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 Wireless networks can be seen as the essential element of contemporary 

communication systems, connecting, in one way or another, billions of people 

and technologies all over the world. As a result, there is more of requirement 

from the area of application for models, which should be able to help in the 

analysis of the time series of mobile traffic to enhance the quality of service 

(QoS) in the present networks as well as in the future ones. The primary 

objective of this article is to develop effective artificial intelligence (AI) 

models for traffic load prediction in cellular networks. To achieve this, we 

employ three models; gated recurrent unit (GRU), bidirectional long short 

time memory (BiLSTM), and long short time memory (LSTM), to make 

numerical estimates of the network traffic at 4G long-term evolution (LTE) 

cell towers. The empirical results indicate that the BiLSTM model 

outperforms both the LSTM and GRU models, achieving root mean squared 

error (RMSE), mean absolute error (MAE), and R2 values of 86.64, 67.12, 

and 93.23%, respectively. Although this research focuses on traffic modeling 

for 4G LTE networks, the proposed models hold significant value for the 

development and optimization of the upcoming generations. 
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1. INTRODUCTION 

In the management of cellular networks, accurate simulation and prediction of load are essential for 

achieving high resource utilization. This research proposes a novel approach that leverages artificial 

intelligence (AI) methods to forecast traffic loads on cellular networks, specifically focusing on long short time 

memory (LSTM) [1], bidirectional long short time memory (BiLSTM) [2], and gated recurrent unit (GRU) [3] 

models for predicting network traffic at 4G long-term evolution (LTE) cell towers. Effective traffic 

management is increasingly critical in today’s data-driven environment, particularly with the rapid expansion 

of 5G technology [4]. Predicting both 4G LTE and 5G traffic is vital for enhancing quality of service (QoS) 

and involves sophisticated algorithms, including linear regression, support vector machine regression, and deep 

learning techniques like LSTM, BiLSTM, GRU, and convolutional neural networks (CNN) [5]-[8]. Accurate 

traffic predictions facilitate better network planning, bandwidth provisioning, and traffic engineering, enabling 

more efficient data flow management and deeper insights into network characteristics. As technology continues 

to evolve, effective traffic modeling will unlock new opportunities across various sectors, underscoring the 

necessity for secure, reliable, and efficient systems. Various methodologies, including genetic algorithms, 

artificial neural networks (ANN), and fuzzy logic, have been explored to enhance traffic prediction and network 
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management. Deep learning models, such as deep neural networks (DNN) and recurrent CNN, have also been 

employed to forecast traffic flow [9]-[13]. 

Previous studies have highlighted the potential of combining traditional and advanced methodologies. 

For instance, Alsaade and Al-Adhaileh [10] proposed a model integrating single-exponential smoothing with 

long short-term memory (SES-LSTM), achieving R-squared values of 88.21%, 92.20%, and 89.81%. 

Similarly, research by Kurri et al. [9] utilized an LSTM model to analyze a year’s worth of traffic data from 

4G LTE cell towers, yielding R-squared scores between 0.5014 and 0.54233, indicating a 9.6% to 17.7% 

improvement over the ARIMA model. Despite these advancements, challenges persist in capturing the complex 

and dynamic nature of network traffic patterns, highlighting the need for continued development of predictive 

models. The proposed model demonstrates superior performance in predicting network traffic relative to 

existing methods, enhancing accuracy, optimizing resource allocation, and ensuring a higher QoS [14]. 

Ultimately, this innovation aims to improve the user experience in an increasingly demanding mobile 

communications landscape. 

In summary, more precise models and predictions of network traffic patterns are crucial for ensuring 

better QoS and improved network traffic management [15]. This paper introduces a model that enhances 

traditional time-series approaches and utilizes various types of network data concurrently, providing the most 

suitable bandwidth allocation for optimal network utilization. The major contributions of this research include 

the development of an intelligent system capable of accurately predicting cellular and LTE network traffic, 

significantly enhancing prediction accuracy and establishing a robust framework for future network 

management. The following sections will detail the methodologies employed, compare the performance of the 

proposed model with existing ones, and critically discuss the implications of the findings. These insights are 

expected to be valuable for industry practitioners and researchers alike, paving the way for advancements in 

network traffic management across various fields, such as data prediction, network optimization, and capacity 

planning. 

 

  

2. MATERIALS AND METHODS 

This section gives the details of the materials and methods to be used in the proposed model which is 

outlined in Figure 1. provides Proposed traffic prediction model which is intended for increasing the efficiency 

of the models of time series for the prediction of network traffic. The advancements in this study have fine-

tuned the deep learning techniques namely: GRU, LSTM, and bidirectional LSTM for time series analysis. The 

real network data was used in order to evaluate the performance of the proposed models. The data is first pre-

processed through a process of resampling on an hourly level and includes a SES layer the range of values is 

scaled between 0 and 1 [14], [16]. The scaled data is partitioned into the training set and the testing set, with 

the former comprising a dataset collected up to the week prior to the final week of data and the latter comprising 

of data from the final week only. The training data is then utilized for the creation of time series sequences and 

the time step we consider is 24 hours and these are used in the training of the models. 

The GRU model is initialized with three layers of the GRU and has a linear activation output layer as 

well as compiled with the Nadam optimizer and mean squared error loss functions [14], [17]. The LSTM model 

is specified with three LSTM layers and a dense output layer; it is compiled with the Nadam optimizer and 

mean squared error loss function. Bidirectional LSTM model is defined with three bidirectional LSTM layers 

and dense output layer The defined model is compiled with Nadam optimizer, and mean squared error as loss 

function [2] as shown in Table 1. The loss values for the training and testing sets are plotted for all three models, 

and the predictions are made on the test set [17]. Finally, the predicted values are scaled back to their original 

values and plotted against the actual values for comparison. 

 

2.1.  4G cell traffic datasets 

The utilization of authentic datasets comprising of actual network traffic traces is crucial in assessing 

and validating the efficacy and efficiency of the proposed model's performance. The dataset we gathered from 

Kaggle includes packet data specifically from 4G cell networks. The data flow from mobile service users is 

referred to as 4G cell traffic; the mobile device will be provided by a nearby 4G cell networks. For about a 

year, data is collected in 57 cells at 1-hour intervals in an LTE network. Data is gathered in an LTE network. 

In the current study, we examined the proposed system using one year of data from cell 000113. The public 

dataset is available at website Kaggle [4], [10], [11]. 

 

2.2.  Simple exponential smoothing 

SES models stand out as one of the most widely utilized and fundamental prediction methodologies, 

owing to their effectiveness and pervasiveness in predictive modelling [16]-[18]. 

The equation for SES is (1): 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 3, June 2025: 1820-1829 

1822 

St+1  =  α ∗  Yt  +  (1 − α)  ∗  St (1) 

 

In the given equations, 𝑆𝑡+1 represents the forecast for the next time period, 𝑌𝑡 new observation (or actual 

value) in period t,  𝑆𝑡 is the forecast for the current period and α presents smoothing parameter, a value between 

0 and 1 (0<α<1). 
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Figure 1. Proposed traffic prediction model of GRU, LSTM, and BiLSTM 
 

 

Table 1. Hyperparameters for training: LSTM, BiLSTM, and GRU 
Parameter names Numbers 

Initial learning rate 0.002 

No. of epochs 

batch_size 

100 

64 
Optimization algorithm 

Loss function 

LSTM hidden layers 
Timesteps 

Nadam 

MSE 

3 
24 

 

 

2.3.  Normalization 

MinMaxScaler is a technique used to normalize data by adjusting it to fall within a specific range. In 

the context of LTE network traffic prediction, where the data is complex and made up of signals with varying 

characteristics, this scaling is essential. It ensures that larger numerical values don’t overshadow smaller ones. 

By rescaling the data with MinMaxScaler, we can improve the accuracy of predictions and speed up processing. 

The scaler works by transforming the data to a range between zero and one. This approach offers two main 

advantages: it prevents data with larger values from dominating and helps avoid numerical issues during 

prediction. The transformation using MinMaxScaler is achieved by removing the feature's minimal value and 

then dividing by the feature's range (i.e., maximum minus minimum). This ensures that the data is rescaled to 

fit within the specified range while preserving its relative distribution [14], [19], [20]. 
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The equation for MinMaxScaler is given by (2): 

 

𝑓_𝑠𝑐𝑎𝑙𝑒𝑑 =  
(𝑓− 𝑓𝑚𝑖𝑛)

(𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)
  (2) 

 

where 𝑓 denotes the feature value, this equation scales the feature values between 0 and 1. The resulting scaled 

values can be interpreted as the relative position of the original value within the range of the feature, 𝑓𝑚𝑖𝑛 and 

represent respectivelly the feature's minimum and maximum values. 

 

2.4.  Gated recurrent unit 

GRUs belong to the category of recurrent neural networks (RNNs) that are extensively employed in 

natural language processing and other sequence modeling applications. A GRU cell has an internal state vector 

that can be updated based on the current input and the previous state. For a given input time series 𝑦𝑡  at time, 

the equations for a single GRU cell are respectively reset gate, update gate, memory and final output as  

(3)-(6): 

 

𝑟𝑡 = sigma[(𝑊𝑟𝑦𝑦𝑡) + (𝑊𝑟ℎℎ𝑡−1) + 𝑏𝑟] (3) 

 

𝑧𝑡 = sigma[(𝑊𝑧𝑦𝑦𝑡) + (𝑊𝑧ℎℎ𝑡−1) + 𝑏𝑧] (4) 

 

 ℎ𝑡̌ = 𝑡𝑎𝑛ℎ[(𝑊ℎ𝑦𝑦𝑡) + (𝑊ℎℎ(𝑟𝑡 ⊙ ℎ𝑡−1)) + 𝑏ℎ] (5) 

 

ℎ𝑡 = [(𝑧𝑡  ⊙ ℎ𝑡̌) + ((1 − 𝑧𝑡) ⊙ ℎ𝑡−1)] (6) 

 

The parameters of a GRU include: 

In this context, rt and 𝑧𝑡 are the parameters for the reset and update gates, respectively, while sigma 

denotes the sigmoid activation function. The variable ht−1 refers to the output from the previous GRU unit, and 

⊙ signifies element-wise multiplication. The weight matrices 𝑊𝑟ℎ, 𝑊𝑟𝑦, 𝑊𝑧ℎ, 𝑊𝑧𝑦, 𝑊ℎℎ, and 𝑊ℎ𝑦 are linked 

to different inputs, with biases 𝑏𝑟, 𝑏𝑧, and 𝑏ℎ associated with each gate's activation. The candidate hidden state 

ℎ̃𝑡 is computed using (3), This equation describes how the candidate hidden state ℎ̃𝑡 is derived by applying a 

hyperbolic tangent function to the weighted sum of the reset gate-modified previous hidden state and the current 

input, plus the bias term 𝑏ℎ [1], [3], [21], [22]. 

 

2.5.  Long short time memory 

LSTM is a powerful type of RNN which is used mainly for issues connected with sequence prediction. 

LSTM networks have the capacity to store past information in their loops and they tend to use this information 

in order to forecast future events. This makes them useful for a wide range of applications such as; speech 

recognition, natural language processing, and time series prediction. 

There are several essential components in the foundation of an LSTM cell, called gates that define 

how information is dealt within the network. The forget gate 𝐺𝑡 decides which parts of the previous cell’s 

memory should be kept or discarded, allowing the network to forget irrelevant information. The input gate 𝑖𝑡 

controls how much new information from the current input should be added to the cell's memory. The candidate 

memory state 𝑀𝑡̃ represents potential new information that could be integrated into the cell’s memory. These 

gates work together to update the cell's memory state 𝑀𝑡, combining what’s remembered with new information. 

The output gate 𝑂𝑡  then determines what part of this updated memory should be passed on to the next step as 

the hidden state ℎ𝑡. 
 

𝐺𝑡 = 𝑠𝑖𝑔𝑚𝑎[ 𝑏𝑔 + (𝑈ℎ𝑔  ℎ𝑡−1 + 𝑈𝑦𝑔𝑦𝑡)] (7) 
 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑎 [𝑏𝑖 + (𝑈ℎ𝑖  ℎ𝑡−1 + 𝑈𝑦𝑖𝑦𝑡)] (8) 

 

𝑀𝑡̃ = 𝑠𝑖𝑔𝑚𝑎[𝑈ℎ𝑚ℎ𝑡−1 + 𝑈𝑥𝑚𝑦𝑡 + 𝑏𝑚] (9) 

 

𝑀𝑡 = [(𝐺𝑡  ∗  𝑀𝑡−1) + (𝐼𝑡  ∗  𝑀𝑡̃)] (10) 

 

𝑂𝑡 = sigma[𝑈ℎ𝑜ℎ𝑡−1 + 𝑈𝑥𝑜𝑦𝑡 + 𝑏𝑜]  (11) 

 

ℎ𝑡 = [𝑂𝑡 ∗ (𝑡𝑎𝑛ℎ(𝑀𝑡))] (12) 
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In these equations, 𝐺𝑡, 𝑖𝑡, and 𝑂𝑡 denote the parameters for the forget, input, and output gates. The 

weight matrices 𝑈ℎ𝑔, 𝑈𝑦𝑔, 𝑈𝑦𝑖, 𝑈ℎ𝑖 , 𝑈ℎ𝑚, 𝑈𝑥𝑚, 𝑈ℎ𝑜, and 𝑈𝑥𝑜 connect the previous hidden state ℎ𝑡−1 and the 

current input 𝑦𝑡 . The biases 𝑏𝑔, 𝑏𝑖, and 𝑏𝑜 adjust the gate functions, while the sigmoid function "sigma" 

regulates the activation [1], [12], [22], [23]. 

 

2.6.  Bidirectional long short time memory 

BiLSTM is a RNN that is composed of several LSTM layers that can process input sequences in both 

forward and backward orientations. A typical LSTM processes the input sequence in only one way, from 

beginning to finish; however, a BILSTM may access information from both the past and future contexts at the 

same time, allowing it to capture more complicated relationships within the input sequence. BiLSTM is widely 

employed in applications including natural language processing, time-series analysis and speech recognition, 

where the ability to capture contextual dependencies in both directions is critical for successful prediction or 

classification [2], [12], [24]. 

 

2.7.  Model evaluation criteria 

To evaluate how well the predictive models perform, we use several key metrics: root mean squared 

error (RMSE), which tells us how much the predictions differ from actual values on average by measuring the 

square root of the squared errors; mean absolute error (MAE), which looks at the average of all absolute 

differences between predictions and actual results; mean absolute percentage error (MAPE), which shows the 

prediction accuracy as a percentage; and R2, which indicates how well the model's predictions match the real 

data. By considering all these metrics, a thorough examination of the performance of the proposed predictive 

models can be obtained. The proposed models include LSTM, GRU, and BiLSTM, which are all commonly 

used deep-learning architectures for time-series prediction [17], [19], [21], [24]-[27]. 

The equations for the evaluation metrics commonly used in predictive modelling: 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑥𝑡 − 𝑥𝑡̂)2𝑁

𝑘=1  (13) 

 

Spearman's correlation coefficient (R): 

 

𝑅2 = 1 − (
∑ (𝑥𝑡−𝑥𝑡̂)2

𝑘

∑ (𝑥𝑡−𝑥𝑡̅̅ ̅)2
𝑘

) (14) 

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑥𝑡 − 𝑥𝑡̂|𝑁

𝑘=1  (15) 

 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑥𝑡−𝑥𝑡̂

𝑦𝑡
|𝑁

𝑘=1 ∗ 100% (16) 

 

2.8.  Proposed traffic prediction model 

The proposed model predicts time series data using different types of RNN such as LSTM, GRU, and 

bidirectional LSTM. The data is resampled to hourly frequency and SES is applied to one of the columns. The 

data is then split into training and testing sets and normalized using MinMaxScaler [6], [14]. A function is 

defined to create training and testing sets for LSTM, BiLSTM, and GRU models [24], [27]. The GRU, LSTM, 

and Bidirectional LSTM models are defined and compiled with appropriate parameters, and then trained on 

the training data. The model's history is saved, and its performance is evaluated using RMSE, MAE, MAPE, 

and R2 on the test data [17], [19], [21], [25]-[27]. Finally, the trained models are stored for future use. 

 

 

3. RESULTS AND DISCUSSION 

In this study, we compared the performance of three deep learning models LSTM, BiLSTM, and GRU 

using four evaluation metrics: RMSE, MSE, MAPE, and R² as shown in Figure 2. The results we obtained 

clearly demonstrate that the BiLSTM model outperformed both LSTM and GRU across all metrics, indicating 

its superior ability to predict cellular network traffic. As summarized in Table 2, the evaluation for each model 

based on RMSE, MSE, MAPE, and R2 shows BiLSTM's consistently better performance. These results 

confirm that BiLSTM offers a more accurate prediction of network traffic compared to the other models. When 

analyzing the results in detail, it becomes evident that BiLSTM’s ability to capture long-range dependencies 

within the time-series data contributes to its improved accuracy. The lower RMSE and MSE values indicate 

that BiLSTM is better suited for reducing the prediction error compared to LSTM and GRU. Additionally, the 

R2 values further support these findings, demonstrating how well each model's predictions correlate with the 
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actual data. In fact, BiLSTM achieved an R2 of 93.23% as indicated in Figure 2(a), indicating a stronger fit to 

the observed data. Compared to the LSTM model, which had an R2 of 92.75% as shown in Figure 2(b), 

BiLSTM showed a significant improvement. This improvement can be attributed to its bidirectional structure, 

which allows it to process the input sequence in both forward and backward directions. On the other hand, the 

GRU model also performed well but did not reach the same level of accuracy as BiLSTM, with an R2 of 

92.93% as represented in Figure 2(c). While BiLSTM exhibited superior performance, it is important to 

highlight that this study focused on cellular network traffic data, which may have specific characteristics that 

benefit from BiLSTM’s bidirectional nature. However, this comes at the cost of higher computational 

requirements compared to LSTM and GRU. The findings suggest that BiLSTM is a more robust option for 

predicting cellular traffic load, especially in situations where precise predictions are critical to maintaining 

QoS. Additionally, hybrid models that combine BiLSTM with other advanced techniques, such as attention 

mechanisms or convolutional layers, could further improve prediction accuracy and reduce computational 

costs. Our findings align with previous research that highlights the advantages of different models like ARIMA, 

LSTM, and others in time-series prediction tasks. Studies have shown that BiLSTM tends to capture temporal 

patterns more effectively than LSTM and GRU models, particularly in scenarios where bidirectional 

information enhances predictive performance. However, it is essential to note the trade-off in computational 

cost, which must be considered when applying these models to practical applications. 
 
 

Table 2. Three models performance 
Model RMSE MAE MAPE R2 

GRU 88.5177 70.0329 7.7678 0.9293 

LSTM 89.6233 70.2797 7.8027 0.9275 
BiLSTM 86.6494 67.1269 7.4331 0.9323 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 2. Predicted vs actual traffic: a comparative evaluation of; (a) BiLSTM, (b) LSTM, and (c) GRU  
 

 

In conclusion, the experimental results demonstrated that BiLSTM outperforms LSTM and GRU in 

terms of RMSE, MSE, MAPE, and R², making it the most appropriate model for cellular traffic prediction in 

this study. Its ability to minimize prediction errors, while maintaining a high correlation with actual traffic data, 

indicates its potential as an optimal solution for network traffic forecasting. 
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The consequences display the very last loss and minimal loss for three models (GRU, LSTM, and 

BiLSTM) educated on a positive undertaking as shown in Figure 3. The final-loss is the price of the loss-

function at the end of education, at the same time as the minimal loss is the lowest cost of the loss-function 

accomplished at some point of-schooling. For all three fashions, the final loss is notably low, indicating that 

they've learned to perform the mission nicely. However, the BiLSTM version has the lowest final loss of 

0.0008075 as shown in Figure 3(a), accompanied via the LSTM version with a very last loss of 0.0008225 as 

indicated in Figure 3(b), and the GRU model with a very last-lack of 0.0008097 as represented in Figure 3(c). 

 

 

  
(a) (b) 

 

 
(c) 

 

Figure 3. Performance metrics: training loss of; (a) BiLSTM, (b) LSTM, and (c) GRU  

 

 

The minimal loss, alternatively, is the bottom cost of the loss-characteristic accomplished during 

education. The outcomes show that the BiLSTM model completed the lowest minimal loss of 0.001167, 

followed closely through the GRU version with a minimum lack of 0.001192 and the LSTM model with a 

minimum loss of 0.001232 as shown in Table 3. 

 

 

Table 3. The final loss and min loss for 3 models 
Model Final loss Min loss 

GRU 0.0008097 0.001192 

LSTM 0.0008225 0.001232 

BILSTM 0.0008075 0.001167 

 

 

Overall, the outcomes endorse that the BiLSTM model outperformed the opposite models in phrases 

of each very last loss and minimum loss, indicating that it learned the assignment better than the opposite 

fashions. In this case, the regression plots show the relationship between the true values of the target variable 

and the predicted values of the target variable by each of the three models: GRU, LSTM, and BiLSTM as 

shown in Figure 4. The closer the predicted values are to the true values, the more closely the points on the 

regression line will align with the diagonal line, which represents perfect predictions. Looking at the evaluation 

metrics, the BiLSTM model has the lowest MAE, RMSE, and MAPE values. Additionally, it has the highest 

R2 value among the three models, indicating that it explains the variance in the data better than the other two 

models. Therefore, based on these evaluation metrics, we can finally conclude with all this and everything we 

obtained in this result that the BiLSTM model is the best regression model among the three models as presented 

in Figure 4(a). 

The results of the analysis show that the BiLSTM model consistently outperformed the GRU and 

LSTM models in terms of both ultimate loss and minimum loss, it obtained the ultimate loss and minimum 
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loss values, respectively work well in learning the business as observed in Figures 4(b) and (c). Furthermore, 

the regression plots show that the values predicted by the BiLSTM model agree well with the true values, 

indicating accuracy. Analytical metrics such as RMSE, MAE, MAPE, R2 further support the superiority of the 

BiLSTM model, as it obtained the lowest error value and the highest R2 value in conclusion, the BiLSTM 

model appears as a regression the best example of the three, showing its effective efforts in the assigned task. 

 

 

   
(a) (b) (c) 

 

Figure 4. Regression plots for the three model; (a) BiLSTM regression plot, (b) LSTM regression plot, and  

(c) GRU regression plot 

 

  

4. CONCLUSION 

In conclusion, this study demonstrates that GRU, BiLSTM, and LSTM models can be effectively 

utilized for intelligent load traffic prediction in 4G LTE cellular networks. Notably, the BiLSTM model 

outperformed both the LSTM and GRU models across all evaluation metrics, including R2, RMSE, MAE, and 

MAPE. This enhancement in predictive accuracy suggests that the application of advanced AI techniques is 

crucial for improving network QoS and optimizing resource allocation. Moreover, the insights derived from 

this research highlight the potential for predicting traffic patterns in upcoming generations of cellular networks, 

thereby playing a vital role in the ongoing advancement of cellular technologies. Future research avenues may 

include the exploration of additional AI methodologies and the examination of real-time data impacts on model 

accuracy. Collectively, these contributions lay a strong foundation for further investigations into intelligent 

load traffic prediction and the broader application of AI techniques in network management. 
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