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 The capacitated vehicle routing problem (CVRP), where vehicle capacity 

constraints limit the load carried per route for multiple vehicles, is addressed 

using an optimized genetic algorithm (GA) framework. This work focuses 

on finding the best configuration of GA by systematically evaluating 12 

distinct GA variants, differing in adaptive mutation rates and route-splitting 

strategies. The framework integrates adaptive mutation rates and novel 

route-splitting approaches—greedy, dynamic programming (DP), and 

heuristic—to enhance computational efficiency and solution quality. 

Experiments on six CVRP instances of varying complexity, encompassing 

differences in problem size, vehicle capacity, and geographical distribution, 

demonstrate the heuristic approach’s effectiveness. It achieves solutions 

within 2%–5% of the optimal cost of DP while being 3–4 times faster. 

Adaptive techniques reduce costs by up to 20% compared to standard GAs 

and heuristics. The framework’s scalability is evident in large-scale 

instances such as the 200-customer case, where the heuristic method 

balances cost (414.17) and computation time (0.003 seconds). The 

developed software is openly available at GitHub, providing a robust tool for 

addressing practical logistics challenges. 

Keywords: 

Chromosome encoding 

Genetic algorithm  

Heuristic methods 

Route optimization 

Route splitting 

Vehicle routing problem 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Cemil Turan 

Department of Computer Science, School of Information Technology and Applied Mathematics  

SDU University 

Abylaikhan Street 1/1, Kaskelen, Almaty, Kazakhstan  

Email: cemil.turan@sdu.edu.kz 

 

 

1. INTRODUCTION 

Vehicle routing problem (VRP) is a fundamental problem in logistics and supply chain 

management, where the objective is to determine the most efficient routes for a fleet of vehicles to deliver 

goods to a set of customers from a central depot [1], [2]. This problem has numerous industrial applications 

and has been widely studied since its introduction by Dantzig and Ramser [3]. Among the various forms of 

VRP, the capacitated vehicle routing problem (CVRP) is particularly significant due to the additional 

constraint of vehicle capacity, which must not be exceeded. The CVRP involves determining a set of routes 

for vehicles, each with a limited carrying capacity, to service a set of customers with known demands at 

minimal cost [4], [5]. 

The CVRP is formally defined on an undirected graph 𝐺 = (𝑉, 𝐴) where 𝑉 represents the set of 

vertices (the depot and customers), and 𝐴 represents the arcs between these vertices. Each arc has an 

associated cost, typically representing the distance or time required to travel between vertices. The objective 

is to minimize the total cost while ensuring that each customer's demand is met and that no vehicle exceeds 

its capacity [6], [7]. Accorsi and Vigo [8] introduced a fast and scalable heuristic for the solution of large-
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scale CVRPs, focusing on computational time based on the iterated local search paradigm and integrating an 

effective execution of established acceleration methods for local search engines with many novel algorithmic 

elements, whose functions and effects are thoroughly examined. Ma et al. [9] studied a learning-to-search 

solver for routing problems, focusing on both optimal solutions and computational efficiency. Overall, the 

CVRP has been a focal point of research due to its combinatorial complexity and practical importance. 

Efficient solutions to the CVRP can lead to significant cost savings and operational efficiencies across 

various industries, including transportation, logistics, and distribution.  

The CVRP presents a critical challenge in optimizing routes for multiple vehicles with limited 

carrying capacity. Despite extensive research, existing approaches, including genetic algorithms (GAs) and 

hybrid metaheuristics, often fail to balance solution quality and computational efficiency for large-scale 

instances, suffering from premature convergence, limited solution diversity, and scalability challenges  

[9], [10]. These limitations hinder practical applicability in complex logistics scenarios, necessitating a novel 

approach that enhances diversity, scalability, and efficiency. Unlike prior studies, which often emphasize 

either cost optimization [6] or computational speed [8], this study addresses these gaps by proposing an 

advanced GA framework that integrates adaptive mutation rates and innovative route-splitting strategies. 

This approach is designed to achieve a balanced trade-off between cost minimization and computational 

speed while improving convergence and scalability for large-scale CVRP instances. The objectives are: 

a. To design an efficient GA tailored for the CVRP, incorporating optimized crossover and mutation 

strategies. 

b. To evaluate the performance of the proposed algorithm against selected instances and compare it with 

existing approaches. 

c. To investigate the impact of route-splitting techniques and adaptive mutation rates on the efficiency and 

effectiveness of the GA. 

This study contributes to the CVRP literature by optimizing an existing GA framework through the 

systematic evaluation of 12 configurations that integrate adaptive mutation rates and three innovative route-

splitting strategies—greedy, dynamic programming (DP), and heuristic. The proposed approach achieves up 

to 20% cost reduction and improved scalability over traditional GAs [11], [12], while addressing premature 

convergence and solution diversity limitations observed in prior work [10]. It also offers a balanced trade-off 

between cost and computational efficiency for large-scale instances compared to existing heuristics [8], [9].  

The remainder of the paper is structured as follows. Section 2 reviews related work, positioning the 

proposed framework within existing CVRP literature. Section 3 presents the mathematical formulation of the 

CVRP, defining the problem’s constraints and objectives. Section 4 details the methodology, covering the 

dataset, chromosome encoding, route-splitting strategies, population initialization, crossover, mutation, and 

experimental setup. Section 5 presents the results, comparing route-splitting strategies, analyzing the impact 

of adaptive techniques, and evaluating solution performance across CVRP instances. Section 6 discusses the 

findings, their implications, and limitations. Section 7 concludes with a summary of contributions and 

directions for future research. 

 

 

2. RELATED WORKS 

Over the decades, numerous approaches have been developed to solve the CVRP, ranging from 

exact algorithms to heuristics and metaheuristics. Among these, GAs have been widely applied to solve the 

VRP and its variants [13], including the CVRP. GAs is inspired by the process of natural selection and 

genetics, by using mechanisms such as selection, crossover, and mutation to evolve solutions over successive 

generations. Numerous studies have demonstrated the effectiveness of GAs in producing high-quality 

solutions for CVRP. They have been widely applied to the VRP and its variants. For instance,  

Baker and Ayechew [11] demonstrated the application of a GA to the basic VRP, highlighting its 

competitiveness in terms of computing time and solution quality. Their work set the stage for further 

enhancements and hybrid approaches. 

Hybrid metaheuristics have been particularly effective in improving the performance of GAs for 

solving the CVRP. For example, Nazif and Lee [12] introduced an optimized crossover GA that combines the 

GA with an optimized crossover mechanism designed by a complete undirected bipartite graph. This 

approach showed competitive results compared to other heuristics, demonstrating the potential of hybrid 

strategies in enhancing solution quality and computational efficiency. 

Another significant contribution comes from the work on hybrid metaheuristics that integrate 

various optimization techniques. A study by Berger and Mohamed [14] proposed a hybrid GA for the CVRP, 

combining elements of local search and GAs to improve performance. Similarly, a chicken swarm 

optimization with GA and a hybrid chicken swarm optimization with a tabu search algorithm were 

introduced by Niazy et al. [15], [16] for solving the CVRP. This approach integrates the exploration 
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capabilities of chicken swarm optimization with the intensification mechanisms of tabu search, yielding 

superior results in benchmark tests. They effectively reduced delivery costs while satisfying capacity 

constraints, highlighting the benefits of combining metaheuristic techniques. Additionally, Cuk et al. [17] 

proposed a hybrid GA and artificial bee colony method to train feedforward multi-layer perceptron, 

addressing premature convergence, which offers insights for enhancing GA exploration in optimization 

problems. Similarly, Zivkovic et al. [18] developed a hybrid GA and machine learning approach to optimize 

neuro-fuzzy systems for COVID-19 case prediction, demonstrating the versatility of hybrid GAs in time-

series optimization. 

Recent advancements also include the integration of fuzzy clustering methods with GAs. Zhu [10] 

proposed an improved GA based on fuzzy C-means clustering to solve the CVRP. This approach decomposes 

the large-scale VRP into smaller subproblems, improving the efficiency and robustness of the algorithm. 

Similarly, Halim et al. [19] introduced a GA-based feature selection method for intrusion detection systems, 

achieving high classification accuracy by optimizing feature subsets, which highlights the potential of GAs in 

high-dimensional optimization tasks. Additionally, the use of optimized crossover and mutation strategies has 

been shown to enhance the performance of GAs, as demonstrated in the study by Nazif and Lee [12], which 

highlighted the importance of maintaining genetic diversity and avoiding premature convergence.  

Wahab et al. [20] proposed an enhanced GA for mobile robot path planning, incorporating novel population 

initialization and combined genetic operators to improve path quality and convergence, offering relevant 

techniques for CVRP’s initialization and operator design. 

Furthermore, ant colony optimization has been effectively applied to the VRP and its variants  

[21], [22], including the CVRP. Ahmed et al. [23] proposed an enhanced ant colony system algorithm that 

yielded competitive results compared to other heuristics. Similarly, Hendrawan et al. [24] addressed the 

complexity of generating optimal multi-day travel itineraries by framing the problem as a CVRP with a Time 

Window. Using a hybrid ant colony system and brainstorm optimization (ACS-BSO) algorithm, their study 

demonstrated the hybrid ACS-BSO algorithm’s superiority over conventional in optimizing various travel 

attributes.  

As aforementioned, the CVRP represents a critical challenge in logistics, where optimizing routes 

for vehicles with limited carrying capacity is paramount. Despite extensive research since its introduction [3], 

existing approaches often face trade-offs between solution quality and computational efficiency for large 

scales [9]. While many studies have leveraged GAs and hybrid metaheuristic methods to improve CVRP 

solutions, these approaches frequently encounter limitations, such as premature convergence, lack of solution 

diversity, or inefficiency in scaling to larger instances [10]. We aim to address these gaps by introducing a 

novel GA framework that integrates adaptive mutation rates and advanced route-splitting techniques. By 

focusing on partial randomness during initialization and heuristic methods for route splitting, we seek to 

enhance solution diversity and convergence rates. Unlike prior studies, which often emphasize either cost 

optimization [6] or computational speed [8], this research aims to achieve a balanced trade-off suitable for 

large-scale CVRP scenarios. Furthermore, the investigation explores the practical implications of adaptive 

strategies and hybrid initialization on solution quality, highlighting novel contributions to the field of 

combinatorial optimization by focusing on the impact of chromosome representation and adaptive mutation 

rate on the performance of GAs in solving the CVRP, building on the foundations laid by previous studies. 

By addressing these objectives, we aim to contribute to the fields of combinatorial optimization and logistics 

management, providing a robust and efficient solution for the CVRP. The next section provides a detailed 

mathematical formulation of the CVRP problem. 

  

 

3. MATHEMATICAL FORMULATION OF THE CVRP 

The CVRP is mathematically formulated to define the optimization problem addressed by the 

proposed GA. This formulation models the CVRP on a graph, specifying constraints and objectives to ensure 

efficient route optimization. The following sections describe the graph structure, parameters, decision 

variables, objective function, and constraints, with detailed explanations of each component’s role and the 

meaning of all variables involved, maintaining an objective perspective. 

 

3.1.  Graph structure and parameters 

The CVRP is defined on an undirected graph G=(V, A), where V denotes the set of nodes and A 

denotes the set of arcs. The node set V={0, 1, 2,..., n} comprises the depot, labeled as node 0, and n 

customers, labeled from 1 to n, where n represents the total number of customers. Each node i ∈ V represents 

either the depot (i=0) or a customer (i=1, 2,..., n), and each node j ∈ V similarly represents another node in 

the graph. The arcs in A represent possible routes between pairs of nodes, including between the depot and 

customers, with each arc (i, j) ∈ A associated with a cost cij, typically representing the distance or travel time 

between nodes i and j. The set K represents the fleet of identical vehicles available to serve customers, each 
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with a fixed capacity Q, which limits the total demand a vehicle can carry. Each customer i ∈ {1, 2,..., n} has 

a demand qi, indicating the quantity of goods to be delivered. These parameters establish the problem’s 

structure, ensuring that routes account for travel costs, vehicle availability, capacity limits, and customer 

demands. 

 

3.2.  Decision variables 

The formulation employs two primary decision variables to represent routing and load decisions. 

The binary variable xijk indicates whether vehicle k ∈ K travels directly from node i to node j along arc (i, j) ∈ 

A: it equals 1 if the arc is used by vehicle k, and 0 otherwise. This variable determines the structure of the 

routes assigned to each vehicle. The variable yik represents the cumulative load carried by vehicle k after 

visiting node i, tracking the total demand serviced along its route to ensure compliance with the capacity 

constraint Q. These variables facilitate the optimization of customer assignments to vehicle routes and the 

management of vehicle loads. 

 

3.3.  Objective function 

The objective of the CVRP is to minimize the total cost of all vehicle routes, expressed as (1): 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘(𝑖,𝑗)∈𝐴𝑘∈𝐾  (1) 

 

This function computes the sum of the costs cij for all arcs (i, j) traversed by any vehicle k, where xijk=1. 

Minimizing this sum identifies the most cost-efficient set of routes that satisfies all constraints, aligning with 

practical logistics goals such as reducing fuel consumption or travel time. 

  

3.4.  Constraints 

The CVRP includes several constraints to ensure feasible and practical solutions: 

a. Customer visit constraint 

Each customer must be visited exactly once by one vehicle, enforced by: 

 
∑ ∑ 𝑥𝑖𝑗𝑘 = 1𝑗∈𝑉,𝑗≠𝑖 , ∀𝑖 ∈ {1,2, … , 𝑛}𝑘∈𝐾  (2) 

 

This constraint ensures that for each customer i (from 1 to n), exactly one vehicle k travels to it from some 

node j, guaranteeing that every customer’s demand is met without duplication. 

b. Load constraint and sub-tour elimination 

To manage vehicle loads and prevent sub-tours (cycles excluding the depot), the following 

constraint is applied: 

 

𝑦𝑗𝑘 ≥ 𝑦𝑖𝑘 + 𝑞𝑗 − 𝑄(1 − 𝑥𝑖𝑗𝑘), ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐴, 𝑖 ≠ 𝑗, 𝑗 ≠ 0 (3) 

 

This ensures that if vehicle k travels from node i to node j (xijk=1), the load after visiting j (yjk) is at least the 

load after visiting i (yik) plus the demand at j (qj). The term Q(1-xijk) deactivates the constraint when the arc is 

not used (xijk=0), and it prevents sub-tours by enforcing consistent load accumulation tied to the depot. 

c. Depot load constraint 

At the depot (node 0), each vehicle starts with no load: 

 

𝑦0𝑘 = 0, ∀𝑘 ∈ 𝐾 (4) 

 

This initializes the load of each vehicle k to zero upon departing from the depot, ensuring accurate tracking of 

load accumulation as customers are visited. 

d. Vehicle capacity constraint 

The load carried by each vehicle must not exceed its capacity and must remain non-negative: 

 

0 ≤ 𝑦𝑖𝑘 ≤ 𝑄, ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑉 (5) 

  

This ensures that the cumulative load yik for vehicle k at any node i (including the depot and customers) 

respects the vehicle’s capacity Q, preventing overloading while allowing feasible delivery schedules. 

e. Binary decision variable constraint 

The routing decisions are binary: 

 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Route splitting and adaptive mutation in genetic algorithms for the capacitated vehicle … (Shirali Kadyrov) 

4773 

𝑥𝑖𝑗𝑘 ∈ {0,1}, ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐴 (6) 

 

This mathematical formulation establishes a rigorous framework for the CVRP, capturing the essential 

elements of route optimization under capacity constraints. The parameters define the problem’s structure, the 

decision variables model routing and load decisions, the objective function targets cost minimization, and the 

constraints ensure feasible solutions. The proposed GA leverages this formulation to generate efficient 

routes, addressing the combinatorial complexity of the CVRP while optimizing for both solution quality and 

computational efficiency. 

 

 

4. METHOD 

The CVRP is addressed through a GA framework comprising data preparation, chromosome 

encoding, population initialization, crossover, mutation, and route-splitting strategies. This section details the 

methodology, starting with the dataset of CVRP instances, followed by chromosome encoding and three 

route-splitting approaches (greedy, DP, and heuristic), population initialization with partial randomness and 

heuristics, the alternating edges crossover (AEX) operator, adaptive mutation rate control, and the 

experimental setup, with implementation details available in a GitHub repository [25]. 

 

4.1.  Dataset 

In the context of the CVRP, an instance refers to a specific problem configuration defined by a set 

of customers, their demands, vehicle capacities, and geographical locations, representing a unique test case to 

evaluate algorithm performance. For this study, six instances of the CVRP were generated to evaluate the 

proposed GA thoroughly. These instances were selected to encompass a range of problem sizes, vehicle 

capacities, and geographical distributions. Table 1 summarizes the characteristics of these CVRP instances. 

 

 

Table 1. CVRP instances 
CVRP instance Number of customers (𝑛) Number of vehicles (𝐾) Vehicle capacity (𝑄) Total demand ∑𝑞𝑖 

CVRP20 20 1 100 87 

CVRP50 50 3 100 258 

CVRP75 75 4 100 357 
CVRP100 100 5 100 467 

CVRP150 150 8 100 752 

CVRP200 200 11 100 1067 

 

 

Figure 1 plots the instances to visually represent their distribution and diversity across problem 

dimensions, such as the number of customers, number of vehicles, vehicle capacity, and total demand. This 

graphical representation further underscores the comprehensive nature of our evaluation approach. 

 

4.2.  Chromosome encoding and route splitting approaches  

For a CVRP problem with 𝑛 customers, any permutation of {1,2, … , 𝑛} will represent a 

chromosome. The permutation representation approach is one of the most common approaches, see e.g.,  

[12], [26]-[29]. However, one still needs to split the given chromosome into routes with different vehicles to 

represent a solution. This means inserting 2K zeros into the chromosome sequence to represent each of the K 

vehicles leaving and returning to the depot. Mathematically, if we denote a chromosome as; 

 

𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑛) 

 

where 𝑐𝑖  represents customer 𝑖, then adding 2𝐾 zeros can be expressed as: 

  

𝑐′ = (0, 𝑐1, 𝑐2, … , 𝑐𝑘, 0, 𝑐𝑘+1, … , 𝑐𝑛 , 0) 

 

where each zero indicates a depot visit. The challenge lies in determining where to place these zeros 

optimally to form valid routes while adhering to vehicle capacity constraints. In this paper, we experiment 

with three different approaches for route splitting. 
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Figure 1. Scatter plots of six CVRP instances 
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4.2.1. Greedy approach 

The idea in the greedy approach is to partition a chromosome representing a solution to the CVRP 

into feasible routes. Starting with an initial route that begins and ends at the depot (customer 0), the function 

iterates through each customer in the chromosome, attempting to add them to the current route without 

exceeding the vehicle’s capacity constraint. If adding a customer surpasses this capacity, the current route is 

finalized by appending the depot and stored in the routes list, and a new route begins with the depot and the 

current customer. This process continues until all customers have been assigned to routes, resulting in a list 

of routes where each route starts and ends at the depot and respects the vehicle capacity limitations. The 

pseudocode for this approach is shown in Algorithm 1. 

  

Algorithm 1. Greedy route splitting for CVRP 
Input:  

    individual ← a permutation of customers (chromosome) 

    demand ← a list of customer demands 

    vehicle_capacity ← the capacity of each vehicle 

 

Output: 

    routes ← a list of routes where each route starts and ends at the depot 

 

1. Initialize: 

    routes ← an empty list 

    route ← [0]  // Start route with depot 

    load ← 0  // Current load on vehicle 

 

2. For each customer in individual do: 

    a. If load + demand[customer] > vehicle_capacity then: 

        i.  Append route + [0] to routes  // Finalize current route 

        ii. Start a new route: route ← [0, customer] 

        iii. Reset load: load ← demand[customer] 

    b. Else: 

        i.  Append customer to route 

        ii. Update load: load ← load + demand[customer] 

 

3. After all customers are processed: 

    Append route + [0] to routes  // Finalize the last route 

 

4. Return routes 

 

4.2.2. Dynamic programming approach  

The algorithm given in Algorithm 2 employs a DP approach to efficiently partition a chromosome 

(representing a solution to the CVRP) into optimal routes that adhere to vehicle capacity constraints. 

 

Algorithm 2. DP-based route splitting for CVRP 
Input: 

    individual ← a permutation of customers (chromosome) 

    cost_matrix ← a matrix of costs between customers 

    demand ← a list of customer demands 

    vehicle_capacity ← the capacity of each vehicle 

 

Output: 

    final_routes ← a list of routes where each route starts and ends at the depot 

    best_cost ← the minimum cost of the best solution found 

 

1. Initialize: 

    n ← length of individual  // Number of customers 

    dp ← array of size n+1 with values set to infinity 

    dp[0] ← 0  // Starting point, no cost for 0 customers 

    split_point ← array of size n+1 with values set to -1 

 

2. For i=1 to n do: 

    a. Initialize load ← 0  // Current load on the vehicle 

    b. For j=i down to 1 do: 

        i.  Add demand[individual[j-1]] to load 

        ii. If load > vehicle_capacity then break  // Exceeds capacity 

        iii. Calculate cost as: 

            cost=dp[j-1] + cost_matrix[0][individual[j-1]] + 

                   sum(cost_matrix[individual[k]][individual[k+1]] for k in 

range(j-1, i-1)) + 

                   cost_matrix[individual[i-1]][0] 

        iv. If cost < dp[i] then: 

            Update dp[i] ← cost 
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            Update split_point[i] ← j-1 

 

3. Backtrack to determine the routes: 

    i ← n  // Start from the last customer 

    routes ← empty list 

 

    While i > 0 do: 

        j ← split_point[i] 

        Append [0] + individual[j:i] + [0] to routes 

        i ← j 

 

4. Reverse the routes list to get the correct order 

 

5. Return final_routes, dp[n] 

  

It initializes an array dp to store minimum costs for subproblems and iteratively evaluates potential 

partitions of the chromosome based on vehicle load capacities. The algorithm efficiently determines the 

optimal route configuration using a nested loop structure by computing cumulative costs for routes starting 

from the depot, visiting customers, and returning. After computing the minimal costs, it uses backtracking 

through split points to systematically construct each route, ensuring all routes begin and end at the depot 

while respecting capacity limits. This approach ensures not only the identification of the optimal partitioning 

of the chromosome into routes but also provides the total cost of the solution, making it well-suited for 

solving CVRP instances where minimizing travel costs and adhering to vehicle capacities are critical 

objectives. 

 

4.2.3. Heuristic approach  

DP runs slowly while finding the route splitting with minimal cost. As a third approach, we 

implement a GA to find near-optimal route splitting. It begins by initializing an initial solution of routes 

based on the given individual, where each route respects the vehicle capacity constraints. The function 

iteratively refines these routes over 50 iterations, employing a mutation operation with a 10% probability of 

exploring new configurations. During each iteration, it evaluates the cost of mutated routes using a cost 

matrix that defines travel expenses between customers and the depot. By continually updating to lower-cost 

solutions found through mutation, the function aims to converge on an optimal set of routes that start and end 

at the depot while minimizing total travel costs. This approach suits CVRP scenarios where efficient vehicle 

routing and cost reduction are crucial objectives. The pseudocode for this approach is shown in Algorithm 3. 

 

Algorithm 3. GA-inspired route splitting for CVRP 
Input: 

    individual ← a permutation of customers (chromosome) 

    cost_matrix ← a matrix of costs between customers 

    demand ← a list of customer demands 

    vehicle_capacity ← the capacity of each vehicle 

 

Output: 

    final_routes ← a list of routes where each route starts and ends at the depot 

    best_cost ← the cost of the best solution found 

 

1. Initialize: 

    n ← number of customers (len(demand) - 1) 

    chromosome ← individual[:]  // Copy of the chromosome 

    best_routes ← initial_solution(chromosome)  // Generate an initial solution 

    best_cost ← evaluate_solution(best_routes, cost_matrix)  // Evaluate initial solution 

 

2. Define initial_solution(chromosome): 

    routes ← empty list 

    route ← empty list 

    load ← 0  // Current load on vehicle 

 

    For each gene in chromosome do: 

        If load + demand[gene] <= vehicle_capacity: 

            Append gene to route 

            Update load: load ← load + demand[gene] 

        Else: 

            Append route to routes 

            Start new route with gene 

            Reset load: load ← demand[gene] 

 

    If route is not empty: 

        Append route to routes 
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    Return routes 

 

3. Define mutate(routes): 

    mutated_routes ← copy of routes 

 

    If random chance < 0.1 (10% chance): 

        idx1 ← random index from 0 to len(mutated_routes)-1 

        idx2 ← random index from 0 to len(mutated_routes)-1 

 

        If idx1 ≠ idx2 and both routes have more than one customer: 

            gene1 ← random index in mutated_routes[idx1] 

            gene2 ← random index in mutated_routes[idx2] 

            Swap mutated_routes[idx1][gene1] and mutated_routes[idx2][gene2] 

 

    Return mutated_routes 

 

4. For each iteration (e.g., 50 iterations): 

    mutated_routes ← mutate(best_routes) 

    mutated_cost ← evaluate_solution(mutated_routes, cost_matrix) 

 

    If mutated_cost < best_cost: 

        Update best_routes ← mutated_routes 

        Update best_cost ← mutated_cost 

 

5. Finalize the routes by adding depot at the beginning and end of each route: 

    final_routes ← [[0] + route + [0] for each route in best_routes] 

 

6. Return final_routes, best_cost 

 

4.3.  Partial randomness with heuristics in population initialization 

To investigate the efficacy of partial randomness with heuristics in chromosome encoding for the 

CVRP, this study systematically compares and evaluates different initialization strategies within a GA 

framework. The research focuses on integrating randomness and heuristic methods, specifically the nearest 

neighbour and savings algorithms, to generate the initial population of chromosomes. A subset of the 

population is randomly generated to promote diversity, while another subset utilizes heuristic methods to 

leverage local optimization based on distance savings and nearest customer selection. This hybrid approach is 

designed to capitalize on the strengths of both randomness and structured heuristic algorithms, aiming to 

enhance solution quality, increase solution diversity, and expedite convergence towards optimal or near-

optimal solutions. The experiments are conducted using standard CVRP instances, with comprehensive 

performance metrics employed to assess the impact on solution fitness, diversity, and convergence speed 

across multiple experimental trials. Statistical analysis is employed to validate findings and draw meaningful 

conclusions regarding the effectiveness of the hybrid initialization strategy in improving GA performance for 

CVRP. 

 

4.4.  Alternating edges crossover  

Eight different crossover approaches were introduced in [13] and compared for their performance. 

This study adopts the AEX operator due to its demonstrated superiority over other methods. AEX interprets a 

chromosome as a directed cycle of arcs. Forming a child cycle involves alternately selecting arcs from each 

parent, incorporating additional random selections if necessary to prevent infeasibility. 

For example, consider the following two parent chromosomes: 

Parent 1: (2 7 4 9 1 5 3 6 8). 
Parent 2: (1 9 6 8 3 2 4 7 5). 
The procedure begins by choosing the first arc from Parent 1, specifically the arc 2 → 7. This 

initializes the child chromosome as: 

𝑐 = (2 7 ∗ ∗ ∗ ∗ ∗ ∗ ∗). 
Next, the algorithm selects the arc from Parent 2 that follows vertex 7, which is 7 → 5. The child 

chromosome now appears as: 

𝑐 = (2 7 5 ∗ ∗ ∗ ∗ ∗ ∗). 
Continuing this process, the next arc selected is from Parent 1, following vertex 5, which is 5 → 3: 

𝑐 = (2 7 5 3 ∗ ∗ ∗ ∗ ∗) 

When the algorithm attempts to select the next arc from Parent 2 for vertex 3, it encounters an 

infeasibility issue because this would prematurely complete the cycle if we add 2. To resolve this, a random 

choice from the remaining unvisited vertices 1,4,6,8,9 is made. For example, we may choose vertex 4, 

resulting in the child chromosome: 

𝑐 = (2 7 5 3 4 ∗ ∗ ∗ ∗) 
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The procedure then resumes as normal, alternating between parents. The next arcs chosen are 4 → 9 

from Parent 1 and 9 → 6 from Parent 2, then 6 → 8 from Parent 1 leading to:  

𝑐 = (2 7 5 3 4 9 6 8 ∗) 

Then, we again encounter an infeasible move 8 → 3, we randomly choose from the unvisited 

vertices. In this case, we are only left with 1. Hence, the AEX crossover provides the child chromosome: 

𝑐 = (2 7 5 3 4 9 6 8 1) 

This method ensures the child inherits traits from both parents while maintaining feasibility through 

random selections when necessary. 

 

4.5.  Adaptive mutation 

The methodology employed in this study focuses on optimizing the performance of a GA for 

solving the CVRP through adaptive mutation rate control. Initially, a moderate mutation rate of 50% is set, 

which dynamically adjusts based on the algorithm's performance over monitored iterations. Specifically, the 

algorithm continuously evaluates fitness improvement over 500 iterations. If minimal or no improvement is 

detected, the mutation rate decreases incrementally by 5 percentage points, ensuring it does not fall below a 

minimum threshold of 5%. This adaptive approach aims to enhance exploration during the early stages of the 

search process, promoting diversity in solutions while gradually shifting towards exploitation in later stages 

to refine and converge towards optimal or near-optimal solutions. 

 

 

5. SIMULATION RESULTS  

5.1.  Experimental setup 

There are six distinct CVRP instances, three different route-splitting methods, and two types of 

mutation strategies—adaptive and standard. For population initialization, we use either random or partially 

random initialization as described earlier. Testing all possibilities would result in 72 different experiments, 

which is too many. Instead, we use CVRP50 to determine the best initialization and mutation methods. We 

then apply these optimal choices to the remaining experiments. Whenever possible, we report cost and time 

as performance metrics. The experiments were conducted on a MacBook Air equipped with an Apple M2 

chip, 8 GB of RAM, running macOS Sonoma 14.5. The implementation used Python 3.12.0, with key 

libraries including random, numpy, networkx, sklearn, and cluster. 

 

5.2.  Comparison of route-splitting strategies for chromosome-based route generation 

The GA generates a chromosome as a sequence of customer nodes for multiple vehicles, excluding 

the depot, requiring route-splitting strategies to insert depot nodes and satisfy capacity constraints of the 

CVRP. Three route-splitting strategies—greedy, DP, and heuristic—are evaluated on a fixed chromosome to 

compare their performance in terms of route cost and splitting time across various CVRP instances. Table 2 

presents the average cost and splitting time for these route-splitting strategies, derived from 100 experimental 

runs. Each column represents the cost and time associated with the greedy, DP, and heuristic strategies across 

different CVRP instances. Results indicate that the DP approach typically yields the lowest route cost, the 

greedy approach minimizes splitting time, and the heuristic approach achieves a balance between cost and 

computational efficiency. 

 

 

Table 2. Cost and time (seconds) for various route-splitting strategies 
 Greedy DP Heuristic 

Problem Cost Time Cost Time Cost Time 

CVRP20 98 8e-6 98 5e-4 98 3e-4 

CVRP50 259 2e-5 252 2e-3 255 7e-4 

CVRP75 400 3e-5 390 4e-3 394 1e-3 
CVRP100 541 4e-5 527 6e-3 536 1e-3 

CVRP150 804 6e-5 782 9e-3 798 2e-3 

CVRP200 2055 6e-5 1019 1e-2 1051 3e-3 

 

 

5.3.  Performance of three route splitting strategies on a single chromosome 

Table 2 compares the average cost and average time for three different route-splitting approaches 

derived from chromosomes. Each experiment is carried out 100 times, and the average values are presented. 

Each column represents the cost and time associated with different route-splitting strategies across various 

CVRP instances. The values show that the DP approach generally results in the lowest cost, while the Greedy 

approach tends to be the fastest, and the heuristic approach balances time and cost. 
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5.4.  Effect of partial randomness and adaptive crossover 

To understand the effect of partial randomness in initialization and adaptive mutation, we conducted 

experiments on the CVRP50 instance. The results are presented in Table 3. For the non-adaptive mutation, 

the mutation rate was fixed at 10%. 

 

 

Table 3. Impact of partial randomness in initialization and adaptive mutation 

Partial Adaptive 
Greedy DP Heuristic 

20k generations 1k generations 

Cost Time Cost Time Cost Time 

Yes Yes 76 51 98 237 98 67 

Yes No 98 52 99 235 110 67 
No Yes 83 52 139 227 153 67 

No No 123 52 124 231 138 67 

 

 

Table 3 shows that partial randomness in population initialization and adaptive mutation 

significantly impacts the performance of all models. Regarding experiment running time, the DP approach is 

the slowest. For solving CVRP with 50 customers, the heuristic approach is approximately 3.5 times faster 

than DP. The greedy approach is the fastest, performing 26 times faster than the heuristic approach and 92 

times faster than DP. Figures 2 to 4 show the fitness progress over 1000 generations for various route-

splitting approaches. Note that fitness is calculated as the inverse of the total cost. 

 

 

  

  
  

Figure 2. Fitness progress over generations for greedy route splitting 
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Figure 3. Fitness progress over generations for DP in route splitting 
 

 

  

  
 

Figure 4. Fitness progress over generations for heuristic route splitting 
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5.5.  Solution performance of proposed methods on various capacitated vehicle routing problem instances 

As demonstrated in the previous subsection, partial randomness in initialization and adaptive 

mutation significantly enhance performance; we therefore implement both partial randomness and adaptive 

mutation for the remaining experiments. Table 4 summarizes solution costs over 2,000 generations across six 

CVRP instance sizes for the Greedy, DP, and heuristic route-splitting models. The heuristic achieves the 

lowest cost in three of six cases (and ties at CVRP50), remaining competitive elsewhere.  

 

 

Table 4. Solution cost for different models in 2000 generations 
Instance Greedy DP Heuristic 

CVRP20 43.05 48.68 46.15 

CVRP50 95.78 91.60 91.60 

CVRP75 143.16 146.05 132.27 

CVRP100 210.31 196.75 179.46 

CVRP150 332.11 311.43 312.74 

CVRP200 422.26 385.99 414.17 

 

 

Next, we present the best solutions obtained by our proposed methods. Specifically, since the 

heuristic route-splitting approach balances cost optimization and running time, we report the best solutions 

according to this approach in Table 5. 

 

 

Table 5. Cost for the best solutions according to heuristic route-splitting 
CVPR20 CVPR50 CVPR75 CVPR100 CVPR150 CVPR200 

39.26 76.98 117.73 174.26 268.39 410.97 

 

 

The results, depicted in Figure 5 (in Appendix), from a to f, illustrate the effectiveness of our method 

across different CVRP instances. Figure 5(a) shows the heuristic route splitting for CVPR20 over 10k 

generations, highlighting the balance between cost and computational efficiency. Similarly, Figures 5(b)-(f) 

provide visual representations of the best solutions for CVPR50, CVPR75, CVPR100, CVPR150, and 

CVPR200 over varying generations, demonstrating consistent improvements in route optimization. 

  

 

6. DISCUSSION 

The results in Tables 2–5 and Figures 2–5 demonstrate the trade-offs and performance 

characteristics of the proposed methods across various CVRP instances. DP achieves the lowest costs, 

reducing the total cost by up to 5%–7% compared to the heuristic approach for larger problems like 

CVRP200. However, DP requires significantly more computational time, often 3–4 times longer than the 

heuristic approach and up to 92 times longer than the Greedy method. While the Greedy approach is the 

fastest—requiring as little as 6e-5 seconds for CVRP200—it produces solutions that are up to 10% costlier 

than those from the DP method. The heuristic approach consistently balances performance, achieving 

solutions within 2%–5% of DP’s optimal cost, while being 3–4 times faster. The effect of adaptive 

techniques is evident in Table 3. For example, adaptive mutation and partial randomness improved solution 

quality by reducing costs by up to 20% compared to methods without these enhancements. For CVRP50, 

costs dropped from 123 to 76 when both adaptive mutation and randomness were applied, illustrating their 

effectiveness. Despite these improvements, computational time remained nearly constant, underscoring the 

efficiency of these enhancements. Fitness progress over generations, shown in Figures 2–4, reveals distinct 

convergence patterns. DP converges steadily but slowly, while the Greedy approach converges rapidly, albeit 

with higher final costs. The heuristic method demonstrates robust and balanced convergence, combining fast 

progress with competitive final costs. 

The scalability of the methods is evaluated in Table 4, showing that DP struggles with larger 

instances. For CVRP200, the cost of 385.99 is the lowest, but it requires over 0.01 seconds per iteration, 

compared to the heuristic’s 414.17 in just 0.003 seconds. Meanwhile, the Greedy method achieves a cost of 

422.26, emphasizing its suitability for real-time applications where speed is critical. The results in Table 5 

and Figure 5 highlight the heuristic method’s practical value, delivering consistently competitive solutions. 

For example, in CVRP150, the best solution cost achieved was 268.39, demonstrating a balanced trade-off 

between cost and computational time. Across all CVRP instances, the heuristic method proves to be an 

effective compromise, providing scalable and efficient performance for real-world routing problems. These 
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findings emphasize the importance of selecting an approach based on the specific trade-offs between cost, 

time, and problem complexity. 

The findings, while robust, are subject to certain limitations that contextualize their applicability. 

The DP approach, despite achieving the lowest costs, exhibits high computational intensity, making it less 

practical for real-time or large-scale CVRP applications. The heuristic approach, although balanced, requires 

further refinement to enhance its performance on extremely large instances, such as those with hundreds of 

customers or complex constraints. Additionally, the evaluation is limited to single-depot CVRP instances 

without time windows, which may restrict the generalizability to more complex variants of the problem. 

Furthermore, the ablation study could be expanded to provide a more granular analysis of how individual 

components—such as adaptive mutation alone or route-splitting alone—contribute to overall performance, 

which would help isolate the impact of each component more clearly. 

 

 

7. CONCLUSION 

This study evaluates 12 configurations of an existing GA framework for solving the CVRP, 

integrating adaptive mutation rates and innovative route-splitting strategies. The focus is on optimizing the 

algorithm’s configuration rather than proposing a new algorithm. The comparative analysis of greedy, DP, 

and heuristic route-splitting methods across diverse CVRP instances demonstrates the heuristic method’s 

ability to balance cost minimization and computational efficiency, offering a scalable solution for practical 

logistics challenges.  

To extend the applicability of the proposed framework, future research may explore the integration 

of multi-depot and time-window constraints to address more complex CVRP variants. Additionally, 

incorporating machine learning models for dynamic mutation rate adjustment, hybrid metaheuristics2 

combining genetic acceleration techniques for DP, particularly for efficient route splitting, could significantly 

improve computational performance. In parallel, incorporating other optimization techniques and developing 

a novel crossover operator tailored to CVRP could further enhance solution quality and convergence rates, 

building on existing crossover strategies. 
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APPENDIX 

 

  
(a) (b) 

  

  
(c) (d) 

  

  
(e) (f) 

 

Figure 5. Heuristic route splitting based best solution for; (a) CVPR20 over 10k generations, (b) CVPR50 

over 15k generations, (c) CVPR75 over 18k generations, (d) CVPR100 over 10k generations, (e) CVPR150 

over 15k generations, and (f) CVPR200 over 11k generations  
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