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Wireless networks can be seen as the essential element of contemporary
communication systems, connecting, in one way or another, billions of people
and technologies all over the world. As a result, there is more of requirement
from the area of application for models, which should be able to help in the
analysis of the time series of mobile traffic to enhance the quality of service
(QoS) in the present networks as well as in the future ones. The primary
objective of this article is to develop effective artificial intelligence (Al)
models for traffic load prediction in cellular networks. To achieve this, we
employ three models; gated recurrent unit (GRU), bidirectional long short
time memory (BiLSTM), and long short time memory (LSTM), to make
numerical estimates of the network traffic at 4G long-term evolution (LTE)
cell towers. The empirical results indicate that the BIiLSTM model
outperforms both the LSTM and GRU models, achieving root mean squared
error (RMSE), mean absolute error (MAE), and R2 values of 86.64, 67.12,
and 93.23%, respectively. Although this research focuses on traffic modeling

for 4G LTE networks, the proposed models hold significant value for the
development and optimization of the upcoming generations.
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1. INTRODUCTION

In the management of cellular networks, accurate simulation and prediction of load are essential for
achieving high resource utilization. This research proposes a novel approach that leverages artificial
intelligence (Al) methods to forecast traffic loads on cellular networks, specifically focusing on long short time
memory (LSTM) [1], bidirectional long short time memory (BiLSTM) [2], and gated recurrent unit (GRU) [3]
models for predicting network traffic at 4G long-term evolution (LTE) cell towers. Effective traffic
management is increasingly critical in today’s data-driven environment, particularly with the rapid expansion
of 5G technology [4]. Predicting both 4G LTE and 5G traffic is vital for enhancing quality of service (QoS)
and involves sophisticated algorithms, including linear regression, support vector machine regression, and deep
learning techniques like LSTM, BiLSTM, GRU, and convolutional neural networks (CNN) [5]-[8]. Accurate
traffic predictions facilitate better network planning, bandwidth provisioning, and traffic engineering, enabling
more efficient data flow management and deeper insights into network characteristics. As technology continues
to evolve, effective traffic modeling will unlock new opportunities across various sectors, underscoring the
necessity for secure, reliable, and efficient systems. Various methodologies, including genetic algorithms,
artificial neural networks (ANN), and fuzzy logic, have been explored to enhance traffic prediction and network
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management. Deep learning models, such as deep neural networks (DNN) and recurrent CNN, have also been
employed to forecast traffic flow [9]-[13].

Previous studies have highlighted the potential of combining traditional and advanced methodologies.
For instance, Alsaade and Al-Adhaileh [10] proposed a model integrating single-exponential smoothing with
long short-term memory (SES-LSTM), achieving R-squared values of 88.21%, 92.20%, and 89.81%.
Similarly, research by Kurri et al. [9] utilized an LSTM model to analyze a year’s worth of traffic data from
4G LTE cell towers, yielding R-squared scores between 0.5014 and 0.54233, indicating a 9.6% to 17.7%
improvement over the ARIMA model. Despite these advancements, challenges persist in capturing the complex
and dynamic nature of network traffic patterns, highlighting the need for continued development of predictive
models. The proposed model demonstrates superior performance in predicting network traffic relative to
existing methods, enhancing accuracy, optimizing resource allocation, and ensuring a higher QoS [14].
Ultimately, this innovation aims to improve the user experience in an increasingly demanding mobile
communications landscape.

In summary, more precise models and predictions of network traffic patterns are crucial for ensuring
better QoS and improved network traffic management [15]. This paper introduces a model that enhances
traditional time-series approaches and utilizes various types of network data concurrently, providing the most
suitable bandwidth allocation for optimal network utilization. The major contributions of this research include
the development of an intelligent system capable of accurately predicting cellular and LTE network traffic,
significantly enhancing prediction accuracy and establishing a robust framework for future network
management. The following sections will detail the methodologies employed, compare the performance of the
proposed model with existing ones, and critically discuss the implications of the findings. These insights are
expected to be valuable for industry practitioners and researchers alike, paving the way for advancements in
network traffic management across various fields, such as data prediction, network optimization, and capacity
planning.

2. MATERIALS AND METHODS

This section gives the details of the materials and methods to be used in the proposed model which is
outlined in Figure 1. provides Proposed traffic prediction model which is intended for increasing the efficiency
of the models of time series for the prediction of network traffic. The advancements in this study have fine-
tuned the deep learning techniques namely: GRU, LSTM, and bidirectional LSTM for time series analysis. The
real network data was used in order to evaluate the performance of the proposed models. The data is first pre-
processed through a process of resampling on an hourly level and includes a SES layer the range of values is
scaled between 0 and 1 [14], [16]. The scaled data is partitioned into the training set and the testing set, with
the former comprising a dataset collected up to the week prior to the final week of data and the latter comprising
of data from the final week only. The training data is then utilized for the creation of time series sequences and
the time step we consider is 24 hours and these are used in the training of the models.

The GRU model is initialized with three layers of the GRU and has a linear activation output layer as
well as compiled with the Nadam optimizer and mean squared error loss functions [14], [17]. The LSTM model
is specified with three LSTM layers and a dense output layer; it is compiled with the Nadam optimizer and
mean squared error loss function. Bidirectional LSTM model is defined with three bidirectional LSTM layers
and dense output layer The defined model is compiled with Nadam optimizer, and mean squared error as loss
function [2] as shown in Table 1. The loss values for the training and testing sets are plotted for all three models,
and the predictions are made on the test set [17]. Finally, the predicted values are scaled back to their original
values and plotted against the actual values for comparison.

2.1. 4G cell traffic datasets

The utilization of authentic datasets comprising of actual network traffic traces is crucial in assessing
and validating the efficacy and efficiency of the proposed model's performance. The dataset we gathered from
Kaggle includes packet data specifically from 4G cell networks. The data flow from mobile service users is
referred to as 4G cell traffic; the mobile device will be provided by a nearby 4G cell networks. For about a
year, data is collected in 57 cells at 1-hour intervals in an LTE network. Data is gathered in an LTE network.
In the current study, we examined the proposed system using one year of data from cell 000113. The public
dataset is available at website Kaggle [4], [10], [11].

2.2. Simple exponential smoothing

SES models stand out as one of the most widely utilized and fundamental prediction methodologies,
owing to their effectiveness and pervasiveness in predictive modelling [16]-[18].
The equation for SES is (1):
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Stii = axY + (1—a) xS 1)

In the given equations, S;,, represents the forecast for the next time period, Y, new observation (or actual
value) in period t, S is the forecast for the current period and o presents smoothing parameter, a value between

0 and 1 (O<a<1).

|
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exponential and test sets MinMaxScaler :
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Figure 1. Proposed traffic prediction model of GRU, LSTM, and BiLSTM

Table 1. Hyperparameters for training: LSTM, BiLSTM, and GRU

Parameter names Numbers
Initial learning rate 0.002
No. of epochs 100
batch_size 64
Optimization algorithm ~ Nadam
Loss function MSE
LSTM hidden layers 3
Timesteps 24

2.3. Normalization

MinMaxScaler is a technique used to normalize data by adjusting it to fall within a specific range. In
the context of LTE network traffic prediction, where the data is complex and made up of signals with varying
characteristics, this scaling is essential. It ensures that larger numerical values don’t overshadow smaller ones.
By rescaling the data with MinMaxScaler, we can improve the accuracy of predictions and speed up processing.
The scaler works by transforming the data to a range between zero and one. This approach offers two main
advantages: it prevents data with larger values from dominating and helps avoid numerical issues during
prediction. The transformation using MinMaxScaler is achieved by removing the feature's minimal value and
then dividing by the feature's range (i.e., maximum minus minimum). This ensures that the data is rescaled to
fit within the specified range while preserving its relative distribution [14], [19], [20].
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The equation for MinMaxScaler is given by (2):

f_scaled = U Tmin) @)

(fmax — Fmin)

where f denotes the feature value, this equation scales the feature values between 0 and 1. The resulting scaled
values can be interpreted as the relative position of the original value within the range of the feature, f,,,;, and
represent respectivelly the feature's minimum and maximum values.

2.4, Gated recurrent unit

GRUs belong to the category of recurrent neural networks (RNNSs) that are extensively employed in
natural language processing and other sequence modeling applications. A GRU cell has an internal state vector
that can be updated based on the current input and the previous state. For a given input time series y, at time,
the equations for a single GRU cell are respectively reset gate, update gate, memory and final output as

(3)-(6):

1y = sigma|(Wryy,) + Wynhe—y) + by ®)
z, = sigma[(Wyyy,) + Wynhe—y) + b, 4
Ry = tanh[(Wyyy:) + Wan (e © he—y)) + by (5)
he =[(z: © he) + (1 = 2) © he-y)] (6)

The parameters of a GRU include:

In this context, r: and z, are the parameters for the reset and update gates, respectively, while sigma
denotes the sigmoid activation function. The variable h., refers to the output from the previous GRU unit, and
O signifies element-wise multiplication. The weight matrices W, W;.,,, Wy, W,,,, Wy, and W, are linked
to different inputs, with biases b,., b,, and b, associated with each gate's activation. The candidate hidden state
h, is computed using (3), This equation describes how the candidate hidden state A, is derived by applying a
hyperbolic tangent function to the weighted sum of the reset gate-modified previous hidden state and the current
input, plus the bias term by, [1], [3], [21], [22].

2.5. Long short time memory

LSTM is a powerful type of RNN which is used mainly for issues connected with sequence prediction.
LSTM networks have the capacity to store past information in their loops and they tend to use this information
in order to forecast future events. This makes them useful for a wide range of applications such as; speech
recognition, natural language processing, and time series prediction.

There are several essential components in the foundation of an LSTM cell, called gates that define
how information is dealt within the network. The forget gate G, decides which parts of the previous cell’s
memory should be kept or discarded, allowing the network to forget irrelevant information. The input gate i,
controls how much new information from the current input should be added to the cell's memory. The candidate
memory state M, represents potential new information that could be integrated into the cell’s memory. These
gates work together to update the cell's memory state M,, combining what’s remembered with new information.
The output gate O, then determines what part of this updated memory should be passed on to the next step as
the hidden state h,.

G, = sigma| bg + (Uhg hy_1 + Uygyt)] @)
i, =sigma [bi + (Uhl- hi_4 + inyt)] (8)
M, = sigma[Upmhe—1 + UgmVe + b] 9)
M, = [(G, * My_y) + (I, * M,)] (10)
0, = sigma[Upohi_1 + Uyoy: + by] (11)
hy = [0, * (tanh(M,))] (12)
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In these equations, G;, i;, and O, denote the parameters for the forget, input, and output gates. The
weight matrices Upg, Uyg, Uy, Upis Upm, U, Upo, and Uy, connect the previous hidden state h,_, and the
current input y,. The biases by, b;, and b, adjust the gate functions, while the sigmoid function "sigma"

regulates the activation [1], [12], [22], [23].

2.6. Bidirectional long short time memory

BiLSTM is a RNN that is composed of several LSTM layers that can process input sequences in both
forward and backward orientations. A typical LSTM processes the input sequence in only one way, from
beginning to finish; however, a BILSTM may access information from both the past and future contexts at the
same time, allowing it to capture more complicated relationships within the input sequence. BiLSTM is widely
employed in applications including natural language processing, time-series analysis and speech recognition,
where the ability to capture contextual dependencies in both directions is critical for successful prediction or
classification [2], [12], [24].

2.7. Model evaluation criteria

To evaluate how well the predictive models perform, we use several key metrics: root mean squared
error (RMSE), which tells us how much the predictions differ from actual values on average by measuring the
square root of the squared errors; mean absolute error (MAE), which looks at the average of all absolute
differences between predictions and actual results; mean absolute percentage error (MAPE), which shows the
prediction accuracy as a percentage; and R2, which indicates how well the model's predictions match the real
data. By considering all these metrics, a thorough examination of the performance of the proposed predictive
models can be obtained. The proposed models include LSTM, GRU, and BiLSTM, which are all commonly
used deep-learning architectures for time-series prediction [17], [19], [21], [24]-[27].
The equations for the evaluation metrics commonly used in predictive modelling:

RMSE = 25N, (x, — 22 (13)

Spearman's correlation coefficient (R):

2 _q _ (Zrxe=xp)?
Re=1 (Zk(»cr—xﬁ)z (14)
1 ~
MAE = ;Z’;l’ﬂlxt — Xt (15)
MAPE = 3N, [*=2] « 100% (16)
t

2.8. Proposed traffic prediction model

The proposed model predicts time series data using different types of RNN such as LSTM, GRU, and
bidirectional LSTM. The data is resampled to hourly frequency and SES is applied to one of the columns. The
data is then split into training and testing sets and normalized using MinMaxScaler [6], [14]. A function is
defined to create training and testing sets for LSTM, BiLSTM, and GRU models [24], [27]. The GRU, LSTM,
and Bidirectional LSTM models are defined and compiled with appropriate parameters, and then trained on
the training data. The model's history is saved, and its performance is evaluated using RMSE, MAE, MAPE,
and R2 on the test data [17], [19], [21], [25]-[27]. Finally, the trained models are stored for future use.

3. RESULTS AND DISCUSSION

In this study, we compared the performance of three deep learning models LSTM, BiLSTM, and GRU
using four evaluation metrics: RMSE, MSE, MAPE, and R? as shown in Figure 2. The results we obtained
clearly demonstrate that the BiLSTM model outperformed both LSTM and GRU across all metrics, indicating
its superior ability to predict cellular network traffic. As summarized in Table 2, the evaluation for each model
based on RMSE, MSE, MAPE, and R2 shows BILSTM's consistently better performance. These results
confirm that BiLSTM offers a more accurate prediction of network traffic compared to the other models. When
analyzing the results in detail, it becomes evident that BILSTM’s ability to capture long-range dependencies
within the time-series data contributes to its improved accuracy. The lower RMSE and MSE values indicate
that BiLSTM is better suited for reducing the prediction error compared to LSTM and GRU. Additionally, the
R2 values further support these findings, demonstrating how well each model's predictions correlate with the
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actual data. In fact, BILSTM achieved an R2 of 93.23% as indicated in Figure 2(a), indicating a stronger fit to
the observed data. Compared to the LSTM model, which had an R2 of 92.75% as shown in Figure 2(b),
BiLSTM showed a significant improvement. This improvement can be attributed to its bidirectional structure,
which allows it to process the input sequence in both forward and backward directions. On the other hand, the
GRU model also performed well but did not reach the same level of accuracy as BiLSTM, with an R2 of
92.93% as represented in Figure 2(c). While BiLSTM exhibited superior performance, it is important to
highlight that this study focused on cellular network traffic data, which may have specific characteristics that
benefit from BIiLSTM’s bidirectional nature. However, this comes at the cost of higher computational
requirements compared to LSTM and GRU. The findings suggest that BiLSTM is a more robust option for
predicting cellular traffic load, especially in situations where precise predictions are critical to maintaining
QoS. Additionally, hybrid models that combine BiLSTM with other advanced techniques, such as attention
mechanisms or convolutional layers, could further improve prediction accuracy and reduce computational
costs. Our findings align with previous research that highlights the advantages of different models like ARIMA,
LSTM, and others in time-series prediction tasks. Studies have shown that BiLSTM tends to capture temporal
patterns more effectively than LSTM and GRU models, particularly in scenarios where bidirectional
information enhances predictive performance. However, it is essential to note the trade-off in computational
cost, which must be considered when applying these models to practical applications.

Table 2. Three models performance

Model

RMSE

MAE MAPE R2

GRU
LSTM
BiLSTM

88.5177
89.6233
86.6494

70.0329
70.2797
67.1269

7.7678
7.8027
7.4331

0.9293
0.9275
0.9323
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Figure 2. Predicted vs actual traffic: a comparative evaluation of; (a) BiLSTM, (b) LSTM, and (c) GRU

In conclusion, the experimental results demonstrated that BiLSTM outperforms LSTM and GRU in
terms of RMSE, MSE, MAPE, and R?, making it the most appropriate model for cellular traffic prediction in
this study. Its ability to minimize prediction errors, while maintaining a high correlation with actual traffic data,
indicates its potential as an optimal solution for network traffic forecasting.
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The consequences display the very last loss and minimal loss for three models (GRU, LSTM, and
BiLSTM) educated on a positive undertaking as shown in Figure 3. The final-loss is the price of the loss-
function at the end of education, at the same time as the minimal loss is the lowest cost of the loss-function
accomplished at some point of-schooling. For all three fashions, the final loss is notably low, indicating that
they've learned to perform the mission nicely. However, the BiLSTM version has the lowest final loss of
0.0008075 as shown in Figure 3(a), accompanied via the LSTM version with a very last loss of 0.0008225 as
indicated in Figure 3(b), and the GRU model with a very last-lack of 0.0008097 as represented in Figure 3(c).

BiLSTM Model Loss
— BILSTM Testing Loss

LSTM Meodel Loss

P — LSTM Testing Loss

5 5 — BIiLSTM Training Loss 8l — LSTM Training Loss

b PN

w4 o

%) &% 61
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(©)

Figure 3. Performance metrics: training loss of; (a) BiLSTM, (b) LSTM, and (¢) GRU

=

The minimal loss, alternatively, is the bottom cost of the loss-characteristic accomplished during
education. The outcomes show that the BiLSTM model completed the lowest minimal loss of 0.001167,

followed closely through the GRU version with a minimum lack of 0.001192 and the LSTM model with a
minimum loss of 0.001232 as shown in Table 3.

Table 3. The final loss and min loss for 3 models
Model Final loss Min loss
GRU 0.0008097  0.001192
LSTM 0.0008225  0.001232
BILSTM  0.0008075 0.001167

Overall, the outcomes endorse that the BiLSTM model outperformed the opposite models in phrases
of each very last loss and minimum loss, indicating that it learned the assignment better than the opposite
fashions. In this case, the regression plots show the relationship between the true values of the target variable
and the predicted values of the target variable by each of the three models: GRU, LSTM, and BiLSTM as
shown in Figure 4. The closer the predicted values are to the true values, the more closely the points on the
regression line will align with the diagonal line, which represents perfect predictions. Looking at the evaluation
metrics, the BiLSTM model has the lowest MAE, RMSE, and MAPE values. Additionally, it has the highest
R2 value among the three models, indicating that it explains the variance in the data better than the other two
models. Therefore, based on these evaluation metrics, we can finally conclude with all this and everything we
obtained in this result that the BiLSTM model is the best regression model among the three models as presented
in Figure 4(a).

The results of the analysis show that the BiLSTM model consistently outperformed the GRU and
LSTM models in terms of both ultimate loss and minimum loss, it obtained the ultimate loss and minimum
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loss values, respectively work well in learning the business as observed in Figures 4(b) and (c). Furthermore,
the regression plots show that the values predicted by the BiLSTM model agree well with the true values,
indicating accuracy. Analytical metrics such as RMSE, MAE, MAPE, R2 further support the superiority of the
BiLSTM model, as it obtained the lowest error value and the highest R2 value in conclusion, the BiLSTM
model appears as a regression the best example of the three, showing its effective efforts in the assigned task.

BiLSTM Regression Plot LSTM Regression Plot GRU Regression Plot
25 25
N 20 S 20
=4 N
b 7]
2 15 ,5 15
S o
S 10 810
o o
o
5 5
0 0
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
True values True values True values
(@) (b) (©)

Figure 4. Regression plots for the three model; (a) BiLSTM regression plot, (b) LSTM regression plot, and
(c) GRU regression plot

4. CONCLUSION

In conclusion, this study demonstrates that GRU, BiLSTM, and LSTM models can be effectively
utilized for intelligent load traffic prediction in 4G LTE cellular networks. Notably, the BiLSTM model
outperformed both the LSTM and GRU models across all evaluation metrics, including R2, RMSE, MAE, and
MAPE. This enhancement in predictive accuracy suggests that the application of advanced Al techniques is
crucial for improving network QoS and optimizing resource allocation. Moreover, the insights derived from
this research highlight the potential for predicting traffic patterns in upcoming generations of cellular networks,
thereby playing a vital role in the ongoing advancement of cellular technologies. Future research avenues may
include the exploration of additional Al methodologies and the examination of real-time data impacts on model
accuracy. Collectively, these contributions lay a strong foundation for further investigations into intelligent
load traffic prediction and the broader application of Al techniques in network management.
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