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 This paper presents a thorough examination of two prominent speech-to-text 

translation (STT) models: the end-to-end (E2E) model and the cascade 

model. STT is a critical technology in today’s multilingual society, 

facilitating communication across language barriers. The study focuses on 

comparing these models using a multicriteria approach to evaluate their 

effectiveness in translating speech to text. The E2E model represents a 

unified architecture that directly translates speech into text, while the 

cascade model involves separate modules for speech recognition and 

machine translation (MT). Both models have distinct advantages and 

challenges, which are explored in detail. Through a multicriteria 

comparison, this research assesses various performance metrics and criteria 

to determine the strengths and weaknesses of each model. The weighted sum 

method is employed to assign weights to evaluation criteria, providing a 

systematic evaluation framework. The findings have implications for 

researchers and developers in STT. By understanding the comparative 

performance of E2E and cascade models, researchers can make informed 

decisions regarding model selection based on criteria such as accuracy, 

speed, robustness, and resource requirements. This research advances the 

understanding of speech translation technologies and provides a foundation 

for future studies to refine evaluation methodologies, explore hybrid models, 

and enhance translation quality. 
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1. INTRODUCTION  

Multilingual communication is the ability to communicate with people who speak different 

languages. It is an essential skill in today’s globalized world, where people from different cultures and 

backgrounds are increasingly interacting with each other. Speech translation can play an important role in 

multilingual communication [1], [2]. It can help to break down language barriers and facilitate 

communication between people who do not speak the same language. This can be beneficial in a variety of 

settings, such as business, travel, education, and healthcare. For example, a business traveler who does not 

speak the language of the country they are visiting could use speech translation to communicate with locals. 

A student who is learning a new language could use speech translation to practice their conversational skills. 

https://creativecommons.org/licenses/by-sa/4.0/
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A healthcare provider could use speech translation to communicate with patients who do not speak the same 

language. As the technology continues to improve, speech translation will become more accurate, reliable, 

and affordable. This will make it a more widely used tool for people who need to communicate with others 

who speak different languages. However, the accuracy of speech translation can vary depending on the 

quality of the audio input, the complexity of the language, and the similarity between the two languages 

being translated. Also, Speech translation can be computationally expensive, so it is not always possible to 

use it in real-time. and can be difficult to use in noisy environments. 

Different approaches have been used for speech translation [3], the earlier one is the traditional 

speech translation approaches use cascade-based speech translation models which consist of two separate 

components: an automatic speech recognition (ASR) model and a machine translation (MT) model. The ASR 

model transcribes the spoken input into text, and the MT model then translates the text into the target 

language [3]. Where ASR model is typically trained on a large corpus of audio recordings and their 

corresponding transcripts and the MT model is typically trained on a parallel corpus, which is a collection of 

text pairs that consist of the same content in two different languages. Once the ASR and MT models are 

trained, they can be used to translate speech. The ASR model transcribes the spoken input into text, and the 

MT model then translates the text into the target language. Cascade-based speech translation models have 

several advantages. First, they are relatively straightforward to train and deploy. Second, they can be very 

accurate, especially for high-resource languages with large amounts of parallel training data. Third, they can 

be used to translate a wide variety of speech content, including news, conversations, and technical 

documents. However, cascade-based models also have some disadvantages. First, they can be sensitive to 

errors in the ASR output. If the ASR model makes a mistake, The error will propagate and the MT model 

will likely produce an incorrect translation [4]-[7]. Second, cascade-based models can be slow, as they 

require two separate models to be run. Third, cascade-based models can be difficult to adapt to new 

languages or domains. 

The recent speech translation approaches are the end-to-end (E2E) and are known also as direct 

speech translation. E2E [8]-[11] speech translation approaches aim to directly translate speech from one 

language to another without the need for an intermediate text representation. This can be done by using a 

single neural network that learns to map from the acoustic features of the speech to the target language text. 

E2E approaches have the potential to overcome the error propagation problem of traditional cascaded 

systems [12]-[14], but they are more challenging to train and require more data [15]-[17]. E2E-STT has been 

made possible by the development of large language models (LLMs) and the availability of large datasets of 

speech and text. LLMs can be used to pre-train E2E speech translation models, which can help to improve 

the performance of the models. Large datasets of speech and text can be used to train E2E speech translation 

models, which can help to improve the robustness of the models to different acoustic conditions and language 

variations. Compared to cascade models E2E are faster and can be more easily adapted to new languages or 

domains. Despite the promising results of E2E approaches, there are still some challenges that need to be 

addressed in E2E speech translation, including data scarcity, model complexity, and performance limitations. 

Data scarcity arises from a lack of large, high-quality datasets of speech and text for many language pairs, 

hindering the training of E2E models for effective generalization. Additionally, the complexity of E2E 

models poses challenges in both training and deployment phases, while their performance still lags behind 

that of traditional cascaded systems due to difficulties in accurately modeling the complex relationships 

between speech and text. Addressing these challenges is essential for enhancing the effectiveness and 

applicability of E2E speech translation models in practical settings. 

The purpose of this study is twofold. Firstly, it aims to provide a nuanced understanding of how E2E 

and cascade models perform across key criteria essential for speech-to-text translation (STT) systems. These 

criteria include but are not limited to accuracy, computational efficiency, adaptability to diverse linguistic 

inputs and accents, scalability, resource utilization, and user experience. Secondly, by employing a 

multicriteria evaluation methodology, this research seeks to offer actionable insights for researchers, 

developers, and industry practitioners. The findings from this comparative analysis will contribute to the 

advancement of STT technologies by identifying areas for improvement and optimization in both E2E and 

cascade models. The outcomes of this study are anticipated to benefit a wide range of researchers involved in 

language technology research and development. These insights can inform decision-making processes related 

to the selection and implementation of STT models based on specific use cases, linguistic contexts, and 

performance requirements. Through this work, we aim to contribute meaningfully to the discourse on STT 

models, paving the way for enhanced cross-lingual communication. 

Following the introduction, this paper is structured into several key sections that delve into a 

comprehensive analysis of E2E and cascade STT models using a multicriteria approach. In this section 2, we 

outline our approach to comparing the two models using a multicriteria evaluation framework, specifically 

the weighted scoring method (WSM). We define the evaluation criteria, assigning weights to reflect their 
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relative importance in the comparison process. This section elucidates the rationale behind our choice of 

criteria and the methodology employed for evaluating the models. Moving forward, section 3 details the 

criteria evaluation and analysis process, where each model is assessed based on the predefined criteria using 

the WSM. We present the numerical weights assigned to each criterion and calculate the overall scores for 

both models. Tables and visualizations are provided to summarize the evaluation results, facilitating a 

comprehensive understanding of the comparative analysis. In section 4, we analyze the comparative analysis 

results between the E2E and cascade models. We delve into the strengths and weaknesses of each model 

based on the evaluation criteria, identifying any significant differences in performance, usability, or 

adaptability. Finally, we provide our conclusions derived from our comparative study, offering valuable 

insights and directions for future research in STT technologies. 

 

 

2. COMPARISON OF CASCADE-STT AND E2E-STT MODEL 

2.1.  Advantages of cascade speech-to-text translation models 

The most significant advantages of cascade STT models is their modular design. This design 

approach divides the process into distinct ASR and MT components. Each component can be independently 

optimized and improved, allowing developers to use the best available technologies for both speech 

recognition and translation. This modularity also makes it easier to update or replace individual components 

without overhauling the entire system, providing flexibility in system maintenance and upgrades [1], [2]. 

Cascade models facilitate better error isolation and management. Since the ASR and MT stages are separate, 

it is easier to identify where errors occur. If there is a drop in performance, developers can pinpoint whether 

the issue lies in the speech recognition phase or the translation phase. This clear separation allows for more 

targeted troubleshooting and refinement of each component. For example, improving the ASR accuracy can 

be focused on independently enhancing the MT quality, making it easier to manage and rectify specific issues 

[3]. The flexibility of cascade models is another key advantage. Different language pairs and application 

scenarios might require tailored approaches in ASR or MT. Cascade models allow developers to mix and 

match different ASR and MT systems to best suit the specific needs of the application. This adaptability 

extends to handling various languages and dialects more effectively by using specialized components for 

each task. Le et al. [4] have studied the benefits of using separate ASR and MT components to optimize for 

different languages and scenarios, thereby enhancing flexibility and adaptability in system design. Moreover, 

developers can quickly incorporate advancements in ASR or MT technology into the existing system, 

ensuring that the translation system remains up-to-date with the latest research and development. 

Cascade models benefit from the extensive research and development that has been conducted over 

the years in both ASR and MT fields. Each component has a robust body of existing models, datasets, and 

methodologies that can be leveraged to build effective systems. Li and Niehues [5] explores how pre-trained 

ASR and MT models can be integrated into cascade systems to quickly leverage the latest advancements in 

these fields, ensuring up-to-date performance and adaptability. This established foundation allows for quicker 

deployment and more reliable performance, as the technologies used in each stage have been tested and 

refined through years of academic and commercial research. In scenarios where resources are limited, 

cascade models can be more cost-effective. Training a full E2E model can be resource-intensive, requiring 

large datasets and significant computational power. Cascade models, on the other hand, can utilize pre-

existing ASR and MT models, reducing the need for extensive retraining. This approach is particularly 

advantageous for low-resource languages or applications where obtaining sufficient training data is 

challenging. Kozhirbayev and Islamgozhayev [6] have demonstrated how leveraging pre-existing ASR and 

MT models can facilitate effective speech translation systems for specific language pairs, such as Kazakh to 

Russian, without the high costs associated with developing new E2E models. The study highlights the ability 

to incorporate advancements in ASR and MT independently, ensuring that the system remains up-to-date 

with the latest technologies. Another relevant study, by Zhang et al. [7] have explored the challenges and 

strategies for optimizing neural MT systems under low-resource conditions. The findings suggest that using 

existing components in a cascade approach can be more efficient and cost-effective compared to training full 

E2E models from scratch, particularly in low-resource settings. By leveraging existing components, 

organizations can deploy effective translation systems without the high costs associated with developing and 

training new E2E models. Cascade models can be particularly effective in handling complex scenarios where 

the translation process benefits from intermediate text representations [8]. For instance, in professional 

translation services, having an intermediate text allows for additional processing steps such as manual 

corrections or domain-specific adjustments before the final translation. This intermediate step can be critical 

for ensuring the highest accuracy and quality in translations, especially in specialized fields like legal or 

medical translations. 
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2.2.  Challenges and limitations of cascade speech-to-text translation models  

The primary challenges of cascade STT models is error propagation [3], [9]. In a cascade system, 

the output of the ASR component is fed directly into the MT component. Any errors in the ASR output, such 

as misrecognized words or phrases, are propagated to the MT stage, potentially compounding errors and 

degrading the overall translation quality. This issue is particularly problematic when dealing with noisy 

environments or speakers with heavy accents, as the initial transcription inaccuracies can lead to significantly 

flawed translations. Cascade models often experience higher latency and longer processing times compared 

to E2E models [10], [11]. Since the ASR and MT components operate sequentially, the total processing time 

is the sum of the time taken by each component. This sequential processing can result in delays, making 

cascade models less suitable for real-time applications where quick response times are critical, such as live 

translation services or interactive voice-activated systems. 

Integrating and maintaining separate ASR and MT systems can be complex and resource-intensive. 

Each component requires its own set of training data, optimization, and tuning, which can increase the 

overall development and maintenance workload. Moreover, ensuring that the outputs of the ASR system are 

compatible with the inputs expected by the MT system can involve additional preprocessing steps, adding 

further complexity to the pipeline. This integration challenge can slow down development cycles and 

complicate system updates. Tran et al. [12] point out that the distinct training requirements for ASR and MT 

systems can result in a mismatch between the components, further complicating the integration process. This 

research underscores the resource-intensive nature of maintaining separate systems and the challenges 

associated with ensuring seamless compatibility between them. Cascade models might suffer from 

inconsistencies between the language models used in the ASR and MT components. The ASR system is 

typically optimized to transcribe spoken language accurately, while the MT system is optimized to translate 

written text. These differing optimization goals can lead to mismatches where the transcribed text might not 

be in the optimal form for translation [13]. For example, spoken language often includes disfluencies, 

colloquialisms, and informal speech patterns that may not translate well if the MT system is not adequately 

adapted to handle these features. Developing effective cascade STT models requires extensive datasets for 

both ASR and MT components. Gathering and annotating large volumes of high-quality speech data for 

ASR, as well as parallel text corpora for MT, can be resource-intensive and costly [6]. This challenge is 

exacerbated for low-resource languages, where available data may be sparse or of poor quality. Additionally, 

the computational resources required to train and run these models can be significant, posing further 

constraints for smaller organizations or those with limited access to advanced hardware. 

Maintaining and scaling cascade STT models can be challenging due to the need for continuous 

updates and improvements in both ASR and MT components. As new linguistic data becomes available or as 

the models need to adapt to new domains and use cases, both components must be re-evaluated and 

potentially re-trained. Sperber et al. [14] discusses the complexities involved in maintaining and updating 

cascade models. It emphasizes that separate training and optimization for ASR and MT components can be 

demanding, and ensuring compatibility between these components often requires additional preprocessing 

steps. Zhang et al. [15] points out that the need for continuous updates to incorporate new data and adapt to 

different domains increases the complexity and resource requirements of these models. This ongoing 

maintenance effort can be labor-intensive and requires specialized expertise in both speech recognition and 

MT. Adapting cascade models to specific domains or contexts can be difficult. Each component must be 

individually fine-tuned to handle domain-specific terminology and context, which can be particularly 

challenging if the ASR and MT systems were initially trained on general-purpose data. Tran et al. [12] 

discusses how differences in linguistic style and punctuation between spoken and written domains pose 

challenges for cascade models. The study highlights that without fine-tuning the models on in-domain data, 

the ASR and MT components may struggle to handle domain-specific inputs and outputs effectively, leading 

to reduced accuracy. Another study by Zhao et al. [16] addresses the difficulties in maintaining high 

translation accuracy when adapting ASR and MT components to specific domains. The study highlights the 

challenges of handling domain-specific terminology and context, which can significantly affect the 

performance of the models. This lack of domain adaptation can lead to lower accuracy and relevance in 

specialized applications, such as medical or legal translations, where precise terminology and context are 

crucial. 

 

2.3.  Advantages of end-to-end-speech-to-text translation models 

One of the primary benefits of E2E-STT models is integrated learning [7], [17], [18]. In E2E-STT 

models, both ASR and MT tasks are handled by a single, cohesive model. This integration allows the model 

to directly learn the mapping from speech in one language to text in another without the need for intermediate 

representations typically used in cascade models. This holistic approach enables the model to optimize both 

ASR and MT tasks simultaneously, leading to potentially higher translation accuracy and consistency. The 
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integrated model can leverage the intricacies of the acoustic input directly in the translation process, fostering 

a deeper understanding of the source language’s nuances as they are spoken. E2E-STT models significantly 

simplify the translation pipeline [7], [19]. Traditional cascade models require separate processing stages for 

ASR and MT, each with its complexities and potential points of failure where errors can propagate from one 

stage to the next. In contrast, E2E-STT models streamline these processes into a single flow, reducing the 

complexity of the system. This simplification not only makes the system easier to manage and maintain but 

also reduces the latency involved in processing. By eliminating the need to first transcribe speech to text and 

then translate the text into another language, E2E-STT models can provide faster response times, making 

them ideal for real-time applications like live translation and interactive language translation tools. Another 

significant advantage of E2E-STT models is their improved ability to handle contextual information and 

long-term dependencies [13], [20]. Because these models process the input speech directly to the output text, 

they maintain a more coherent flow of information throughout the translation process. Latif et al. [21] 

discussed how E2E-STT models, particularly those using transformer architectures, can better handle long-

term dependencies and contextual information. This capability allows E2E-STT models to better preserve the 

context over long stretches of speech, which is often a challenge in traditional models where the context can 

get lost between the ASR and MT stages. Enhanced context handling ensures that the translations are not 

only accurate on a word-by-word basis but also coherent and contextually appropriate over entire 

conversations or speeches. This is particularly beneficial in scenarios involving complex dialogues or 

technical discussions where maintaining context is crucial for understanding the intended meaning. E2E-STT 

models mitigate the issue of error propagation that is prevalent in cascade models. In cascade models, errors 

made in the ASR phase are carried over and potentially amplified in the MT phase, leading to degraded 

translation quality. E2E-STT models, however, process the speech signal in a unified manner, reducing the 

chances of such error accumulation. This holistic approach ensures that errors are less likely to propagate 

through the system, thereby enhancing overall translation quality [14]. 

Training E2E-STT models as a single unified system offers several efficiency advantages over 

traditional cascaded models that separately train ASR and MT components. In E2E-STT models, both ASR 

and MT tasks are optimized simultaneously using shared parameters and unified loss functions. This unified 

approach can lead to more coherent training dynamics and potentially better generalization across tasks, as 

the entire model is optimized towards a common goal rather than optimizing individual components that may 

not align perfectly with each other. The cross-modal progressive training strategy discussed in various studies 

highlights that E2E-STT models benefit from a training approach that can utilize data more efficiently. This 

strategy can lead to better performance, especially in multilingual settings where data for certain language 

pairs might be scarce [17]. By training the model in an E2E manner, you can exploit the natural relationships 

between the speech recognition and translation tasks, potentially improving the overall efficiency and 

effectiveness of the model. These models also tend to reduce the complexity involved in managing multiple 

separate systems, thereby simplifying the training pipeline. Additionally, the shared learning process can 

accelerate improvements, as enhancements in the model’s capabilities directly benefit both the recognition 

and translation tasks [11]. E2E-STT models can handle rare words and phrases more effectively because they 

are trained on the direct mapping from speech to text. This direct training allows the model to learn specific 

pronunciation patterns and linguistic nuances that might be lost in a two-step cascade process. This is 

particularly useful for languages with high lexical variety or specialized vocabularies, ensuring more accurate 

translations even for less common terms [7]. For languages or dialects where certain phrases or terminology 

are rarely used or documented in written form, E2E models trained on diverse and comprehensive speech 

datasets can provide more accurate translations. They manage this by leveraging the full context of the 

spoken language, which includes intonation, emphasis, and other speech-specific characteristics that are often 

indicators of meaning and are not typically available in text-based training data. 

E2E-STT models are known for their scalability and adaptability, which are crucial attributes, 

especially when dealing with multiple languages and dialects. The architecture of these models allows for the 

addition of new languages or dialects by simply retraining with appropriate data. This eliminates the need to 

individually adjust multiple components within the system, streamlining the adaptation process and 

enhancing the model’s ability to manage multilingual content effectively. E2E-STT models employ a unified 

architecture that can be efficiently scaled to accommodate new languages or dialects. This is facilitated by 

the model’s ability to learn directly from speech to text, leveraging shared encoder and decoder components 

across different languages. Such an approach not only simplifies adding new languages but also enhances the 

model’s performance through transfer learning, where knowledge from one language can aid in processing 

others. This is particularly beneficial for low-resource languages, where data scarcity often poses a 

significant challenge [22]. Moreover, the adaptability of E2E-STT models is further supported by their design 

for easy integration with pre-trained components, which can be fine-tuned on specific tasks or languages, 

thereby accelerating the training process and improving the model’s effectiveness across diverse linguistic 

datasets [23]. 
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2.4.  Challenges and limitations of end-to-end-speech-to-text translation models 

One of the primary challenges facing E2E-STT models is data scarcity, particularly for low-resource 

languages. Unlike major languages that have vast amounts of available training data, low-resource languages 

suffer from a lack of sufficient audio recordings and corresponding translations needed for training robust 

models. This scarcity impedes the model’s ability to learn effective translations and can lead to poorer 

performance. To address this issue, researchers often resort to techniques such as transfer learning, where a 

model trained on high-resource languages is adapted to work with less common languages. Additionally, data 

augmentation methods such as synthetic speech generation and simulating varied acoustic environments can 

help enrich the training datasets, providing more examples for the model to learn from [24]. E2E-STT models 

also demand significant computational resources for both training and deployment. These models, 

particularly those using advanced architectures like transformers, require extensive processing power due to 

the complexity of their neural networks and the large amounts of data they process. Training these models 

involves high-dimensional optimizations over millions of parameters, often necessitating powerful GPUs or 

TPUs and substantial memory capacity. This high computational demand can make it challenging for smaller 

organizations or researchers with limited access to resources to develop and train E2E-STT models. For 

deployment, particularly in real-time applications, the computational requirements also pose a barrier, as 

efficient processing and minimal latency are critical [11], [17], [25]. Another critical challenge in E2E-STT 

models is the risk of error propagation within a single integrated model. Unlike cascade models, where errors 

can be isolated and addressed in separate stages, E2E-STT models process speech directly into text through a 

unified architecture. This integration means that errors introduced at any point in the speech recognition 

process can directly affect the translation quality. Misrecognition or misinterpretations by the encoder can 

lead to incorrect translations that are hard to correct without an intermediate correction stage. To mitigate 

these issues, sophisticated training techniques such as adversarial training, which introduces potential errors 

during training to improve the model’s resilience, and reinforcement learning strategies, which optimize the 

model’s decisions in complex environments, are employed. Additionally, incorporating robust feedback 

mechanisms to refine model outputs based on real-world usage can help improve accuracy over time [11], [17]. 

  

  

3. METHOD 

In the context of comparing E2E and cascade STT models, the multicriteria approach ensures a 

balanced assessment that considers various aspects of model performance. The WSM [26] is a popular 

technique within the multicriteria approach. WSM involves assigning weights to each criterion based on their 

relative importance and then calculating a weighted sum of the scores for each model. This method provides 

a systematic and objective way to aggregate the performance metrics into a single composite score, 

facilitating a clear comparison between the models. WSM involves assigning weights to each criterion based 

on their relative importance and then calculating a weighted sum of the scores for each model. This method 

provides a systematic and objective way to aggregate performance metrics into a single composite score, 

facilitating a clear comparison between the models. The process begins with the selection of key performance 

criteria, followed by the assignment of weights to reflect their relative importance. Each model is then 

evaluated and scored against these criteria, with scores derived from empirical performance data or 

experimental results. The scores are multiplied by their respective weights to obtain weighted scores, which 

are then summed to produce a total score for each model. The model with the highest total score is 

considered the better-performing model according to the chosen criteria and weights. To proceed, the next 

section will define the specific criteria used in this multicriteria evaluation, detailing their significance and 

the rationale behind their selection. 

 

3.1.  Criteria selection 

The selection of comparison criteria is guided by the shared attributes among speech translation 

models. We outline the key criteria that must be considered when opting to choose between the use of the 

cascade-STT model or E2E-STT speech translation model: 

a. C1=translation accuracy: this criterion evaluates how accurately the speech is translated into text in the 

target language. It includes aspects such as word choice, grammar, and overall fidelity to the original 

speech. 

b. C2=model complexity: this criterion assesses the complexity of the models used in E2E speech 

translation compared to cascade models. It includes considerations of computational requirements, 

training time, and model architecture complexity. 

c. C3=latency and real-time performance: this criterion examines the speed at which the translation is 

performed, especially in real-time applications. Lower latency indicates faster and more efficient 

translation, which is crucial for applications like live captioning or instant translation services. 
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d. C4=training data requirements: this criterion considers the amount and quality of training data needed for 

E2E systems compared to cascade models. It evaluates how well each approach handles data scarcity or 

variability in training datasets. 

e. C5=code-switching and multilingual capabilities: this criterion assesses how well the systems handle 

code-switching or multilingual speech inputs. It examines the ability of the models to accurately translate 

speech that contains multiple languages or dialects seamlessly. 

f. C6=robustness to noise and distortions: this criterion evaluates the model’s performance in noisy 

environments or when dealing with speech distortions. It assesses the robustness of the models in 

maintaining translation accuracy under challenging acoustic conditions. 

g. C7=resource efficiency: this criterion considers the resource efficiency of each approach, including 

memory usage, processing power, and energy consumption. It examines how efficiently the models 

operate in resource-constrained environments. 

h. C8=adaptability and customization: this criterion assesses the ease of adapting and customizing the 

models for specific languages, dialects, or domains. It includes considerations of transfer learning, fine-

tuning, and model adaptability. 

i. C9=scalability and generalization: this criterion evaluates how well the models scale with increased data 

or language complexity. It assesses their ability to generalize to new languages or dialects beyond the 

training dataset. 

j. C10=context awareness: evaluate how well the models incorporate contextual information from the 

speech input to improve translation accuracy and understanding. 

k. C11=speaker adaptation: assess the ability of the models to adapt to different speakers’ accents, speech 

patterns, and individual characteristics for personalized translations. 

l. C12=error handling and correction: evaluate the mechanisms or strategies used by each model to detect 

and correct errors in the translated text, such as grammatical errors or mistranslations. 

m. C13=domain adaptation: evaluate the models’ ability to adapt to specific domains or specialized 

vocabularies, such as technical terms, medical jargon, legal language. 

n. C14=long-term dependencies: examine how effectively the models handle long-term dependencies in 

speech, such as maintaining context over longer utterances or conversations. 

 

3.2.  Scores definition 

The implementation of the WSM involves creating a multi-criteria matrix where the columns 

correspond to speech translation models and the rows correspond to the criteria, each assigned a specific 

weight. The scores for each criterion are derived from the detailed comparisons provided in the earlier 

sections. For evaluating the performance of E2E and cascade models across the different criteria we use five 

scores, defined as: 

a. Score 1: the model performs significantly below expectations. It fails to meet the basic requirements for 

the criterion, demonstrating major deficiencies. For instance, in terms of translation accuracy, this would 

mean numerous errors in grammar, word choice, and overall comprehension. In terms of latency, it would 

indicate a very high delay, making real-time applications unfeasible. 

b. Score 2: the model performs below average but meets minimum acceptable standards. It has several 

notable weaknesses and only partially satisfies the criterion. For example, it produces translations that are 

somewhat understandable but contain frequent mistakes. In terms of noise robustness, it might struggle 

considerably in moderately noisy environments. 

c. Score 3: the model performs at an average level, adequately meeting the criterion with some minor issues. 

It is acceptable for general use but not exceptional. For example, translation accuracy would be generally 

reliable with occasional errors. Latency would be noticeable but not excessively disruptive for real-time 

applications. 

d. Score 4: the model performs above average, exceeding expectations for the criterion with only minor 

shortcomings. It delivers strong results with few errors or issues. For instance, translations are mostly 

accurate and clear, and latency is low enough for smooth real-time use. Robustness to noise would be 

effective in most environments, with only slight degradation in performance. 

e. Score 5: the model performs exceptionally well, fully meeting or exceeding the criterion in all respects. It 

demonstrates superior performance with minimal to no issues. For example, translation accuracy would 

be very high with rare errors, and latency would be minimal, making it highly suitable for real-time 

applications. Noise robustness would be excellent, maintaining high performance even in very noisy 

environments. 

 

3.3.  Weights assignment 

For the evaluation of E2E and cascade models based on the selected criteria, we have assigned 

weights to each criterion. These weights reflect the prioritization of each criterion, ensuring that critical 
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aspects such as translation accuracy, latency, and robustness to noise are given higher importance in the 

evaluation process. The following weights have been assigned, along with the reasons for each assignment: 

a. C1=translation accuracy (weight=10): translation accuracy is paramount because the primary goal of the 

models is to produce accurate translations. High translation accuracy ensures that the intended meaning 

and nuances of the original speech are preserved, making this criterion crucial. 

b. C2=model complexity (weight 5): while important, model complexity is secondary to performance 

metrics such as accuracy and latency. A less complex model that performs well is preferable, but high 

complexity can be justified if it significantly enhances performance. 

c. C3=latency and real-time performance (weight 10): low latency is essential for real-time applications like 

live captioning and instant translation services. High latency can disrupt user experience, making this 

criterion equally important as translation accuracy. 

d. C4=training data requirements (weight 10): the effectiveness of the models can be heavily influenced by 

the amount and quality of training data. Models that perform well with less or lower-quality data are more 

versatile and practical, especially in data-scarce environments. 

e. C5=code-switching and multilingual capabilities (weight 5): handling code-switching and multilingual 

inputs is important but typically less critical than core performance metrics. This criterion is essential for 

models used in multilingual environments. 

f. C6=robustness to noise and distortions (weight 10): robustness in noisy environments is vital for practical 

use, as real-world conditions often include background noise and speech distortions. High robustness 

ensures consistent performance. 

g. C7=resource efficiency (weight 5): efficient use of resources such as memory and processing power is 

important for deploying models on devices with limited capabilities. However, it is not as critical as core 

performance metrics like accuracy and latency. 

h. C8=adaptability and customization (weight 5): the ability to adapt and customize models for specific 

languages, dialects, or domains is valuable but secondary to fundamental performance aspects. 

Customization enhances the utility of models in specialized applications. 

i. C9=scalability and generalization (weight 9): scalability and the ability to generalize to new languages or 

dialects are crucial for extending the use of models beyond their initial training. High scalability indicates 

the model’s robustness and versatility. 

j. C10=context awareness (weight 10): incorporating contextual information improves translation accuracy 

and understanding, making this a highly important criterion. Context-aware models can produce more 

accurate and coherent translations. 

k. C11=speaker adaptation (weight 5): adapting to different speakers’ accents and speech patterns is 

important for personalized translations. However, it is considered less critical than core performance 

metrics like accuracy and latency. 

l. C12=error handling and correction (weight 10): effective mechanisms for detecting and correcting errors 

are essential for maintaining high-quality translations. This criterion ensures reliability and consistency in 

the translated text. 

m. C13=domain adaptation (weight 5): the ability to adapt to specific domains or specialized vocabularies is 

important for applications requiring technical or specialized language. However, it is secondary to 

broader performance metrics. 

n. C14=long-term dependencies (weight 5): handling long-term dependencies ensures coherence over longer 

utterances or conversations. While important, it is considered less critical than immediate performance 

metrics like accuracy and latency. 

 

3.4.  Weighted scores matrix 

In this section, we detail the comparative evaluation of cascade-STT and E2E-STT models based on 

a set of predefined criteria. These criteria are weighted based on their importance to the overall effectiveness 

of the translation models. After assigning the scores for each model on each criterion as illistrated in Table 1, 

we provided in Table 2 the weighted scores for both cascade-STT and E2E-STT models, calculated by 

multiplying the scores assigned to each criterion by their respective weights. The final scores indicate the 

overall performance of each model type, with a higher score suggesting better performance relative to the 

weighted criteria. This quantitative assessment helps illustrate the strengths and weaknesses of each model 

type in a clear and structured manner, providing a basis for selecting the most appropriate model based on 

specific needs and conditions. 
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Table 1. WSM scoring matrix 
 E2E-STT Cascade-STT 

C1 3 4 
C2 2 3 

C3 2 4 

C4 3 4 
C5 2 4 

C6 3 2 

C7 3 2 
C8 4 2 

C9 3 2 

C10 2 4 
C11 3 4 

C12 3 2 

C13 4 3 
C14 2 4 

 

 

Table 2. WSM weighted scores matrix 
 Weights Cascade-STT E2E-STT 

C1 10 30 40 
C2 5 10 15 

C3 10 20 40 
C4 10 30 40 

C5 5 10 20 

C6 10 30 20 
C7 5 15 10 

C8 5 20 10 

C9 5 15 10 
C10 10 20 40 

C11 5 15 20 

C12 10 30 20 
C13 5 20 15 

C14 5 10 20 

Scores 100 275 320 

 

 

4. RESULTS AND DISCUSSION 

The results of the multicriteria comparison between cascade-STT and E2E-STT models, as reflected 

by the WSM, offer a rich dataset for analysis. This evaluation spans fourteen criteria ranging from translation 

accuracy to long-term dependencies, offering a detailed view of each model’s strengths and weaknesses. A 

central observation from the weighted scores matrix and radar chart (Figure 1) is the overall higher 

performance of E2E-STT models across most criteria. Notably, in translation accuracy (C1), E2E-STT scores 

significantly higher than cascade-STT, illustrating its superior capability in rendering speech into text with 

higher fidelity. This is paramount as it underlines the effectiveness of E2E models in understanding and 

translating the nuances of language, including grammar and word choice, without the intermediate steps that 

might introduce errors or ambiguities in cascade models. In terms of model complexity (C2) and training data 

requirements (C4), E2E-STT again shows an advantage, although the differences are not as stark. The 

relatively simpler and more data-efficient nature of E2E models may be attributed to their direct approach to 

translation, bypassing the need for separate models for speech recognition and translation as in the cascade 

approach. This streamlined architecture potentially reduces computational overhead and simplifies training 

processes. 

However, the comparison in latency and real-time performance (C3) reveals a notable disparity 

favoring E2E-STT, which scores twice as high as cascade-STT. This underscores the E2E model’s suitability 

for applications requiring real-time translation, such as live captioning or instant translation services, where 

quick turnaround is crucial. Conversely, the robustness to noise and distortions (C6) is one area where 

cascade-STT models outperform their E2E counterparts. This suggests that while E2E models excel in 

cleaner environments, the layered processing of cascade-STT might offer better resistance against acoustic 

challenges like background noise or varying speech qualities. Interestingly, adaptability and customization 

(C8) and domain adaptation (C13) show closer scores between the two models. These criteria are essential 

for applications involving specific jargon or multiple dialects. Both model types appear reasonably flexible, 

although neither dominates clearly, indicating a potential area for future enhancement, particularly in the 

development of more adaptable E2E systems. Regarding resource efficiency (C7), E2E-STT models score 

lower, reflecting higher resource consumption which might be a concern in resource-constrained 

environments. This aspect ties in with the broader trade-off between performance and operational cost, an 

important consideration for deploying these technologies at scale. The evaluation of long-term dependencies 
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(C14) again favors E2E-STT, aligning with its higher scores in context awareness (C10). This suggests that 

E2E models are better equipped to handle extended speech inputs, maintaining context over longer 

conversations which is crucial for coherent translations in complex dialogues or technical discussions. In 

summary, the analysis delineates the conditions under which each model excels. E2E-STT models stand out 

in their overall performance, particularly in accuracy, efficiency in training, and real-time applications. 

However, the cascade models remain relevant, especially in adverse acoustic conditions and where 

robustness against noise is required. 

 

 

 
 

Figure 1. Cascade-STT and E2E-STT comparison models across key criteria 

 

 

The findings underscore the importance of context in selecting a STT model. For applications 

requiring high accuracy and speed, such as live communication aids or multimedia processing, E2E-STT 

models are more suitable. However, for applications where robustness against noise and the need for specific 

linguistic customizations are critical, cascade-STT models may prove more effective. Ultimately, this 

research not only clarifies the operational contexts in which each model type excels but also suggests avenues 

for future research and development. Hybrid models that combine the rapid processing capabilities of E2E 

systems with the error handling and modular flexibility of cascade systems could potentially overcome the 

current limitations of each system type. Continued advancements in machine learning and computational 

hardware are expected to further enhance the capabilities of STT systems, driving innovations that could 

eventually merge the best features of both model types. 

 

 

5. CONCLUSION 

The comprehensive analysis conducted in this study meticulously delineates the distinct advantages 

and limitations inherent to both E2E-STT and cascade-STT models through a comprehensive multicriteria 

evaluation. The insights derived from the WSM evaluation reveal that while E2E-STT models exhibit 

superior performance in certain key areas such as translation accuracy, real-time processing, and handling of 

long-term dependencies, they also face significant challenges including high resource consumption and 

complexity in error correction. These models, therefore, shine in environments where rapid and accurate 

translation is paramount and where resources are abundant to support their computational demands. On the 

other hand, cascade-STT models, with their modular architecture, offer robustness, particularly in noisy 

conditions, and flexibility through easier adaptability to new languages and specialized domains. This makes 

them particularly valuable in settings where modular upgrades and domain-specific customizations are 

necessary. Despite their slower processing time and potential for error propagation between modules, their 

ability to isolate and correct errors in individual components remains a significant advantage. We aim that 

our study contributes significantly to the field of computational linguistics and offers a foundational 

perspective for developers and researchers aiming to optimize or choose between these two prevalent models. 

As speech-to-text technology continues to evolve, the insights from this analysis will help steer the 

development of more sophisticated, efficient, and adaptable speech translation systems. 
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