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Ensuring the safety and efficiency of unmanned aerial vehicles (UAVSs)
requires effective fault detection and identification (FDI). Traditional multi-
stage FDI methods, particularly those using residual detection layers,
increase complexity and computational cost, limiting real-time applications.
This study proposes a single-stage anomaly detection framework integrating
barnacle mating optimization (BMO) with discrete cosine transform (DCT)
for UAV fault detection. While prior research explored model-based and
data-driven FDI, bio-inspired optimization techniques remain underexplored
in frequency-domain analysis. This study develops a BMO-based fitness
function analyzing 3rd, 5th, and 7th harmonic peaks to detect UAV
anomalies. Software-in-the-Loop (SITL) simulations validate the method,
achieving a 5-second optimal frame size, mean absolute percentage error
(MAPE) of 0.05, and root mean square error (RMSE) of 195.52. The
findings confirm that a single-stage detection framework via optimization

method and frequency domain analysis is possible, making it viable for real-
time UAV applications. This study bridges the gap in bio-inspired UAV
fault detection, paving the way for safer and more efficient UAV operations.
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1. INTRODUCTION

The rapid advancement of unmanned aerial vehicles (UAVS), particularly quadcopters, has
revolutionized various industries, including agriculture, surveillance, and logistics. However, the increasing
complexity of these systems also raises concerns regarding their reliability and safety. Anomalies in flight
data, often caused by factors such as mechanical failures, sensor malfunctions, or environmental influences,
can lead to catastrophic failures if not detected promptly. Therefore, effective anomaly detection mechanisms
are critical for ensuring the operational integrity of quadcopters [1], [2]. Fault detection and identification
(FDI) in quadrotor is essential for maintaining operational safety and efficiency. Method used are model-
based approach and data driven approach which uses multiple stages to acquire its results.

Among the various methods employed, model-based approaches stand out by utilizing mathematical
models of the drone system. These methods include tools such as extended state observers and interval
observers specifically designed for fault detection in UAVs [3]. Another innovative technique is the dynamic
event-triggered Hoo optimization approach which proposes a dynamic event-triggered Hoo optimization
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approach for UAV fault detection, which utilizes a variable sampling period, Riccati recursion for optimal
residual evaluation, and eliminates the Zeno phenomenon, demonstrating improved fault detection accuracy
and communication efficiency in both open- and closed-loop systems [3]. Long-short-term-memory (LSTM)
based model-based approach has also been developed by [4], [5]. Research by Jeon et al. [4] propose an
LSTM autoencoder-based anomaly detection method for quadcopter UAVs that learns complex features from
normal flight data and assesses structural anomalies by adaptively considering UAV movement and runtime
conditions, achieving improved specificity and sensitivity in detecting structural faults. Research by
Zhang et al. [5] propose a FDI method for quadcopters based on airframe vibration signals, utilizing wavelet
packet decomposition for feature extraction and an LSTM-based model for fault identification, demonstrating
superior performance compared to back propagation (BP) neural networks (NNs) in detecting quadcopter
blade faults. Multiple hybrid detection approches has also been done where the combination of multiple
approach is combine together such as neuro-fuzzy and extended kalman to detect anomalies [6]-[8]. Research
by Thanaraj et al. [6] proposes a hybrid FDI model that integrates an extended Kalman filter (EKF) for state
estimation with an extreme learning neuro-fuzzy algorithm for multi-class classification, achieving improved
computational efficiency and accuracy in detecting partial actuator faults in UAVs. Research by
Hou et al. [7] presents a fault detection method using failure mode databases and runtime verification,
leveraging historical fault data to generate fault modes, extract key safety attributes, and implement real-time
monitoring for enhanced UAV reliability. Research by Asadi [8] introduces a two-stage FDI approach that
employs a parity space method for generating residuals and an exponential forgetting factor recursive least
square (RLS) method for fault identification, demonstrating effective rotor fault detection through real-time
testbed experiments. Research by Hasan and Johansen [9] propose a model-based actuator fault diagnosis
approach for multirotor UAVS, utilizing a cascade of a nonlinear Thau observer and a linearized Kalman
filter (adaptive eXogenous Kalman filter, XKF) to detect, isolate, and estimate actuator faults with high
accuracy.

Data driven approach has been done by numerous researchers. Research by Liang et al. [10] propose
a data-driven fault diagnosis framework for fixed-wing UAVs (FW-UAVS), integrating shared nearest
neighbor distance (SNND)-based DBSCAN for offline operation condition classification, SNND-KNN for
online recognition, and a multiple condition-oriented dynamic KPCA (M-DKPCA) algorithm with weighted
sliding window (WSW) denoising, which effectively improves fault detection accuracy under varying
operational conditions. Research by Yao et al. [11] propose a data-driven fault detection approach for
modular reconfigurable flying array (MRFA) using an improved deep forest (IDF) multivariate regression
model, enhancing fault detection accuracy by incorporating an enhanced cascade layer structure, redesigned
inter-layer loss function, and optimized hyperparameters, achieving improved accuracy (ACC) and area
under the curve (AUC) scores compared to standard deep forest models. Research by Chen et al. [12]
propose a fault diagnosis method for UAV motors using current signal data with few samples, employing a
hybrid NN model combining a width learning system (WLS) and a convolutional neural network (CNN) to
effectively extract features and classify faults, demonstrating superior performance in small-sample learning
scenarios. Research by Baldini et al. [13] propose a real-time propeller fault detection method for multirotor
drones using only onboard IMU data, integrating finite impulse response (FIR) filtering and sparse classifiers
to minimize computational complexity, achieving increased classification accuracy while running efficiently
on commercial flight controllers. Vibration analysis based FDI was also done by Cabahug and Eslamiat [14].
They propose a failure detection system for quadcopter UAVs as part of a three-step autonomous emergency
landing safety framework, utilizing IMU vibration data and k-means clustering to classify UAV health states
into normal, faulty, and failure categories, achieving fast and accurate mid-flight fault detection. Research by
Steinhoff et al. [15] propose an acoustic fault diagnosis system for UAV propeller blades, utilizing an
acoustic camera with 112 microphones and beamforming techniques to capture sound signatures, with a
CNN-based model achieving an F1-score of 0.9962 for two-class classification, demonstrating superior fault
detection accuracy compared to previous approaches that lacked robust environmental noise handling.
Research by Ghazali and Rahiman [16] propose a vibration-based fault detection system for multirotor
drones using artificial intelligence (Al), integrating fuzzy logic, neuro-fuzzy, and NN models to classify
structural anomalies in drone arms, with results showing that while neuro-fuzzy and NN methods depend on
dataset quality, fuzzy logic provides the most reliable decision-making for real-time UAV safety monitoring.
Research by Galvan et al. [17] propose a sensor data-driven UAV anomaly detection method using a deep
learning approach, integrating a hybrid CNN-LSTM architecture for sequential data analysis, achieving high
accuracy in detecting UAV anomalies by effectively learning temporal patterns from sensor data. Research
by Guo et al. [18] propose a sensor fault detection method for SUAVs that employs a classifier without
negative samples, utilizing a local density-regulated optimization algorithm to enhance the robustness of one-
class support vector machines (OCSVM) against outliers, effectively improving detection accuracy while
minimizing the need for large training datasets.
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Anomaly detection techniques in UAVs can generally be grouped into model-based, data-driven,
and hybrid approaches. Model-based methods rely on mathematical representations of UAV dynamics and
have been effective when the system model is well understood, but they often struggle under uncertain
conditions or sensor noise [3], [9]. Data-driven methods, including deep learning and clustering algorithms,
have become increasingly popular due to their adaptability and performance in complex environments [4],
[10], [17]. Hybrid strategies seek to leverage the strengths of both, integrating observers with machine
learning or fuzzy systems for improved accuracy and robustness [6], [16], [19]. Additionally, vibration-based
anomaly detection has gained attention for its ability to detect mechanical faults such as rotor imbalance and
structural looseness using signal processing techniques. Studies by Zhou et al. [20], Hu et al. [21] have
demonstrated successful UAV anomaly detection using autoencoders and kernel-based models on vibration
and state data. However, most of these approaches involve multi-stage pipelines that require residual
generation or offline training. In contrast, the method proposed in this paper uses a single-stage framework
based on bio-inspired optimization and frequency-domain harmonic analysis.

In addition to time-domain and deep learning approaches, several studies have explored frequency-
domain and wavelet-based anomaly detection for UAVs. Time-domain techniques such as RMS, peak-to-
peak variation, and statistical thresholds are commonly used due to their simplicity but often fail to detect
recurring harmonic anomalies caused by rotor imbalance. Wavelet-based methods provide multi-resolution
analysis and are effective in handling non-stationary signals, but they require careful parameter tuning and
high computational cost. Common frequency-domain tools such as fast Fourier transform (FFT) and short-
time Fourier transform (STFT) have also been applied for UAV fault diagnosis, especially in vibration
analysis, but may suffer from limited frequency resolution or fixed window limitations. In contrast, the
proposed method leverages the discrete cosine transform (DCT), which offers energy compaction and low
computational overhead, making it suitable for detecting structural vibration anomalies. Furthermore, by
combining DCT with barnacle mating optimization (BMO), the proposed method dynamically searches for
critical frames that emphasize harmonic distortions (3rd, 5th, and 7th), without relying on fixed statistical
rules or static segmentation used in traditional methods.

A notable gap in current research is that the current method needs multiple stages for the detection
where some uses residual detection as its first stage. With the advancements in machine learning, multistage
detection which uses residual detection layer may not be needed anymore. Besides that, there is the limited
exploration of bio-inspired optimization techniques for UAV anomaly detection. While previous studies have
analyzed vibration detection using methods such as genetic algorithms (GA) [22], they have not investigated
using newer bio-inspired optimization techniques such as BMO in conjunction with frequency-domain
analysis. Addressing this gap, our study proposes an innovative approach that integrates DCT with BMO to
enhance the accuracy and efficiency of UAV fault detection without the need of a residual detection layer.

The new contribution of this paper is the FDI framework which only uses one stage which proposed
a single stage end-to-end approach, leveraging frequency-domain analysis directly for anomaly detection.
Besides that, this paper introduces BMO as an optimization strategy for UAV anomaly detection, specifically
using DCT to extract harmonic components from quadcopter flight data, a combination not previously
explored in UAV fault detection. This paper also shows a novel fitness function that systematically analyzes
3rd, 5th, and 7th harmonic peaks to establish threshold-based anomaly detection.

The preceding chapter will explain the algorithm works which start with the formulation of the
fitness function which utilizes DCT for frequency analysis (subsection 2.1). After that, subsection 2.2 shows
the full algorithm which includes the BMO with the inserted fitness function. Paper by Jamil et al. [23] which
is the only paper found to proposed a similar algorithm which is a single stage FDI will be used to compare
with the proposed FDI. The testing of the proposed method will use the same dataset as Jamil et al. [23] and
the dataset description is added in subsection 2.3. The test result for determining optimum frames size and
comparison result can be seen in section 3. Finally, section 4 will conclude the paper.

2. METHOD

In this research, we investigate into the interesting domain of quadcopter flight data analysis with an
aim to find anomalies and draw valuable insights. Our approach combines creative methods such as
software-in-the-Loop (SITL) data gathering with the uniqgue BMO algorithm. Using these methods, we turn
our attention to analysis of flight experiment quadcopter roll data. The dataset includes examples of
anomalous flights which deviate from the insertion of problematic vibration.

Figure 1 shows the overall process of the proposed anomaly detection algorithm. The signal from
the datasets is inserted directly into the algorithm without the need of residual generator which is extensively
used in other research. The datasets used for this preliminary research is discussed in subsection 2.1. With the
inputted signal, BMO will suggest a starting point to search for required anomalies. The starting point here is
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the first point in the three correlated frames. The fitness function which is discussed in detail in
subsection 2.2 will evaluate the three correlated frames. This will be done multiple times based on the
starting point suggested by BMO. The result of the evaluation will inform BMO to suggest another starting
point to conduct the evaluation. This process will be done until a predetermined requirements are met. The
mention requirement is directly associated to BMO and can be seen in Table 1.
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Figure 1. Overview of the proposed anomaly detection algorithm pipeline integrating BMO and DCT for
evaluating harmonic peaks in UAV roll data

Table 1. Algorithm parameters

Parameters Value
Population, Xi 30
Maximum iteration 100
pl 7

In evaluating the effectiveness of the overall algorithm, root mean square error (RMSE), mean
absolute percentage error (MAPE), mean absolute error (MAE), and detection time will be used. Besides
that, the result is compared to previous research by [23] which is directly comparable to the proposed
method.

2.1. Fitness function

The fitness function developed has one objective that is to find the problematic vibration based on
frequency domain. The frequency domain data is based on time data in which it’s translated into frequency
data based on DCT [22]-[24]. The full fitness function block diagram can be seen in Figure 2.

Referring to Figure 2, the flowchart details a process for analyzing harmonics in quadrotor roll
channel flight data, focusing on identifying abnormalities through systematic harmonic analysis. The process
starts with data acquisition and preprocessing, where three distinct frames are created from the raw flight
data. Each of these frames is then transformed into the frequency domain using the DCT, enabling a more
effective analysis of the harmonic components present in the signal.

The next phase involves harmonics analysis, where each frame is examined for specific harmonic
peaks. If the 3rd harmonic peak in the second frame exceeds the threshold, the sum of all 3rd harmonic peaks
is calculated and stored in variable F3. This is summarized in (1):

— p3(}’), 1Sp3(y)S4
& _{ 0, others (1)

where y is frequency domain data and ps is the 3rd harmonics peak value of y. The values 1 and 4 in the
equations are statistically found by evaluating all 51 sets of data at the problematic vibration area.

Similarly, for the second frame, the analysis checks if the 5th harmonic peak surpasses a
predetermined threshold value. If this condition is met, the sum of all 5th harmonic peaks is calculated and
stored in a variable labeled F5. This is summarize in (2):
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Fy = {ps(y), I<ps(y) <4 "

0, others

where vy is frequency domain data and ps is the 5th harmonics peak value of y.
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Figure 2. Flowchart of the fitness function showing the extraction and evaluation of the 3rd, 5th, and 7th
harmonic peaks from three consecutive frames

Additionally, the presence of the 7th harmonic peak exceeding the same threshold is verified. If the
7th harmonic peak meets the threshold requirement, the sum of all 7th harmonic peaks is computed and
stored in variable F7. This is summarized in (3):

_ (), 1<p,(y) <4
k7 = { 0, others @)

where vy is frequency domain data and pr is the 7th harmonics peak value of y.

The final step in the process is to aggregate the results. The values stored in F3, Fs, and F7 are
combined into a single variable, F, through (4). This consolidated variable represents the overall harmonic
content and is used to assess the data for any irregularities or deviations from expected patterns.

F=F+F+F 4

In order for (4) to be used as a minimum problem fitness function, a large number is subtracted from F. In
this research, the arbitrary large number (LN) is set to 30.
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In this fitness function, the 3rd, 5th, and 7th harmonic components are treated with equal
importance. No explicit weighting factors are applied, as all three harmonics are aggregated directly by
summation. This design simplifies the fitness computation and reflects the empirical observation that all three
harmonics contribute equally to the detection of structural anomalies in the UAV roll signal.

The selection of the 3rd, 5th, and 7th harmonics in the proposed fitness function is grounded from
established structural vibration studies by Verbeke and Debruyne [25], who conducted a comprehensive
experimental and numerical vibration analysis on a hexacopter UAV frame. Their study identified that
motor—propeller units are major sources of vibration, with resonance peaks observed at specific harmonic
frequencies. These harmonics, induced by propeller imbalance and structural dynamics, propagate through
the UAV frame and manifest as measurable peaks in vibration spectra. Thus, selecting the 3rd, 5th, and 7th
harmonics provides a practical and theoretically supported basis for capturing structural anomalies within the
quadcopter roll channel using frequency-domain analysis.

To clearly define the fitness function used by the BMO algorithm, the goal is to minimize the
deviation from a fixed reference value (30), which represents the expected upper bound for harmonic
contributions. The complete fitness function, which forms the objective for the optimizer, is formulated as (5)
and (6):

T =|LN — (F; + F; + F,)| (5)

where:

- F=Yp;(»),if 1 < p;(y) < 4,otherwise 0;

- F5=Xps(¥),if 1 < ps(y) < 4, otherwise 0;

- F,=Yp,),if 1 <p,(y) < 4,otherwise 0;

— pa.(y): represents the peak amplitude of the nth harmonic in the DCT transformed frame y.
This leads to the following optimization problem:

r;leilgl T(x) = |LN = ez 5,7y Fu ()] ©)

where x is the starting point of the frame in the signal, and D is the domain of valid data points in the UAV
roll signal. The lower the value of T, the closer the harmonic structure is to a known abnormal condition,
making it a target for anomaly scoring.

Overall, this process provides a structured approach to analyzing harmonics in quadrotor roll
channel flight data. By systematically checking for specific harmonic peaks and aggregating the results, this
method helps in detecting potential anomalies, which can be crucial for maintaining optimal performance and
reliability in quadrotor operations.

2.2. Overall algorithm

BMO for this investigation are based on paper [26]-[28]. The full pseudocode can be seen in
Algorithm 1. The algorithm starts by BMO initialization its population, maximum iterations and pl value. All
the values can be seen in Table 1. Next (7) and (8) are used to determine the BMO parents [26]:

barnacle; = rand perm(n) @)

barnalce,, = rand perm(n) (8)
where barnacleq and barnaclen are mated parents and N is number of populations.

With the parents known, the child is determined based on (9) and (10). If both parents is equal to pl,
(9) is used, otherwise (10) is used.

Nnew _ N N
xi - pxbarnacled + qxbarnaclem (9)

where p is normally distributed pseudo random number between [0,1], g=(1-p), x{,"amacled and x{,"amadem are
Dad and Mum variables.

N.
xi e = mnd() X xévarnaclem (10)

where rand()=random number [0,1].
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The acquired child in BMO will act as the proposed starting point for the search in the dataset and
where the fitness function starts. With the starting point found, three frames are created with each frame
spans the size of frame size. For example, if the starting point proposed is 100, the first frame will occupy
from point 100 until 200. The second frame will occupy from point 200 till 300 and the third frame will
occupy from point 300 till 400. With these three frames, the fitness function in Figure 2 is executed until the
end to find F. As mentioned in subsection 2.1, the final evaluation value (T) is the absolute value resulting
from the subtraction of F to the value 30. The starting point will be saved as well as T.

The whole process from the determination of the BMO parents till finding T is repeated until the
maximum iteration is reached. For every iteration, T value will be compared to previous and if current T is
less than previous, the T value is updated to the new T and the new starting point will be saved. Algorithm 1
is run 50 times for each dataset to evaluate its effectiveness. The full code can be acquired by properly
applying for the code via emailing corresponding author. The overall flow of the anomaly detection pipeline
is illustrated in Figure 1, while the detailed procedural steps are formalized in Algorithm 1, which represents
the pseudo-code implementation of the proposed method.

Algorithm 1. Algorithm pseudo-code

Initilize the barnacles population
Set T (the best solution) to large value
Set the value of pl
while ( I<Maximum iterations ) DO
Selection using equations (7) and (8):
if selection of Dad and Mum = pl
for each variable
Children generation using equations (9):
end for
else if selection of Dad and Mum >pl
for each variable
Children generation using equations (10):
end for
end if
If the present barnacle crosses any boundaries, bring it back.

Create consecutive three frames with the children as starting point (start of fitness function (Figure 3)
Aquire the data from dataset which overlaps with the three frames
Calculate fitness function based on equation (6)
Update T If there is a better solution, Sorting and update
I=1+1
end while
Return T

Flight with Problamatic Vibration (Dataset 960)

Induced Vibration :

Roll Angle (deg)
(=]

aneuvering

A

] 50 100 150 200 250
Time(s)

Figure 3. Example of roll angular velocity data with a marked point of induced vibration anomaly used for
algorithm validation
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The BMO algorithm was selected due to its strong convergence behavior and minimal parameter
tuning requirements compared to other metaheuristics such as particle swarm optimization (PSO), GA, or
grey wolf optimizer (GWO). BMO has demonstrated effectiveness in prior engineering applications for
problems involving nonlinear fitness landscapes, as it balances exploration and exploitation through its
dynamic mating and mutation-inspired mechanisms [26], [27]. Unlike PSO or GA which often require
multiple hyperparameters or suffer from premature convergence, BMO’s population diversity and adaptive
search allow it to efficiently explore critical segments in frequency-domain data. While direct empirical
comparison with other metaheuristics is beyond this study’s scope, the method was benchmarked against a
previous single-stage FDI method using GA [22], showing improved detection accuracy and computational
consistency. These results justify BMO as a suitable optimizer for anomaly localization in UAV frequency-
domain signals.

2.3. Dataset

The time-series dataset used in this study was generated using a SITL simulation framework based
on ArduPilot, Mission Planner, MAVProxy, and sim_multicopter, as described in [22], [23]. This framework
enables realistic emulation of quadrotor flight dynamics, including IMU, GPS, and actuator responses, while
allowing safe and repeatable anomaly injection without physical UAV hardware [29].

To simulate flight anomalies, artificial vibration disturbances were introduced into the quadcopter
model during mission execution. These disturbances emulate real-world faults such as rotor imbalance,
structural loosening, and partial arm detachment, a common cause of irregular vibration patterns during
flight. Anomalies were inserted at specific waypoints during maneuvering to test detection sensitivity under
dynamic conditions.

The SITL setup realistically reflects external influences such as wind direction changes and vehicle
attitude adjustments. Prior research has validated the effectiveness of SITL in simulating UAV behavior for
mission testing and fault analysis [30]-[32]. This ensures that the collected data closely resembles actual
flight profiles, supporting the robustness of the proposed frequency-domain detection method.

The quadrotor was flown independently using waypoint navigation within the SITL framework. To
demonstrate the impact of quadrotor component failure on vibration, induced vibrations were introduced to
the sensors while the vehicle was in motion. Each data set exhibited variations in vibration location and
duration, alongside changing wind direction and velocity. The Mission Planner software logged attitude (roll,
pitch, and yaw angular velocity) and altitude (z-axis) data.

Figure 3 illustrates an example of data collected from the roll angular velocity channel, comprising
51 data points. Notably, Figure 1 highlights a problematic vibration induced at data point 960 (marked with a
red dotted line), caused by the quadcopter’s varying wind velocity during maneuvers in the x-direction.
Noted that the flight data also consist of maneuvering. The full dataset can be acquired by properly applying
for the data via emailing corresponding author.

3. RESULTS AND DISCUSSION

This section presents the primary findings of the research, providing a detailed comparison and
critical discussion of the results obtained. The implications of the findings are also interpreted to highlight
their significance in the broader context of UAV fault detection. Since only a similar approach found is by
Jamil et al. [23], the result is compared directly to it.

3.1. Fitness function performance

In order to acquire an optimal result, the frame size for the proposed method need to be determined
first. Frame size in terms of second is changed from 1 second to 10 seconds with 1s incremental. Each second
consists of 20 points on the dataset. Figure 4 shows the performance of Algorithm 1 in detecting the induced
vibration in the quadcopter flight data in terms of MAPE and detection time with respect to the frame size.
Whereas Figure 5 shows the performance in terms of RMSE and MAE of the same Algorithm 1 with respect
to frame size.

Referring to Figure 4, the result shows a trade-off between accuracy and detection time. Algorithm 1
demonstrates an inverse correlation between frame size and accuracy, where smaller frame sizes (e.g., 1 )
result in higher MAPE (0.22), while larger frame sizes (e.g., 10 s) lead to longer detection times (4.81 s).
This shows that smaller frame sizes do not provide adequate enough data for accuracy in detecting the
anomaly. This also suggests that the 5s frame size offers the best balance between detection efficiency and
computational performance. Referring also to Figure 5, the result shows that the optimal frame size is 5s
which correlates with the lowest RMSE (195.52) and MAE (108.55), indicating that Algorithm 1 achieves
the highest accuracy at this frame size which is coherent with the result deduced in Figure 4. Based on both
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results in Figures 4 and 5, it is evident for this research the use of frame size=5s gives the best performance at

this frame size.
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Figure 4. MAPE and detection time results for varying frame sizes, showing optimal performance at 5
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Figure 5. RMSE and MAE analysis across different frame sizes, with the best accuracy achieved at a

3.2. Comparison

5-second frame size

Since only a similar approach found in the literature is by Jamil et al. [23], the result is compared
directly to it. The same test procedure in subchapter fitness function performance is done here. Figure 6
shows a comparative analysis of the RMSE between two methods: Algorithm 1 and the method from
Jamil et al. [23] Algorithm 1 consistently outperforms Jamil’s method for all frame sizes, as evidenced by the
lower RMSE values. For instance, at a frame size of 2 seconds, Algorithm 1 achieves an RMSE of 299.33,
significantly lower than Jamil’s RMSE of around 446.46. This trend continues across all frame sizes,
demonstrating the robustness and efficiency of Algorithm 1 in detecting anomalies.
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Referring to Figure 6, the best performance of Algorithm 1 is observed at a frame size of 5 seconds,
the same result that is shown in fitness function performance subchapter, where it achieves the lowest RMSE
value of 195.52. In contrast, Jamil’s method shows an RMSE of around 1046.31 at the same frame size,
emphasizing a substantial difference in performance. The worst performance for the proposed method occurs
at a frame size of 1 second, with an RMSE of approximately 796.22. These results indicate that Algorithm 1
is more effective in minimizing error and detecting induced vibrations in the flight data.

RMSE Comparison
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Figure 6. RMSE comparison between the proposed method and Jamil et al [23], highlighting consistently
lower error by the proposed method

Additionally, the results suggest that Algorithm 1 is better at identifying anomalies within the
quadrotor roll data. The enhanced precision in anomaly detection implies that Algorithm 1’s sensitivity and
adaptability are better tuned for this specific application, making it more reliable for real-time fault detection.
The consistent performance across various frame sizes also suggests that Algorithm 1 is robust and can
handle different data variations effectively. The substantial reduction in RMSE values underscores the
proposed method’s superiority as a more accurate and efficient tool for fault detection in quadrotor systems.
This validates the proposed single stage end-to-end anomaly detection framework.

Figure 7 illustrates a comparative analysis of MAPE between the two methods. The result highlights
the effectiveness of each method in detecting induced vibrations in quadrotor flight data. The best
performance for Jamil’s method is observed at a frame size of 2 seconds, with a MAPE value of 0.09.
Conversely, its worst performance occurs at a frame size of 4 seconds, where the MAPE value reaches 0.40.
On the other hand, Algorithm 1 demonstrates superior performance, achieving its best result at a frame size
of 5 seconds with an impressively low MAPE value of 0.05. The worst performance for Algorithm 1 is at a
frame size of 1 second, with a MAPE value of 0.22 which is similar to Jamil’s. These numerical findings
indicate that Algorithm 1 generally outperforms Jamil’s method across most frame sizes, suggesting higher
accuracy in anomaly detection.

Furthermore, the results show that Algorithm 1 yields lower MAPE values compared to Jamil’s
method, indicating better performance in detecting anomalies. The optimized frequency-domain approach
significantly enhances fault detection accuracy while maintaining computational efficiency. The lower
MAPE values across most frame sizes for Algorithm 1 signify its potential for maintaining UAV operational
integrity and safety, making it a valuable tool for real-world applications in UAV anomaly detection.
Moreover, this demonstrates the efficacy of Algorithm 1 for UAV anomaly detection, a novel contribution
not previously explored in the literature.

Figure 8 presents a comparative analysis of the MAE values for the two methods. When examining
the results, it is noteworthy that Jamil’s method achieves its best performance at a frame size of 2 seconds,
where the MAE is 218.24. For Algorithm 1, the best performance is at a frame size of 5 seconds, where the
MAE is 108.55. This outcome highlights Algorithm 1’s effectiveness in capturing anomalies even at the
smallest time scale. Equally, the worst results appear at the 4-second frame size, where Jamil’s method
demonstrates a significant increase in MAE to 891.12. In contrast, Algorithm 1 maintains a markedly lower
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MAE of 136.12 at the same frame size, indicating its superior performance even in less favorable conditions.
Compared to the GA-based detection method proposed by Jamil et al. [23], the BMO-integrated system
demonstrates lower RMSE and MAPE values at optimal frame sizes confirming its practical suitability in
harmonic-based anomaly detection tasks.
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Figure 7. MAPE comparison indicating improved detection accuracy of the proposed method across most
frame sizes
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Figure 8. MAE comparison showing the proposed method’s superior performance in minimizing anomaly
detection error

The result also provides valuable insights into the robustness and efficiency of both methods. As
frame sizes increase, a decline in performance is observed for both techniques; however, Algorithm 1 shows
greater resilience against this variation. Its ability to effectively adapt to larger time frames suggests a better
handling of noise and complex patterns. Additionally, the consistent outperformance of Algorithm 1 indicates
fundamental differences in processing data anomalies. These findings highlight opportunities for further
refinement of fault detection methodologies in UAV systems, showcasing the potential for optimizing
quadrotor performance using Algorithm 1. This aligns with the research problem statement, where previous
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approaches relied on multi-stage detection, while the proposed method streamlines anomaly detection into a
single-stage framework with increased precision and reliability.

In addition to software-based detection methods, hardware-based anomaly detection systems—such
as Kalman filters, residual generators, and IMU sensor fusion—are commonly implemented in UAVs for
real-time state estimation and anomaly detection [3]. These techniques are effective in identifying sensor-
level inconsistencies and navigation anomalies. However, they often rely on accurate dynamic models, are
sensitive to environmental disturbances, and may struggle to detect mechanical faults such as structural
vibration. The proposed frequency-domain approach based on BMO and DCT offers a complementary
perspective by detecting mechanical anomalies through harmonic analysis in roll signal data. It can serve as a
post-flight diagnostic tool or be integrated into onboard edge-computing modules to improve UAV safety and
fault coverage, especially in detecting structural degradation not captured by traditional state estimators.

Overall, Algorithm 1 significantly improves fault detection accuracy while maintaining
computational efficiency, making it a promising alternative for real-time UAV monitoring applications.
These findings validate the importance of using bio-inspired optimization techniques such as BMO in
conjunction with frequency-domain analysis for UAV fault detection, reinforcing the contribution of this
research.

4. CONCLUSION

This study introduced a novel single-stage FDI framework for quadcopters, leveraging BMO and
DCT for anomaly detection. By eliminating the need for a residual detection layer, the proposed approach
streamlines the detection process while maintaining high detection accuracy and computational efficiency.

The results demonstrated that the proposed method consistently outperforms approach from the
compared method. At an optimal frame size of 5 seconds, the proposed fitness function achieved the lowest
MAPE of 0.05 and RMSE of 195.52, highlighting its effectiveness in accurately detecting anomalies. This
research confirmed that a single-stage, end-to-end detection framework is both viable and superior in terms
of precision, adaptability, and computational efficiency. The proposed method's ability to detect 3rd, 5th, and
7th harmonic peaks proved essential in identifying problematic vibrations in UAVS, reinforcing the practical
applicability of frequency-domain analysis in real-world scenarios. Furthermore, the study validated that bio-
inspired optimization techniques such as BMO can significantly enhance UAV fault detection, bridging the
research gap in bio-inspired FDI methodologies.

Beyond simulation, the proposed anomaly detection method shows promise for real-world
applications. Since it relies solely on roll channel data from onboard IMU sensors and uses lightweight
computation via DCT and BMO, it is suitable for integration into embedded flight controllers. This makes it
feasible for deployment in autonomous drone operations, where real-time fault detection is essential for
mission safety. In drone swarms, the method can be run locally on each UAV to detect and isolate failing
units, thereby increasing the robustness of distributed aerial systems. Additionally, its sensitivity to structural
vibration makes it useful for predictive maintenance in industrial UAV platforms used for inspection,
surveillance, or logistics. These applications highlight the potential for this method to enhance safety and
reliability in both individual and coordinated UAV operations.

To enable these real-world applications, future work will involve conducting experimental
validation will be conducted to complement the SITL simulation results. Additional research will explore
integrating deep learning models with BMO to further improve detection robustness, while also reducing
computational complexity to support real-time implementation on UAV microcontrollers and edge devices.

5. FUTURE WORKS

While this study presents a promising approach to UAV anomaly detection, several limitations
remain that should be addressed in future research: i) the study relies on SITL simulations, which, while
effective, do not fully capture real-world UAV operational conditions. External factors such as wind
turbulence, sensor drift, and environmental noise were not explicitly tested; ii) the current method primarily
detects vibration-based faults. Other fault types, including sensor malfunctions, communication errors, and
power system failures, were not explored; and iii) the study focuses exclusively on quadcopter UAVS, and its
applicability to other.

To further enhance the capabilities of the proposed method, future research that can be explored are:
i) conducting real-world UAV experiments will help verify the practicality and robustness of the detection
framework; ii) exploring hybrid methods, such as combining BMO with deep learning-based models or other
evolutionary algorithms, may further enhance detection accuracy and adaptability; and iii) focus on reducing
computational complexity to enable real-time onboard implementation on UAV microcontrollers and edge
computing devices. By addressing these aspects, future research can extend the practical applications of this
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approach, making UAV operations safer and more efficient through advanced real-time fault detection
systems.
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