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 Tuberculosis (TB) continues to be a major global health issue, especially in 

areas with limited resources where diagnostic tools are often insufficient. 

Traditional TB detection methods are slow and lack sensitivity, particularly 

for early-stage or low bacterial load cases. This study introduces a new 

multimodal deep learning model that integrates sputum image segmentation 

across RGB, hue, saturation, and value (HSV), and CIELAB color channels, 

using the YOLOv8 model for real-time detection and segmentation. The 

model uses the International Union Against Tuberculosis and Lung Disease 

(IUATLD) grading scale for accurate Mycobacterium tuberculosis (MTB) 

classification. Our approach shows high accuracy (92.24%) and precise 

forecasting (mean absolute percent error (MAPE) of 0.23%), greatly 

enhancing diagnostic speed and reliability. This research offers a novel 

method for classifying MTB using a multimodal deep learning model that 

integrates sputum image segmentation across RGB, HSV, and CIELAB 

color channels. By using the YOLOv8 model for real-time bounding box 

detection and segmentation, and the IUATLD grading scale for 

classification, our method achieves high accuracy and precision in 

identifying TB bacteria. Our findings indicate that this multimodal deep 

learning approach significantly improves diagnostic accuracy and speed, 

providing a reliable tool for early TB detection. 
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1. INTRODUCTION  

Tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis (MTB), is an infectious 

disease that spreads through the air from infected individuals. Nearly a quarter of the global population is 

infected with this bacterium, with approximately 89% of TB cases occurring in adults and 11% in children. 

TB remains the leading cause of death after HIV/AIDS [1]. In 2020, an estimated 9.9 million people 

worldwide were affected by TB. Basic Health Research (Riskesdas) identified Papua, Banten, and West Java 

as the Indonesian provinces with the highest TB prevalence, at 0.77%, 0.76%, and 0.63%, respectively in 

https://creativecommons.org/licenses/by-sa/4.0/
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Ministry of Health Republic Indonesia. According to the Decree of the Minister of Health of the Republic of 

Indonesia No. 364/MENKES/SK/V/2009, TB diagnosis can be performed through microscopic sputum 

examination. This technique, widely used in most primary health centers (PHCs) in Indonesia, provides faster 

results compared to other tests [2]. The sputum sample is stained using the Ziehl-Neelsen (ZN) method [3], 

which turns MTB bacteria red against a blue background, making them clearly visible under a microscope [4]. 

You only look once (YOLO) is a novel object detection method that allows for the prediction of 

objects and their locations in an image at a glance [5]. YOLO creates bounding boxes and uses feature 

extraction, but its selective search is confined to specific locations within the image [6]. YOLO is an object 

recognition and localization algorithm based on deep learning neural networks [7]. Gao and Qian [8] 

combined computed tomography (CT) technology with a high-precision classification model for five types of 

pulmonary TB (PTB) using convolutional neural networks (CNN) and support vector machines. Ma et al. [9] 

developed an automatic detection model for active PTB using U-Net. CNN-based detection models are 

crucial for AI-assisted diagnosis [10]. The lightweight YOLOv4 model, named MIcrograPhs-

MYcobacterium and called MIP-MY, is used for TB detection [11]. YOLOv5 is a single-stage object 

recognition algorithm [12]. An enhanced YOLOv5 strategy for TB classification based on whole CT slices 

incorporates three additional modules: the convolutional block attention module (CBAM) architecture, 

SCYLLA-IoU (SIoU) loss function, and data augmentation [13]. Segmentation involves dividing an image 

into non-overlapping regions that are homogeneous according to a criterion, covering the entire image [14]. 

In this context, a binary object is any set of pixels in a binary image corresponding to a bacillus or bacilli 

grouping [15]. A multimodal deep learning classifier leverages information from multiple data modalities 

[16], aiming to utilize their heterogeneous nature through intermediate fusion [17]. Zhang et al. [18] 

proposed dual-wing harmoniums to learn a joint representation of image and text modalities. Zhen and 

Yeung [19] introduced a probabilistic generative approach called multimodal latent binary embedding. 

Limited data resources are a significant concern in the first category [20]. Modalities can increase parameter 

counts, resulting in high training accuracy but low test accuracy for multimodal systems [21]. 

This study focuses on the automatic identification of MTB in sputum images, utilizing color channel 

detection and multimodal deep learning. Chamidah et al. [22] presents a method for automatically counting 

MTB in sputum images, which is more efficient than manual counting by pathologists. It uses a nonparametric 

Poisson regression model with a local linear estimator. Hema and Kannan [23] highlights the effectiveness of 

the hue, saturation, and value (HSV) color space for image segmentation, which is superior to other color 

models for extracting key foreground elements from color images. An interactive Python-based graphical user 

interface (GUI) tool was developed, allowing users to adjust HSV interactively for optimal segmentation results. 

Torres-Gonzáles et al. [24] developed StainView, a fast and reliable method for mapping stains on building 

facades using image classification in HSV and CIELab color spaces. It enables the automatic location and 

mapping of critical areas with high efficiency, reducing inspection time and human error. Rao et al. [25] 

introduces a new algorithm for segmenting fine details in the CIELAB color space, considering human vision’s 

contrast sensitivity, aiming to improve the precision and applicability of color difference metrics in image 

processing. Radu et al. [26] introduces deep autoencoder models that can reconstruct both modalities when 

given only one, demonstrating robustness to missing modalities and effective multimodal fusion. Shaban and 

Yousefi [27] introduces a novel deep learning architecture that emphasizes learning both intra-modality and 

cross-modality relations, which had not been previously applied to wearable modeling tasks. The research 

includes a novel architecture that integrates convolutional layers within the modality-specific architecture, 

enhancing the ability to capture complex patterns from multimodal data. Another study on multimodal learning 

from [28] presented a model based on a Bayesian nonparametric model to learn the underlying semantically 

meaningful and abstract features of multimodal data. Multimodal deep learning has been used by [29], 

integrating unimodal CNNs for music and video into multimodal structures using a late fusion strategy, 

enhancing the accuracy of emotion classification. It provides a detailed comparative analysis of various 

unimodal and multimodal CNN architectures, identifying the best models for emotion classification.  

Choi et al. [30] introduces a novel approach to multimodal classification by incorporating a second objective 

using variational inference. These innovations aim to address the challenges of overfitting and limited data in 

multimodal systems. Minyilu et al. [31] introduces a multimodal diagnostic model for predicting PTB, 

combining traditional diagnostic methods with deep learning-based automated detection algorithms (DLADs) to 

improve the accuracy and efficiency of TB diagnosis. Examination and assessment of the acid-fast bacillus 

(AFB) smear sputum were carried out by expert officers in each health facility designated as a health facility for 

TB service programs by the government. Ramirez-Hidalgo et al. [32] introduces a new scoring system, the 

Pulmonary Tuberculosis Sputum Score (PTBSCore), to predict the length of the infectious period in patients 

with PTB. This score is based on clinical, radiological, and analytical parameters. 

Regrettably, there has been no research on image segmentation of MTB in sputum using multimodal 

deep learning across three different color channels and the International Union Against Tuberculosis and 
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Lung Disease (IUATLD) assessment. Sputum examination results were interpreted using the IUATLD 

grading scale, categorizing subjects into 1+, 2+, and 3+ groups based on the number of AFB observed [33]. 

The staining was examined with a 1000x magnification microscope by applying immersion oil to the sample. 

BTA bacteria appear brick pink, while non-BTA bacteria appear blue. The number of AFB was read 

according to the IUATLD scale [34], as shown in Table 1. 
 

 

Table 1. Scale of IUATLD [34] 
Readings under the microscope Reporting of results 

BTA was not found in 100 laps of vision Negative 

1-9 BTA in 100 fields of view Scanty 
10-99 BTA in 100 fields of view +1 (positive 1) 

1-10 BTA in 1 field of view +2 (positive 2) 

>10 BTA in 1 field of view +3 (positive 2) 

 
 

Although there have been significant advancements in TB detection, several challenges remain. This 

research aims to develop a new multimodal model for the early diagnosis and accurate prediction of TB by 

using sputum image segmentation across three color channels: RGB, HSV, and CIELAB. TB continues to be 

a major global health issue, especially in developing countries where timely and accurate diagnosis is 

essential for effective treatment and control. Traditional diagnostic methods often lack speed and accuracy, 

prompting the need for advanced techniques. This study utilizes the latest advancements in multimodal deep 

learning, specifically the YOLOv8 model, to improve the real-time detection and segmentation of sputum 

images. By integrating features from multiple color channels, the study aims to extract more distinctive 

features, thereby enhancing diagnostic accuracy. The novelty of this approach lies in its multimodal 

integration and the application of deep learning to a traditionally manual process, potentially revolutionizing 

TB diagnostics. The model classifies results using the IUATLD scale, indicating negative and positive (1+, 

2+, 3+) outcomes. 

The major contribution of this work as follows: 

− A novel multimodal model is proposed for early diagnosis and accurate prediction of Mycobacterium TB 

patients based on sputum images segmentation from three different canal which is RGB, HSV and 

CIELAB. 

− In the proposed model the sputum images segmentation will be detected using bounding box with 

YOLOv8 to produce image and coordinate from each canal. 

− The model integrates, sputum images segmentation model from three different canal model to extract 

discriminatory features such as texture and shape features from the sputum images segmentation using 

multimodal deep learning techniques. 

− The proposed model uses IUATLD assessment to counting the total of MTB’s sputum to classify 

negative and positive (1+, 2+, 3+) of TB. 

The remaining portions of this article are broken down into the following sections: the second 

section digs into the details of our designed methodology. Section 3 explores and analyzes the experimental 

findings and discussion about substantial and intellectual contribution. Finally, the conclusions and future 

works are found in section 4. 

 

 

2. METHOD 

In this study, data collection involved obtaining 1,265 microscopic images of TB from the 

Department of Clinical Pathology at the Faculty of Medicine, Universitas Airlangga. The TB classification 

process consists of multiple stages, as illustrated in Figure 1, beginning with the input of image data. The 

dataset was labeled by identifying TB bacteria locations within each image using a bounding box approach 

through YOLO. All images were resized from 1632×1442 to 640×480 to standardize them for the 

multimodal deep learning model. These resized images were then processed through three color channels-

RGB, HSV, and CIELAB to capture a broader range of features. The YOLOv8 model was used for 

classification, enabling both detection and segmentation of TB bacteria in the images. Model accuracy was 

assessed using mean average precision (mAP) criteria, and the IUATLD evaluation with mean absolute 

percent error (MAPE) criteria was applied to count MTB, providing classifications as negative, 1+, 2+, or 3+. 

 

2.1.  Labelling data 

During the data labeling stage, images are resized to standardize their dimensions from 1632×1442 

to 640×480, followed by labeling using YOLO’s bounding box method. After generating the YOLO-labeled 

dataset, color segmentation is applied. The RGB color image is first converted to grayscale and then 
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transformed into a binary image. Using deep learning-based segmentation methods enhances accuracy and 

reduces processing time [35]. Once segmentation is completed, the processed images are fed into a 

multimodal deep learning model for further analysis. 
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Figure 1. Flow chart research method detection MTB 

 

 

2.2.  Image segmentation 

Deep learning has now become a widely accepted and powerful approach for image segmentation, 

frequently utilized to separate uniform areas as a fundamental step in diagnostic and treatment 

workflowsgmentation involves partitioning an image into distinct regions to identify objects or areas of 

interest, aiming to simplify the representation of the image into clear, meaningful sections [36]. The 

HSVration, Value) color space aligns closely with the RGB color space, reflecting how humans perceive and 

describe color sensations, which often makes it preferable for color image segmentation [37]. CIE Lab* 

(CIELAf the most comprehensive color spaces defined by the International Commission on Illumination, 

capturing all colors visible to the human eye [38]. Designed as a device-independent reference, CIELAB uses 

three coordinates: L* for lightness (from 0 for black to 100 for diffuse white), a* for the red/magenta to green 

spectrum (with positive values indicating magenta and negative values indicating green), and b* for the 

yellow to blue range (positive for yellow and negative for blue). The results of image segmentation in RGB, 

HSV, and CIELAB are shown in Figure 2. 

 

2.3.  Classification using multimodal deep learning 

To build a model using the YOLO technique, a dataset is required for training. In this research, the 

dataset comprises 1,265 microscopic images of TB, obtained through Acid Fast Bacteria staining using the 

ZN method to assist in the initial microscopic diagnosis of TB. The fixation process in this staining technique 
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opens the bacterial cell walls, allowing them to absorb the coloring agents used. In total, 3,795 images were 

utilized for this study, divided into 1,265 images each in RGB, HSV, and CIELAB color spaces. Combining 

multiple modalities enables the deep learning model to better interpret its environment, as certain features are 

present only within specific modalities, as shown in Figure 3. 

 

 

 
 

Figure 2. MTB in RGB, HSV and CIE LAB 

 

 

 
 

Figure 3. Result of classification of MTB with multimodal deep learning 

 

 

2.4.  Counting Mycobacterium tuberculosis with International Union Against Tuberculosis and Lung 

Disease 

MTB counts are determined using the classification results, with four models created based on four 

different data partitioning scenarios. Grading of TB in sputum samples follows the IUATLD scale, defined as 

follows: negative (no AFB observed in 100 fields), 1+ (10-99 AFB in 100 fields), 2+ (1-9 AFB per field in at 

least 50 fields), and 3+ (more than 10 AFB per field in at least 20 fields). 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Results 

A confusion matrix is used to assess the performance of a machine learning model by comparing 

actual classifications with predicted classifications [39]. It consists of four components: true negative (TN), 

true positive (TP), false negative (FN), and false positive (FP), each representing a combination of actual and 

predicted outcomes. TP indicates the count of correctly classified positive samples, TN is the count of 

accurately classified negative samples, FP refers to negative samples incorrectly labeled as positive, and FN 

represents positive samples incorrectly labeled as negative [40]. Figure 4 shows the confusion matrix for 

MTB classification using multimodal deep learning. The dataset partitioning for testing follows the holdout 

method, splitting data into training and test sets. The dataset includes 3,795 samples across two classes, 

stored in training and testing folders according to predetermined portions. This training process enables the 
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model to learn and recognize predefined objects. The dataset will undergo four training scenarios, outlined as 

follows: 

a. Data train 60% (2277 data) and data test 40% (1518 data). 

b. Data train 70% (2656 data) and data test 30% (1139 data). 

c. Data train 80% (3036 data) and data test 20% (759 data). 

d. Data train 90% (3415 data) and data test 10% (380 data). 

 

 

 
 

Figure 4. Confusion matrix from classfication MTB with multimodal deep learning 
 

 

Figure 4 presents the confusion matrix for MTB classification across four data partition scenarios. 

Using (1) to (4), we calculate metrics such as accuracy, precision, recall, F1-score, and mAP. In the first data 

partition (60:40), we obtained 605 TP, 196 FP, 154 FN, and 563 TN. For the second partition (70:30), the 

values were 594 TP, 178 FP, 135 FN, and 232 TN. In the third partition (80:20), there were 231 TP, 79 FP, 

69 FN, and 180 TN. Finally, for the fourth partition (90:10), the results showed 205 TP, 39 FP, 35 FN, and 

101 TN. These values enable the calculation of precision, accuracy, recall, F1-score, and mAP. 

Precision is the ratio of TP to the total number of predicted positive data. In the denominator, there 

is the variable FP as the divisor. This can be written using (1) [41]: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (1) 

 

Accuracy is the percentage of correctly identified cases. Thus, can be written using (2) [41]: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (2) 
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On the other hand, recall is defined as the ratio of TP to the total number of actually positive 

instances. The denominator includes FN as the divisor, and it can be written using (3) [42]: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

When recall is very high, precision will be very low, and vice versa. There is a trade-off relationship 

between precision and recall. This trade-off relationship implies that the sum of these two variables equals 1. 

The harmonization of the average between precision and recall is called the F1-score. Based on (4) [42], the 

best value for the F1-score is 1.0, while the worst value is 0.0. 

 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2𝑥𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑥𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

mAP averages the precision and recall scores for each object class to determine the overall accuracy 

of the object detector. This metric represents the average of the average precision (AP) calculated for all the 

classes being detected, and it can be written using (5) [42]: 

 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖𝑁
𝑖=1  (5) 

 

Interpretation criteria of mAP, can be seen in Table 2 where mAP>70% which means that model 

very accurate. 50%≤mAP≤70% which means that the model has adequate performance and mAP<50% which 

means that the model not good. 

 

 

Table 2. Interpretation criteria of mAP [42] 
Interpretation (%) Value 

mAP>70 Very accurate. The model is very accurate in detecting and classifying objects. 

50≤mAP≤70 Good. The model has adequate performance, but there may still be room for improvement. 
mAP<50 Not good. The model has significant problems detecting or classifying objects correctly. 

 

 

Figure 5 illustrates the accuracy scores across four test scenarios: data partition 1 achieved 76.94%, 

data partition 2 scored 72.52%, and both data partition 3 and data partition 4 reached 80.5%. Precision scores 

were as follows: 75.53% for data partition 1, 76.94% for data partition 2, 84.51% for data partition 3, and 

84.01% for data partition 4. Recall scores showed 81.48% for both data partitions 1 and 2, 86.2% for data 

partition 3, and 85.42% for data partition 4. F1 scores were 77.56% for data partition 1, 79.14% for data 

partition 2, 85.34% for data partition 3, and 84.71% for data partition 4. The mAP scores were 84.14% in 

data partition 1, 83.34% in data partition 2, 92.24% in data partition 3, and 87.39% in data partition 4. 

 

 

 
 

Figure 5. Results of data partition testing 
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The IUATLD calculation process on 3795 images was obtained from 13 patients, where every 100 

images were the result of taking MTB sputum from one patient. Dataset in this study consists of 3795 images, 

where 1265 images in RGB, 1265 images in HSV and 1265 images in CIELAB, then there are 13 patients who 

can be classified using IUATLD calculations. The classification results used for IUATLD calculations in  

Table 2 use a classification model from 80:20 data partition, which has the highest score from Table 3. 

 

 

Table 3. Results of IUATLD from the third data partition testing 

No 
Number of visual fields 

with condition 1+ 
Number of visual fields 

with condition 2+ 
Number of visual fields 

with condition 3+ 
Score IUATLD 

1 97 70 27 2+ 

2 98 76 22 2+ 

3 100 75 25 2+ 
4 100 80 20 3+ 

5 96 71 25 3+ 

6 95 68 27 3+ 

7 98 67 31 3+ 

8 97 70 27 3+ 

9 99 82 17 2+ 
10 98 74 24 3+ 

11 98 75 23 3+ 

12 99 75 24 3+ 
13 37 27 10 1+ 

 

 

Results of the IUALTD calculation, as can be seen in Table 3, from the 13 patients there was one 

patient who was categorized as 1+, then one patient who were categorized as 2+ and eleven patients who 

were categorized as 3+. Based on [43] a MAPE value of 3.9% has a very accurate interpretation of 

forecasting results. The MAPE value in this study was obtained by comparing the number of MTB 

classifications produced by the proposed model with the number of MTB calculated by Department of 

Clinical Pathology, Faculty of Medicine, Universitas Airlangga in 1265 images. This research already noted 

in Ethical Exemption Number 53/EC/KEPK/FKUA/2023. The difference between the observed value and the 

forecast value is often referred to as the residual. Various techniques in measuring accuracy both in numbers 

and in percent such as MAPE. Calculations with MAPE are carried out with absolutes in the form of a 

percent divided by a lot of data to be measured by period, is shown in (6). 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ ⃒

𝐴𝑖−𝐹𝑖

𝐴𝑖
⃒𝑛

𝑖=1 𝑥100% (6) 

 

where 𝑛 is sample size, Ai is actual data value, and 𝐹𝑖 is forecasting data value 

MAPE is scale-independent and easy to interpret, which makes it popular with industry 

practitioners. It is recommended in most textbooks. The interpretation of the MAPE value is <10%, including 

very accurate forecasting; 10-20%, including good forecasting; 20-50%, including reasonable forecasting; 

and >50%, including inaccurate forecasting, as seen in Table 4 [43]. 

From the Table 5, we can see the results of MAPE in data partision 60:40 has MAPE score in 

0.76%. In data partition 70:30 has MAPE score in 0.69%. In data partition 80:20 has MAPE score in 0.23% 

and in data partition 90:10 has MAPE score in 0.53%. The interpretation of the MAPE value is <10%, 

including very accurate forecasting; 10-20%, including good forecasting; 20-50%, including reasonable 

forecasting; and >50%, including inaccurate forecasting [43]. The best MAPE score in this research is 0.23% 

which means very accurate forecasting. 

 

 

Table 4. Interpretation criteria of MAPE [43] 
Interpretation Value 

MAPE<10% Very accurate forecasting 

10-20% Good forecasting 
20-50% Reasonable forecasting 

MAPE>50% Inaccurate forecasting 
 

Table 5. Results of MAPE 
No YOLO Data partition (%) MAPE (%) 

1 YOLOv8 60:40 0.76 

2 70:30 0.69 
3 80:20 0.23 

4 90:10 0.53 
 

 

 

3.2.  Discussion 

In epidemiology, health issues can be analyzed from various angles, such as person, time, and place 

[44]. TB remains a leading cause of mortality globally, with young children at the highest risk of infection, 
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highlighting the urgent need for improved diagnostic and treatment methods [45]. This research is unique in 

its integrative approach, combining multiple color spaces to boost diagnostic accuracy. Unlike traditional 

methods that rely on a single color space, this model incorporates RGB, HSV, and CIELAB simultaneously. 

Recent advancements also include hyperspectral imaging or image clustering using the HSV color space, 

which aids in detecting biological colonization and assessing color variations on surfaces [46]. The 

innovative use of bounding boxes for detecting and segmenting sputum images offers several advantages: 

− Enhanced precision and speed: YOLOv8’s architecture allows for rapid and precise detection of objects 

within images. This is crucial in medical diagnostics where timely and accurate analysis can significantly 

impact patient outcomes [44]. 

− Real-time processing: the ability of YOLOv8 to process images in real-time ensures that the segmentation 

of sputum images can be performed quickly, facilitating faster diagnosis and treatment planning [47]. 

− Detailed localization: by producing both images and coordinates for each canal, the model provides 

detailed localization of the segmented areas. This level of detail is essential for thorough analysis and can 

aid in identifying specific regions of interest within the sputum samples [46]. 

− Scalability and adaptability: the model’s reliance on YOLOv8 means it can be easily adapted to other 

types of medical image segmentation tasks. This scalability makes the approach versatile and applicable 

to a wide range of diagnostic applications [44]. 

The proposed model introduces an innovative method for sputum image segmentation by combining 

models from three different channels to extract distinguishing features through multimodal deep learning 

techniques. By incorporating segmentation models across these three channels, the model achieves a 

thorough analysis of sputum images, which is essential for differentiating among various types of sputum 

samples and enhancing diagnostic and disease classification accuracy. The use of multimodal deep learning 

enables effective processing and integration of information from diverse sources, enhancing the model’s 

capacity to learn complex patterns and relationships in the data, resulting in improved segmentation 

outcomes [48]. This combination of multiple channel models with multimodal deep learning signifies a 

notable advancement in medical image analysis, providing a powerful tool for extracting critical features 

from sputum images and contributing to more precise and efficient diagnostics. 

This study introduces an innovative multimodal deep learning model designed for the detection and 

classification of MTB in sputum images. By combining image segmentation from RGB, HSV, and CIELAB 

color channels and employing the YOLOv8 model, the researchers attained an impressive accuracy of 

92.24% and a MAPE of 0.23% for precise predictions. The model’s effectiveness was assessed through four 

different data partition scenarios, with the 80:20 partition providing the optimal outcomes. The IUATLD 

grading scale was utilized to evaluate TB severity, resulting in accurate classification of patients into 

negative, 1+, 2+, and 3+ categories. 

The findings of this research have important implications for TB diagnostics. By integrating 

multimodal image segmentation utilizing RGB, HSV, and CIELAB color channels, we have established a 

novel approach that significantly improves both diagnostic accuracy and speed. Our critical comparison with 

traditional single-channel methods demonstrates the advantages of our multimodal model in effectively 

capturing the complex features of sputum samples. This advancement not only overcomes the limitations of 

current diagnostic techniques but also opens avenues for future studies to investigate similar multimodal 

strategies in other medical imaging fields. The application of the YOLOv8 model for real-time detection and 

segmentation further emphasizes the potential for implementing this technology in clinical environments, 

ultimately enhancing patient outcomes through timely and accurate diagnoses. The model also uses the 

IUATLD grading scale to assess the severity of TB infection, offering a standardized and precise method for 

counting and classifying MTB, thus improving diagnostic reliability. 

This article has several limitations that should be acknowledged. First, the research relied on a 

limited dataset of 3,795 images collected from just 13 patients, which may not adequately represent a larger 

population. Second, the focus on specific color channels (RGB, HSV, and CIELAB) for image segmentation 

might not encompass all pertinent features, indicating a need for additional modalities or improvements to the 

existing method. Finally, external validation is lacking; the findings have not been thoroughly tested across 

diverse clinical and geographical contexts, which raises questions about their generalizability and 

applicability. 

 

 

4. CONCLUSION 

This research introduces an innovative method for classifying MTB through a multimodal deep 

learning model that incorporates sputum image segmentation across RGB, HSV, and CIELAB color 

channels. Utilizing the YOLOv8 model for real-time bounding box detection and segmentation, along with 

the IUATLD grading scale for classification, our approach achieves remarkable accuracy of 92.24% and a 
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MAPE of 0.23%. The findings highlight that the multimodal deep learning approach significantly improves 

both diagnostic accuracy and speed, serving as a dependable tool for early TB detection. This method 

harnesses advanced image processing and machine learning techniques, making it applicable in various 

healthcare environments, even those with limited resources. This study showcases the potential of combining 

multimodal image processing and deep learning to enhance diagnostic results, paving the way for further 

exploration of artificial intelligence applications in medical diagnostics, particularly for infectious diseases. 

For communities in high TB burden regions, our approach presents a promising solution to the difficulties 

associated with TB diagnosis. By offering a more precise and accessible diagnostic tool, we can enhance 

early detection and treatment outcomes, ultimately curbing the spread of TB and bolstering public health. 

The proposed model has the potential to be adapted for other infectious diseases that necessitate 

image-based diagnostics. Future studies might investigate the incorporation of additional data modalities, 

such as genomic information, to further improve diagnostic precision. Furthermore, creating portable 

diagnostic devices that utilize this technology could transform point-of-care testing in remote and resource-

constrained environments. 
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