok = 0, vk € K (4)

This initializes the load of each vehicle k to zero upon departing from the depot, ensuring accurate tracking of
load accumulation as customers are visited.

d. Vehicle capacity constraint

The load carried by each vehicle must not exceed its capacity and must remain non-negative:

0<yx<QVkEK,i€V (5)

This ensures that the cumulative load yix for vehicle k at any node i (including the depot and customers)
respects the vehicle’s capacity Q, preventing overloading while allowing feasible delivery schedules.

e. Binary decision variable constraint

The routing decisions are binary:
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xijx €{0,1}, VK €K, (i,j) €A ©)

This mathematical formulation establishes a rigorous framework for the CVRP, capturing the essential
elements of route optimization under capacity constraints. The parameters define the problem’s structure, the
decision variables model routing and load decisions, the objective function targets cost minimization, and the
constraints ensure feasible solutions. The proposed GA leverages this formulation to generate efficient
routes, addressing the combinatorial complexity of the CVRP while optimizing for both solution quality and
computational efficiency.

4. METHOD

The CVRP is addressed through a GA framework comprising data preparation, chromosome
encoding, population initialization, crossover, mutation, and route-splitting strategies. This section details the
methodology, starting with the dataset of CVRP instances, followed by chromosome encoding and three
route-splitting approaches (greedy, DP, and heuristic), population initialization with partial randomness and
heuristics, the alternating edges crossover (AEX) operator, adaptive mutation rate control, and the
experimental setup, with implementation details available in a GitHub repository [25].

4.1. Dataset

In the context of the CVRP, an instance refers to a specific problem configuration defined by a set
of customers, their demands, vehicle capacities, and geographical locations, representing a unique test case to
evaluate algorithm performance. For this study, six instances of the CVRP were generated to evaluate the
proposed GA thoroughly. These instances were selected to encompass a range of problem sizes, vehicle
capacities, and geographical distributions. Table 1 summarizes the characteristics of these CVRP instances.

Table 1. CVRP instances
CVRP instance  Number of customers (n)  Number of vehicles (K)  Vehicle capacity (Q)  Total demand g,

CVRP20 20 1 100 87

CVRP50 50 3 100 258
CVRP75 75 4 100 357
CVRP100 100 5 100 467
CVRP150 150 8 100 752
CVRP200 200 11 100 1067

Figure 1 plots the instances to visually represent their distribution and diversity across problem
dimensions, such as the number of customers, number of vehicles, vehicle capacity, and total demand. This
graphical representation further underscores the comprehensive nature of our evaluation approach.

4.2. Chromosome encoding and route splitting approaches

For a CVRP problem with n customers, any permutation of {1,2,..,n} will represent a
chromosome. The permutation representation approach is one of the most common approaches, see e.g.,
[12], [26]-[29]. However, one still needs to split the given chromosome into routes with different vehicles to
represent a solution. This means inserting 2K zeros into the chromosome sequence to represent each of the K
vehicles leaving and returning to the depot. Mathematically, if we denote a chromosome as;

c=(c1,Cy s Cn)
where c; represents customer i, then adding 2K zeros can be expressed as:
¢ =1(0,¢q,C3 ) €y 0, Cego1y v s €, 0)
where each zero indicates a depot visit. The challenge lies in determining where to place these zeros

optimally to form valid routes while adhering to vehicle capacity constraints. In this paper, we experiment
with three different approaches for route splitting.
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4.2.1. Greedy approach

The idea in the greedy approach is to partition a chromosome representing a solution to the CVRP
into feasible routes. Starting with an initial route that begins and ends at the depot (customer 0), the function
iterates through each customer in the chromosome, attempting to add them to the current route without
exceeding the vehicle’s capacity constraint. If adding a customer surpasses this capacity, the current route is
finalized by appending the depot and stored in the routes list, and a new route begins with the depot and the
current customer. This process continues until all customers have been assigned to routes, resulting in a list
of routes where each route starts and ends at the depot and respects the vehicle capacity limitations. The
pseudocode for this approach is shown in Algorithm 1.

Algorithm 1. Greedy route splitting for CVRP
Input:
individual < a permutation of customers (chromosome)
demand —~ a list of customer demands
vehicle capacity « the capacity of each vehicle

Output:
routes « a list of routes where each route starts and ends at the depot

1. Initialize:
routes < an empty list
route « [0] // Start route with depot
load « 0 // Current load on vehicle

2. For each customer in individual do:

a. If load + demand[customer] > vehicle capacity then:
i. Append route + [0] to routes // Finalize current route
ii. Start a new route: route — [0, customer]
iii. Reset load: load < demand[customer]

b. Else:
i. Append customer to route
ii. Update load: load « load + demand[customer]

3. After all customers are processed:
Append route + [0] to routes // Finalize the last route

4. Return routes

4.2.2. Dynamic programming approach
The algorithm given in Algorithm 2 employs a DP approach to efficiently partition a chromosome
(representing a solution to the CVRP) into optimal routes that adhere to vehicle capacity constraints.

Algorithm 2. DP-based route splitting for CVRP
Input:
individual « a permutation of customers (chromosome)
cost matrix « a matrix of costs between customers
demand « a list of customer demands
vehicle capacity « the capacity of each vehicle

Output:
final routes ~ a list of routes where each route starts and ends at the depot
best cost « the minimum cost of the best solution found

1. Initialize:
n « length of individual // Number of customers
dp « array of size n+l with values set to infinity
dp[0] « O // Starting point, no cost for 0 customers
split point « array of size n+l with values set to -1

2. For i=1 to n do:
a. Initialize load ~ 0 // Current load on the vehicle
b. For j=i down to 1 do:
i. Add demand[individual[j-1]] to load
ii. If load > vehicle capacity then break // Exceeds capacity
iii. Calculate cost as:
cost=dp[j-1] + cost matrix[0] [individual[j-1]] +
sum(cost matrix[individual[k]][individual[k+1]] for k in
range (j-1, i-1)) +
cost matrix[individual[i-1]][0]
iv. If cost < dpl[i] then:
Update dp[i] < cost
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Update split point[i] ~ j-1

3. Backtrack to determine the routes:
i «n // Start from the last customer
routes — empty list

While 1 > 0 do:
j « split point[i]
Append [0] + individual[j:i] + [0] to routes
i«

4. Reverse the routes list to get the correct order

5. Return final routes, dp[n]

It initializes an array dp to store minimum costs for subproblems and iteratively evaluates potential
partitions of the chromosome based on vehicle load capacities. The algorithm efficiently determines the
optimal route configuration using a nested loop structure by computing cumulative costs for routes starting
from the depot, visiting customers, and returning. After computing the minimal costs, it uses backtracking
through split points to systematically construct each route, ensuring all routes begin and end at the depot
while respecting capacity limits. This approach ensures not only the identification of the optimal partitioning
of the chromosome into routes but also provides the total cost of the solution, making it well-suited for
solving CVRP instances where minimizing travel costs and adhering to vehicle capacities are critical
objectives.

4.2.3. Heuristic approach

DP runs slowly while finding the route splitting with minimal cost. As a third approach, we
implement a GA to find near-optimal route splitting. It begins by initializing an initial solution of routes
based on the given individual, where each route respects the vehicle capacity constraints. The function
iteratively refines these routes over 50 iterations, employing a mutation operation with a 10% probability of
exploring new configurations. During each iteration, it evaluates the cost of mutated routes using a cost
matrix that defines travel expenses between customers and the depot. By continually updating to lower-cost
solutions found through mutation, the function aims to converge on an optimal set of routes that start and end
at the depot while minimizing total travel costs. This approach suits CVRP scenarios where efficient vehicle
routing and cost reduction are crucial objectives. The pseudocode for this approach is shown in Algorithm 3.

Algorithm 3. GA-inspired route splitting for CVRP
Input:
individual < a permutation of customers (chromosome)
cost matrix < a matrix of costs between customers
demand « a list of customer demands
vehicle capacity « the capacity of each vehicle

Output:
final routes « a list of routes where each route starts and ends at the depot

best cost « the cost of the best solution found

1. Initialize:

n « number of customers (len(demand) - 1)

chromosome « individual[:] // Copy of the chromosome

best routes « initial solution(chromosome) // Generate an initial solution

best cost « evaluate solution(best routes, cost matrix) // Evaluate initial solution

2. Define initial_solution(chromosome) :
routes ~ empty list
route — empty list
load « 0 // Current load on vehicle

For each gene in chromosome do:
If load + demand[gene] <= vehicle capacity:
Append gene to route
Update load: load « load + demand[gene]
Else:
Append route to routes
Start new route with gene
Reset load: load « demand[gene]

If route is not empty:
Append route to routes
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Return routes

3. Define mutate (routes):
mutated routes « copy of routes

If random chance < 0.1 (10% chance):
idxl « random index from 0 to len(mutated routes)-1
idx2 « random index from 0 to len(mutated routes)-1

If idxl # idx2 and both routes have more than one customer:
genel « random index in mutated routes[idx1]
gene2 « random index in mutated routes[idx2]
Swap mutated routes[idxl][genel] and mutated routes[idx2] [gene2]

Return mutated routes

4. For each iteration (e.g., 50 iterations):
mutated routes « mutate (best routes)
mutated cost « evaluate solution(mutated routes, cost matrix)

If mutated cost < best cost:
Update best routes « mutated routes
Update best cost « mutated cost

5. Finalize the routes by adding depot at the beginning and end of each route:
final routes « [[0] + route + [0] for each route in best routes]

6. Return final routes, best_cost

4.3. Partial randomness with heuristics in population initialization

To investigate the efficacy of partial randomness with heuristics in chromosome encoding for the
CVRP, this study systematically compares and evaluates different initialization strategies within a GA
framework. The research focuses on integrating randomness and heuristic methods, specifically the nearest
neighbour and savings algorithms, to generate the initial population of chromosomes. A subset of the
population is randomly generated to promote diversity, while another subset utilizes heuristic methods to
leverage local optimization based on distance savings and nearest customer selection. This hybrid approach is
designed to capitalize on the strengths of both randomness and structured heuristic algorithms, aiming to
enhance solution quality, increase solution diversity, and expedite convergence towards optimal or near-
optimal solutions. The experiments are conducted using standard CVRP instances, with comprehensive
performance metrics employed to assess the impact on solution fitness, diversity, and convergence speed
across multiple experimental trials. Statistical analysis is employed to validate findings and draw meaningful
conclusions regarding the effectiveness of the hybrid initialization strategy in improving GA performance for
CVRP.

4.4. Alternating edges crossover

Eight different crossover approaches were introduced in [13] and compared for their performance.
This study adopts the AEX operator due to its demonstrated superiority over other methods. AEX interprets a
chromosome as a directed cycle of arcs. Forming a child cycle involves alternately selecting arcs from each
parent, incorporating additional random selections if necessary to prevent infeasibility.

For example, consider the following two parent chromosomes:

Parent1: (274915368).

Parent2: (196832475).

The procedure begins by choosing the first arc from Parent 1, specifically the arc 2 - 7. This
initializes the child chromosome as:

C = (27 %% %% % x %),

Next, the algorithm selects the arc from Parent 2 that follows vertex 7, which is 7 — 5. The child
chromosome now appears as:

c=(275 *#**x*xx),

Continuing this process, the next arc selected is from Parent 1, following vertex 5, which is 5 — 3:
c=(2753 ***xx)

When the algorithm attempts to select the next arc from Parent 2 for vertex 3, it encounters an
infeasibility issue because this would prematurely complete the cycle if we add 2. To resolve this, a random
choice from the remaining unvisited vertices 1,4,6,8,9 is made. For example, we may choose vertex 4,
resulting in the child chromosome:

c=(27534 *xx*x)
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The procedure then resumes as normal, alternating between parents. The next arcs chosen are 4 — 9
from Parent 1 and 9 — 6 from Parent 2, then 6 — 8 from Parent 1 leading to:

c=(27534968 %)

Then, we again encounter an infeasible move 8 — 3, we randomly choose from the unvisited
vertices. In this case, we are only left with 1. Hence, the AEX crossover provides the child chromosome:

c=(275349681)

This method ensures the child inherits traits from both parents while maintaining feasibility through
random selections when necessary.

4.5. Adaptive mutation

The methodology employed in this study focuses on optimizing the performance of a GA for
solving the CVRP through adaptive mutation rate control. Initially, a moderate mutation rate of 50% is set,
which dynamically adjusts based on the algorithm's performance over monitored iterations. Specifically, the
algorithm continuously evaluates fitness improvement over 500 iterations. If minimal or no improvement is
detected, the mutation rate decreases incrementally by 5 percentage points, ensuring it does not fall below a
minimum threshold of 5%. This adaptive approach aims to enhance exploration during the early stages of the
search process, promoting diversity in solutions while gradually shifting towards exploitation in later stages
to refine and converge towards optimal or near-optimal solutions.

5. SIMULATION RESULTS
5.1. Experimental setup

There are six distinct CVRP instances, three different route-splitting methods, and two types of
mutation strategies—adaptive and standard. For population initialization, we use either random or partially
random initialization as described earlier. Testing all possibilities would result in 72 different experiments,
which is too many. Instead, we use CVRP50 to determine the best initialization and mutation methods. We
then apply these optimal choices to the remaining experiments. Whenever possible, we report cost and time
as performance metrics. The experiments were conducted on a MacBook Air equipped with an Apple M2
chip, 8 GB of RAM, running macOS Sonoma 14.5. The implementation used Python 3.12.0, with key
libraries including random, numpy, networkx, sklearn, and cluster.

5.2. Comparison of route-splitting strategies for chromosome-based route generation

The GA generates a chromosome as a sequence of customer nodes for multiple vehicles, excluding
the depot, requiring route-splitting strategies to insert depot nodes and satisfy capacity constraints of the
CVRP. Three route-splitting strategies—greedy, DP, and heuristic—are evaluated on a fixed chromosome to
compare their performance in terms of route cost and splitting time across various CVRP instances. Table 2
presents the average cost and splitting time for these route-splitting strategies, derived from 100 experimental
runs. Each column represents the cost and time associated with the greedy, DP, and heuristic strategies across
different CVRP instances. Results indicate that the DP approach typically yields the lowest route cost, the
greedy approach minimizes splitting time, and the heuristic approach achieves a balance between cost and
computational efficiency.

Table 2. Cost and time (seconds) for various route-splitting strategies
Greedy DP Heuristic

Problem Cost Time Cost Time Cost Time
CVRP20 98 86 98 5e-4 98  3e-4
CVRP50 259 25 252 23 255 T7e4
CVRP75 400 3e-5 390 4e-3 394 1e-3
CVRP100 541 4e5 527 6e-3 536 1e-3
CVRP150 804 6e5 782 9e-3 798  2e-3
CVRP200 2055 6e-5 1019 le-2 1051 3e-3

5.3. Performance of three route splitting strategies on a single chromosome

Table 2 compares the average cost and average time for three different route-splitting approaches
derived from chromosomes. Each experiment is carried out 100 times, and the average values are presented.
Each column represents the cost and time associated with different route-splitting strategies across various
CVRP instances. The values show that the DP approach generally results in the lowest cost, while the Greedy
approach tends to be the fastest, and the heuristic approach balances time and cost.
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5.4. Effect of partial randomness and adaptive crossover

To understand the effect of partial randomness in initialization and adaptive mutation, we conducted
experiments on the CVRP50 instance. The results are presented in Table 3. For the non-adaptive mutation,
the mutation rate was fixed at 10%.

Table 3. Impact of partial randomness in initialization and adaptive mutation

Greedy DP Heuristic
Partial ~ Adaptive 20k generations 1k generations
Cost  Time Cost Time Cost Time
Yes Yes 76 51 98 237 98 67
Yes No 98 52 99 235 110 67
No Yes 83 52 139 227 153 67
No No 123 52 124 231 138 67

Table 3 shows that partial randomness in population initialization and adaptive mutation
significantly impacts the performance of all models. Regarding experiment running time, the DP approach is
the slowest. For solving CVRP with 50 customers, the heuristic approach is approximately 3.5 times faster
than DP. The greedy approach is the fastest, performing 26 times faster than the heuristic approach and 92
times faster than DP. Figures 2 to 4 show the fitness progress over 1000 generations for various route-
splitting approaches. Note that fitness is calculated as the inverse of the total cost.
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Figure 2. Fitness progress over generations for greedy route splitting
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5.5. Solution performance of proposed methods on various capacitated vehicle routing problem instances

As demonstrated in the previous subsection, partial randomness in initialization and adaptive
mutation significantly enhance performance; we therefore implement both partial randomness and adaptive
mutation for the remaining experiments. Table 4 summarizes solution costs over 2,000 generations across six
CVRP instance sizes for the Greedy, DP, and heuristic route-splitting models. The heuristic achieves the
lowest cost in three of six cases (and ties at CVRP50), remaining competitive elsewhere.

Table 4. Solution cost for different models in 2000 generations
Instance  Greedy DP Heuristic
CVRP20 4305 4868  46.15
CVRP50 9578  91.60 91.60
CVRP75 14316 146.05 13227
CVRP100 21031 19675  179.46
CVRP150 33211 31143 31274
CVRP200  422.26 38599  414.17

Next, we present the best solutions obtained by our proposed methods. Specifically, since the
heuristic route-splitting approach balances cost optimization and running time, we report the best solutions
according to this approach in Table 5.

Table 5. Cost for the best solutions according to heuristic route-splitting
CVPR20 CVPRS0 CVPR75 CVPR100 CVPR150 CVPR200
39.26 76.98 117.73 174.26 268.39 410.97

The results, depicted in Figure 5 (in Appendix), from a to f, illustrate the effectiveness of our method
across different CVRP instances. Figure 5(a) shows the heuristic route splitting for CVPR20 over 10k
generations, highlighting the balance between cost and computational efficiency. Similarly, Figures 5(b)-(f)
provide visual representations of the best solutions for CVPR50, CVPR75, CVPR100, CVPR150, and
CVPR200 over varying generations, demonstrating consistent improvements in route optimization.

6. DISCUSSION

The results in Tables 2-5 and Figures 2-5 demonstrate the trade-offs and performance
characteristics of the proposed methods across various CVRP instances. DP achieves the lowest costs,
reducing the total cost by up to 5%-7% compared to the heuristic approach for larger problems like
CVRP200. However, DP requires significantly more computational time, often 3—4 times longer than the
heuristic approach and up to 92 times longer than the Greedy method. While the Greedy approach is the
fastest—requiring as little as 6e-5 seconds for CVRP200—it produces solutions that are up to 10% costlier
than those from the DP method. The heuristic approach consistently balances performance, achieving
solutions within 2%-5% of DP’s optimal cost, while being 3-4 times faster. The effect of adaptive
techniques is evident in Table 3. For example, adaptive mutation and partial randomness improved solution
quality by reducing costs by up to 20% compared to methods without these enhancements. For CVRP50,
costs dropped from 123 to 76 when both adaptive mutation and randomness were applied, illustrating their
effectiveness. Despite these improvements, computational time remained nearly constant, underscoring the
efficiency of these enhancements. Fitness progress over generations, shown in Figures 2-4, reveals distinct
convergence patterns. DP converges steadily but slowly, while the Greedy approach converges rapidly, albeit
with higher final costs. The heuristic method demonstrates robust and balanced convergence, combining fast
progress with competitive final costs.

The scalability of the methods is evaluated in Table 4, showing that DP struggles with larger
instances. For CVRP200, the cost of 385.99 is the lowest, but it requires over 0.01 seconds per iteration,
compared to the heuristic’s 414.17 in just 0.003 seconds. Meanwhile, the Greedy method achieves a cost of
422.26, emphasizing its suitability for real-time applications where speed is critical. The results in Table 5
and Figure 5 highlight the heuristic method’s practical value, delivering consistently competitive solutions.
For example, in CVRP150, the best solution cost achieved was 268.39, demonstrating a balanced trade-off
between cost and computational time. Across all CVRP instances, the heuristic method proves to be an
effective compromise, providing scalable and efficient performance for real-world routing problems. These
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findings emphasize the importance of selecting an approach based on the specific trade-offs between cost,
time, and problem complexity.

The findings, while robust, are subject to certain limitations that contextualize their applicability.
The DP approach, despite achieving the lowest costs, exhibits high computational intensity, making it less
practical for real-time or large-scale CVRP applications. The heuristic approach, although balanced, requires
further refinement to enhance its performance on extremely large instances, such as those with hundreds of
customers or complex constraints. Additionally, the evaluation is limited to single-depot CVRP instances
without time windows, which may restrict the generalizability to more complex variants of the problem.
Furthermore, the ablation study could be expanded to provide a more granular analysis of how individual
components—such as adaptive mutation alone or route-splitting alone—contribute to overall performance,
which would help isolate the impact of each component more clearly.

7. CONCLUSION

This study evaluates 12 configurations of an existing GA framework for solving the CVRP,
integrating adaptive mutation rates and innovative route-splitting strategies. The focus is on optimizing the
algorithm’s configuration rather than proposing a new algorithm. The comparative analysis of greedy, DP,
and heuristic route-splitting methods across diverse CVRP instances demonstrates the heuristic method’s
ability to balance cost minimization and computational efficiency, offering a scalable solution for practical
logistics challenges.

To extend the applicability of the proposed framework, future research may explore the integration
of multi-depot and time-window constraints to address more complex CVRP variants. Additionally,
incorporating machine learning models for dynamic mutation rate adjustment, hybrid metaheuristics2
combining genetic acceleration techniques for DP, particularly for efficient route splitting, could significantly
improve computational performance. In parallel, incorporating other optimization techniques and developing
a novel crossover operator tailored to CVRP could further enhance solution quality and convergence rates,
building on existing crossover strategies.
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APPENDIX

© ®

Figure 5. Heuristic route splitting based best solution for; (a) CVPR20 over 10k generations, (b) CVPR50
over 15k generations, (c) CVPR75 over 18k generations, (d) CVPR100 over 10k generations, (¢) CVPR150
over 15k generations, and (f) CVPR200 over 11k generations
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