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1. INTRODUCTION

The field of networking games, also known as non-cooperative networks, is a burgeoning area of
research that utilizes principles from non-cooperative game theory to improve the performance of networked
systems. This field has gained significant recognition and importance in recent years, as evidenced by the
growing body of literature on the topic. At its core, networking games involve the application of game theory
to various functions within networked systems. This includes tasks such as managing server loads,
optimizing service operations on a large scale, and efficiently allocating resources across networks. Research
focuses on non-cooperative games for multidimensional resource allocation, which are crucial for
virtualization technology in cloud computing environments [1]. Similarly, studies explore cooperative game
theory for resource allocation in time division multiple access (TDMA)-based wireless networks, achieving
optimal channel capacity through cooperative relaying [2].

Game theory is instrumental in formulating and analyzing the strategies of individual network users
who are motivated by self-interest to maximize their own benefits. This approach promotes the autonomous
organization of systems, eliminating the need for centralized control. Non-cooperative game theory has been
applied to optimize video delivery over mobile ad hoc networks (MANETS), demonstrating the stability and
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efficiency of distributed resource allocation strategies [3]. Investigations into task allocation in radar
networks using cooperative game theory focus on multi-target imaging and achieving optimal resource usage
with minimal time [4]. A cooperative bargaining game theoretic approach for resource allocation in cognitive
small cell networks addresses issues such as interference mitigation and fairness [5].

Current research in the field of networking games is intensely focused on enhancing the
performance of networks operated in a decentralized manner, particularly through the development and
testing of innovative models and algorithms. Game-theoretic approaches for resource allocation in cloud
computing have demonstrated effectiveness [6]. Models that optimize resource distribution and management
within dynamic network conditions have also been developed [7].

Studies on resource allocation in virtualized environments using non-cooperative gaming and
bidding models show improvements in virtual resource utilization [8]. A non-cooperative game framework
for resource allocation in virtual routers highlights the fair distribution of resources among concurrent virtual
routers [9]. Cooperative resource allocation games in shared networks offer symmetric and asymmetric fair
bargaining models to distribute system resources among users and operators [10]. Task offloading in edge
clouds, formulated as a non-cooperative game, optimizes resource management among terminal users [11]. A
non-cooperative game-based algorithm for node selection in load-balanced networks ensures efficient
resource usage and load balancing [12]. Power control algorithms based on non-cooperative game theory for
managing cognitive spectrum resources in wireless networks demonstrate reduced power consumption and
improved control speed [13].

Non-cooperative differential game theory applied to network security risk assessment optimizes
resource allocation for risk management [14]. Client and server games in peer-to-peer networks investigate
strategies for load splitting and scheduling to achieve optimal performance [15]. Approximate congestion
games for load balancing in distributed systems show the existence of Nash Equilibrium (NE) in such games
[16]. Game-theoretical resource allocation methods in wireless communications review highlights effective
strategies for various mobile communication scenarios [17]. A cooperative game theory-based resource
allocation algorithm for cyber-physical systems balances communication capacity and user quality of service
(QoS) fairness [18]. It leverages game theory to enhance the performance of server loads, streamlining large-
scale service operations, and ensuring the efficient interconnected networks. This involves strategic decision-
making to optimize various functions, improve system robustness, and achieve balanced resource utilization
[19]. The goal is to understand and analyze the behaviors and strategies of individual network users, who are
typically driven by self-interest to maximize their own benefits [20].

By leveraging game-theoretic frameworks, researchers can model and evaluate the strategic
interactions among these users, thus providing insights into the dynamics of decentralized systems [21]. This
approach promotes the autonomous organization of systems, eliminating the need for centralized control and
ensuring that individual actions enhance the collective efficiency and stability of the network. Among these
developments, the theory of coverage games is notable for its effectiveness in optimizing resource
distribution and management within dynamic network conditions [22]. Coverage games address fluctuating
demands for resources, such as bandwidth, allowing for an analysis of how resources should be allocated
across various nodes to ensure optimal coverage and adaptability to changing conditions. This
decentralization is crucial as it permits each node or agent in the network to make independent decisions
based on local information, which collectively results in optimized system-wide outcomes.

The practical applications of these game-theoretic approaches extend significantly, improving the
operational longevity of MANETS through targeted energy management and enhancing service quality in
cloud computing environments with dynamic resource allocation responsive to real-time demands, which in
turn reduces operational costs [23]. As networks expand in both size and complexity, ongoing research is
crucial for refining these models. This continuous improvement is essential for developing robust and
flexible network management tools capable of addressing the increasingly sophisticated challenges faced in
global digital communications. The findings from this research underscore that while NE provides stability,
adopting optimal cooperative strategies can significantly boost efficiency and reduce transaction costs. This
study delivers critical insights into strategic task allocation, propelling the advancement of more effective
computational frameworks, and paving the way for future enhancements in network system operations.

2. METHODS

We examine the use of coverage game theory to enhance the efficiency of networked systems,
offering a detailed framework that explains the underlying concepts, use cases, tactics, and practical
implementations of coverage games. The method is structured around a detailed formulation of the game
model, processor workload analysis, NE conditions, and the price of anarchy (PoA). We aim to demonstrate
that in a system S comprising any number of computational nodes, the PoA consistently aligns with est(s).
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By combining theoretical analysis with practical validation, we demonstrate the potential of game-based
strategies to enhance performance in networked environments. To validate our theoretical findings, we
examine practical case studies where coverage game theory has been successfully implemented. These case
studies illustrate the application of the model in real-world network environments, highlighting the
improvement in service quality and resource availability.

2.1. The price of anarchy for two computational nodes

The system S comprises a set N of n processors, each with a distinct processing speed v; < -+ < v,.
For each pair of processors i and k where i # k, an external effect e;;, > 0 represents the additional load
from processor k affecting processor i. The system includes a group of participants U, each with different
tasks. Each participant M assigns their task to a processor based on their preference. The task size for
participant j is w;, where j = 1, ..., m and m is the total number of participants. The total task size is denoted
by W = Y7L, w;. Participant j chooses processor [;, and the collective decisions form a strategic profile
vector L = (I, ..., l,,,). The workload for processor i is defined as 6;(L) = ZjeM,ljziwj. The processing delay

for processor i is given by:

§i(L)

Vi

(L) = + Yk=i €Ok (L) 1)

This delay affects all participants using the same processor. We outline a pure strategy game S with elements
I'=(S(N,v,e),U(M,w), A), focusing exclusively on pure strategies. The goal is to maximize the delay of
the least delayed processor. The social benefit SCL is defined as (2):

SCL = riréllglAi(L) (2)

The optimal reward is given by:

OPT = OPT(S,U) =  max SCL ®3)

A strategy profile L is a pure strategy NE if no player benefits from unilaterally changing their processor
choice. Formally, for each player j €M : A, (L) < A;(Lg-;)) for all processors i € N. To ensure the

existence of a pure NE, the following conditions are assumed: for each pair i # k, e;, < vi For every pair i #
i

1 . .
k,ex; < - Forevery pairi # k with v; = vy, Yzi€n < Yizr -
4

The PoA measures the efficiency loss due to the selfish behavior of participants. The PoA in a
system S is:

mljaXOPT(S,U)

PoA (S) = 4)

2RS®

Consider nodes with velocities v; = v, = 1. The choice of velocities can be normalized. Based on previous
research, the PoA for 1 < s < V2 is:

PoA (5) = —7— (5)
Forv2 <s<2:
2_
PoA (s) = sZ-Ss (6)

Define efficiency as (7):

n(s) =145 —=5Wez + Ver)

n(s) = 1 - 5(2ve — 1) Y

The optimal task volume is constrained by various load distribution scenarios [24]. The theoretical
analysis provides detailed bounds and proofs for both uniform and non-uniform load distributions. The upper
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bound of PoA for different scenarios and parameters s, e;,, €51, and n(s) is derived through rigorous analysis.
The problem with the model without extrapolation is the possibility of an infinite PoA if the speed of the fastest
node is twice the speed of the other nodes. Extrapolation with small values of e,, < e, solves this problem.
The proof involves the analysis of games with multiple players and shows how the applicability
regions of active evaluations can be derived from different conditions and system parameters. An example
with four players is given for illustration. In the optimal profile of the OPT problem u, and u; are at node 2,
and u, is at node 1. The delay on the nodes satisfies the condition s(¢) < (1 +n)(s) — €.
Let us consider some game examples:
a. In a two-player game where OPT/SC(L) = est,(s), the problems u; and u, have certain values
depending on the s and e-parameters. The results show that the delay at node 2 is bounded by the value
A, (L).
b. In a three-player game where OPT /SC(L) = est;(s), the activity conditions for evaluations and delays
depend on the games, the parameters s, €, and the function g(s).
c. In the fourth example with four players OPT/SC(L) = est,(s), the conditions under which tasks are
distributed among nodes and their delays may be are computed.
The proof shows that for non-uniform load distribution, when the minimum task volume at the node
is less than the total volume, the system cannot be more efficient than under uniform distribution. For a
system S with two computational nodes, the PoOA does not exceed est(s). Similarly, for system S with any
number of computational nodes, the PoA is est(s).

2.2. Navigating the quest for equilibrium in multiplayer game theory

In the virtual realm of "The Equilibrium Quest,"” three players: player 1, player 2, and player 3 enter
the arena, each armed with distinct strategic plans denoted as wi, wW», and ws. These strategies are
fundamental to their existence within the game, dictating their trajectories and defining their legacies. United
by the goal of maximizing utility, the players engage in a sophisticated interplay of PoA, adaptability, and
negotiation within a dynamic system sensitive to each action they take.

The tactics available to the players are diverse, necessitating astute and precise application.
Adaptive play involves continuous reflection and learning, compelling players to evolve their strategies in
response to the game's changing dynamics. Predictive play, a strategy of anticipation, allows players to
envisage future scenarios and strategically position themselves for competitive advantage. Collaborative
play, perhaps the most subtle and complex tactic, encourages players to look beyond individual goals,
recognizing that strategic alliances can significantly amplify success [25].

Central to the game is the utility function a dynamic measure that fluctuates with the interplay of
strategies and the system's state, encapsulating each player's success. This function is more than a score; it
narrates each player's journey through strategic decisions and their consequences. Achieving success in the
game is subtly recognized through the attainment of equilibrium a serene state where each player’s strategy is
so harmoniously aligned with others that any deviation would disrupt the collective balance. This equilibrium
is not merely a static endpoint but a dynamic, living ideal, continuously pursued through strategic mastery. It
transcends a mere game; it mirrors the intricate dance of competitive forces in our own world. It educates
players about the essence of balance, the importance of strategic planning, and the depth of collective
optimization. The insights gained in this simulated environment extend to real-world applications such as
business negotiations and international diplomacy, emphasizing that the journey toward equilibrium often
holds as much significance as the equilibrium state itself.

Figure 1 presents a 3D conceptual visualization of the utility landscape within the strategy space of
the three players. The axes represent the strategies wi, wo, and ws, each ranging from 0 to 1, with utility
levels indicated by color red for higher utility and blue for lower. This diagram, based on hypothetical
relationships, illustrates the potential strategic interactions that could occur in an actual experiment where it
is computed based on specific game payoffs or system performance metrics.

Each player operates within a system where actions and outcomes are tightly interconnected. The
presence of the parameter e, , introduces an element of dependency, indicating that the success of one's strategy
may be tied to the strategy adopted by the other player. This intricacy captures the essence of cooperative
scenarios alike, where mutual benefit is achievable through careful coordination. In the game, players adopt
roles as strategists, maximizing personal utility within the system's confines. Player 1's strategy requires a keen
sense of timing and measurement-when to push forward with an aggressive value of s and when to pull back in
the face of an unfavourable e;,. Player 2, on the other hand, confronts a different set of strategic challenges. The
choices they make, symbolized by the strategic levers wi, W, and ws, resonate throughout the game, influencing
not only their outcomes but also those of their adversaries. As the game progresses, the system assimilates all
player decisions, recalibrating the utility landscape that they must strategically maneuver.
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Figure 1. Conceptual utility landscape in strategy space

Feedback loops provide continuous reflections of each strategy's impact, urging players to refine
their approaches in real time. This adaptive process is crucial for survival within the game’s ecosystem,
mirroring real-world cycles of strategy, feedback, and adjustment. It lacks a definitive end, creating a
persistent challenge where players are driven to balance individual aspirations with collective optimization.
The participants uncover the intricate layers of decision-making, the non-zero-sum nature of interactions, and
the elegant equilibrium of a balanced system. As the game progresses through each round, it becomes a
narrative of strategy and counterstrategy, with each player striving to anticipate the moves of their
counterpart while securing their position. It is a point that can only be described as ‘temporarily optimal’, a
fleeting state where the best decisions of today may become the pitfalls of tomorrow.

3. RESULTS AND DISCUSSION
3.1. Strategic dynamics for mastering decision-making

Concisely, the game is a microcosm of the human condition in strategic form. It encapsulates the
struggles, the triumphs, and the perpetual quest for an advantage in an ever-shifting landscape of interaction
and influence. This is not just a game but an exploratory journey through the abstract yet immensely relevant
realm of strategy, where the path to success is as much about the steps taken as it is about the paths not
chosen.

Figure 2 visualizing the strategies w; = s(1 — se;,) and w, = s(s — 1) across a range of the game
parameter e,, and the strategy parameter s. The contour lines represent levels of payoffs for each strategy,
allowing us to see how the payoffs change with varying s and e;,. The red lines correspond to strategy w;,,
and the blue lines correspond to strategy w,. In each round, both players choose a strategy (value of s), and
the payoffs are calculated based on the given formulas for w, and w,. As we can see, the payoff for player 1
varies with changes in both s and e;,, whereas the payoff for player 2 remains constant since player 2
maintains the same strategy throughout this particular sequence of rounds.

Drawing upon the data from the Table 1, we can discern the unfolding narrative of a strategic game
that hinges on both individual and reactive decision-making. Throughout five rounds, each player engages in
a cerebral contest, fine-tuning their strategies and responding to the shifts in the game environment indicated
by the parameter e,,. We believe that employing more complex network structures in simulations could yield
more comprehensive insights into the strategic interactions at play.

In the first round, both players start with a strategy parameter s set at 0.5. The negative game
parameter e, implies a competitive scenario, possibly a zero-sum game where the gain of one is the loss of
the other. This is reflected in the payoffs, with player 1 achieving a moderate gain and player 2 incurring a
loss. As the game advances into the second round, player 1, perhaps emboldened by the initial success, opts
for a more aggressive strategy by increasing s to 0.6, while player 2 maintains a constant strategy. The
positive e, this time suggests a shift in the game's nature-perhaps a cooperative turn or an external change
favoring player 1's strategy. The increase in player 1's payoff is marginal, indicating a diminishing return on
the more aggressive strategy or a successful anticipation by player 2.
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Figure 2. Contour plot of the investigated strategies

Table 1. The performance of the strategic game’s rounds
Round  Player 1 strategy(s)  Player 2 strategy(s) Game parameter  Player 1 payoff  Player 2 payoff

1 0.5 0.5 -0.2 0.55 -0.25
2 0.6 0.5 0.1 0.564 -0.25
3 0.4 0.5 -0.1 0.416 -0.25
4 0.7 0.5 0.3 0.553 -0.25
5 0.5 0.5 0.2 0.45 -0.25

By the third round, player 1 scales back their s value to 0.4, possibly in anticipation of an adverse
reaction from player 2 or in response to the negative e;,. Despite player 2's consistent strategy, their
unchanging payoff indicates a potential fixed threshold or a safety net in their game plan, insulating them
against adverse outcomes but also capping their potential for gain. In the fourth round, the game sees the
most aggressive strategy from player 1 yet, with s rising to 0.7, which aligns with a significantly positive e, ,.
This could imply a bold move in a changing environment, possibly exploiting a newfound vulnerability in
player 2's position or responding to a collaborative opportunity. The slight decrease in payoff for player 1,
despite the increase in s and a favorable e;,, might suggest diminishing returns or an overextension in the
chosen strategy.

Finally, the fifth round shows a return to the initial strategy for player 1, with s set back to 0.5. The
positive e;, remains, yet player 1's payoff decreases compared to the first round. This could imply a strategic
recalibration or a response to an anticipated counter-move from player 2. Player 2's consistency is
unwavering, demonstrating either a calculated bet on a long-term equilibrium or a lack of adaptability to
exploit changing conditions. From this sequence, we witness a strategic ballet where player 1's maneuvers are
pronounced and reactive to the changing tides of e,,, while player 2's unyielding strategy paints a picture of
steadfastness or perhaps strategic inertia. The payoffs reflect not just the immediate choices made but also the
ripple effects of each player's actions (see Algorithm 1) as they echo through the subsequent rounds, each
move informing the next in a cascade of strategic implications. This game, abstracted through the table,
serves as a compelling allegory for strategic thinking where risk, reward, and adaptability intertwine. The
ongoing challenge for each player is to strike an optimal balance between aggressive pursuit of payoff and
the strategic safeguarding against potential losses, encapsulating the complexity of decisions that go beyond
mere numbers [26].

Algorithm 1. Algorithm of strategic decisions by the players in game dynamics
1. Initialization Phase:
e Input: Initial strategy parameter s for both players set to 0.5. Initial game parameter
e, 1s negative, indicating a competitive environment.
e Output: Player 1 experiences a moderate gain, while Player 2 incurs a loss.
2. Adjustment Phase, round 2 Strategy Update:
e Player 1 escalates s to 0.6, adopting a more assertive strategy.
e Player 2 retains s at 0.5.
e The game parameter e, turns positive, possibly beneficial to Player 1.
e Output: Incremental increase in Player 1’s payoff, indicating potential diminishing
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returns on increased aggression or effective counter-strategy by Player 2.
3. Retraction Phase, round 3 Strategy Modification:

e Player 1 decreases s to 0.4 in response to potential adversities to negative eq,.
e Player 2’s strategy remains unchanged.
e Output: Constant payoff for Player 2, suggesting a robust strategy potentially designed
to buffer against fluctuations without capturing additional gains.
4. Escalation Phase, round 4 Strategy Enhancement:
e Player 1 boosts s to 0.7, aligning with a significantly positive e;,, potentially
exploiting new opportunities or collaborative scenarios.

e Output: Despite advantageous conditions, a decline in Player 1's payoff might reflect
diminishing returns or an overextension in strategic positioning.
5. Normalization Phase, round 5 Strategy Reset:
e Player 1 reverts s to initial setting of 0.5, amid ongoing positive eq,.

e Output: A reduction in payoff compared to the first round, hinting at strategic
recalibration or adaptation to anticipated strategies from Player 2.

3.2. Optimal job distribution for processor performance optimization

In task allocation, jobs and processors interact through game theory, balancing competition and
cooperation as each job, acting as a rational agent, seeks its optimal processor allocation. These processors, in
turn, serve as the platforms where tasks are executed. The decision for each job, ranging from w; to w,,
involves choosing a processor that will handle its load most efficiently. The NE in this context represents a
state where each job has settled on a processor such that no single job can improve its position by unilaterally
changing processors. This equilibrium, while stable, does not necessarily equate to the most efficient system
performance. No job can improve its situation by switching processors alone, as a testament to the stability of
their choices [27].

In contrast, the optimal strategy aims for a collective maximization of system performance, where
the total payoff is optimized. This strategy seeks an allocation where the efficiency of individual tasks is not
merely maintained but enhanced through a synergistic distribution across processors. The model's utility
functions are dynamic, incorporating variables like system stress s, multitasking inefficiency », and the cost
of task transition between processors e,,. These factors together define the utility landscape, gauging
satisfaction levels for both individual tasks and the system as a whole. The delicate balance between
individual job satisfaction and overall system performance is influenced by factors such as migration costs,
fluctuating system loads, and PoA. High migration costs, for example, can impede the flexible reallocation of
tasks, much like an overly restrictive framework reduces efficiency.

Figure 3(a) presents a 3D surface plot depicting the NE system payoff, illustrating the variance in
payoff with changes in system stress (s) and migration delay (e,;). Similarly, Figure 3(b) visualizes the
payoff for the optimal profile (LOPT) system under varying conditions of s and e,;. These visualizations
show the effects of system stress and migration delay on system payoffs under different strategic
frameworks.

Nash Equilibrium (L) Payoff Optimal Profile (LOPT) Payoff

Figure 3. 3D surface plot of the systems’ payoff showing variations with system stress and migration delay:
(a) NE system payoff and (b) system payoff for optimal profile

The OPT strategy's vulnerability is underscored by a linear decrease in payoff as migration delays
increase, exposing its fragility in the face of real-world imperfections. This pattern of performance reveals
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critical trade-offs between stability and optimality that are essential for system design. System architects are
often faced with the choice between a stable but suboptimal task allocation (NE) and an optimally configured
but fragile system (LOPT), especially in environments where migration costs are unpredictable. To manage
these dynamics, task allocation algorithms could be designed to dynamically toggle between two strategies,
based on real-time migration cost assessments, thereby maintaining a balance between system stability and
operational efficiency. Table 2 provides a detailed view of the complexities involved in strategic decision-
making within computational systems [28]. Under constant low system stress, the gradual increase in NE
payoffs despite rising migration delays suggests a robustness in the NE strategy, indicating an inherent
system resilience even without coordinated task optimization, albeit at the expense of peak efficiency.

Table 2. The performance of system stress and migration delay
System stress  Migration delay  NE payoff  LOPT payoff

0.1 0.000 0.003 0.202
0.1 0.051 0.003 0.200
0.1 0.101 0.003 0.198
0.1 0.152 0.003 0.196
0.1 0.202 0.003 0.194

Furthermore, the implications of these strategies extend beyond mere computational systems,
offering valuable insights into the broader dynamics of organizational structures, where individual decisions
influence collective outcomes. The processors, acting as rational agents, choose from a set of strategies that
define the allocation of jobs with the dual objective of maximizing individual payoffs and minimizing job
execution delays. Each processor’s decision affects not only its own performance but also that of the other,
introducing a layer of complexity typical of game-theoretic scenarios. Lower delay values suggest a more
efficient processor and, by extension, a more efficiently running system. It's noteworthy that as s increases,
there appears to be an overall trend of increasing delays, which could suggest that as the system scales, a
processor is less able to keep up with the workload efficiently [29]. Through the lens of game theory, this
model underscores the significance of strategy selection and the potential advantages of cooperative problem-
solving, especially in complex environments like distributed systems and cloud resource management [30].

Operating systems closer to LOPT not only optimizes performance but also contributes to
environmental sustainability by reducing energy consumption and carbon emissions. This dual focus enriches
the strategic discourse, encouraging theoretical exploration of intermediate strategies that could harmonize
the stability of NE with the efficiency of LOPT, thereby adapting to various environmental constraints and
enhancing overall system resilience. These intersections and trends are more than just theoretical-they can
inform decisions in real-world systems where the allocation of computational tasks or resources must be
optimized.

4. CONCLUSION

This paper presents a game-theoretic model for task allocation in distributed systems, exploring the
strategic interactions between processors with varying speeds and external load effects. Through a
combination of formal mathematical modeling and computer simulations, the study demonstrates that while
NE offers system stability, optimal cooperative strategies can significantly enhance efficiency and reduce
transaction costs. The experiments highlight the trade-off between individual processor job satisfaction and
its performance, with processors seeking to minimize their workload often creating inefficiencies at the
system level.

The research contributes to understanding that NE fosters stability within the distributed system by
creating a state where no processor can unilaterally improve its performance by changing strategies.
However, while NE ensures a stable configuration, it often leads to suboptimal outcomes regarding system-
wide performance. The cooperative strategies, where processors act in sequence rather than individually, lead
to significantly improved operational efficiency. These cooperative strategies reduce transaction costs
associated with task migration and improve the system’s response to varying load conditions.

Limitations include assumptions of perfect information and idealized processor behaviors, which
may not fully capture the complexities of real-world distributed systems. The model assumes that all
processors have access to complete information about the system state. In practice, processors may face
delays in obtaining system information, or their performance may be influenced by factors such as hardware
failures or network issues. Additionally, the study primarily focuses on task allocation in isolated systems,
potentially limiting its generalizability to interconnected or highly heterogeneous environments.
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Further exploration of hybrid strategies that balance stability with optimal performance in
fluctuating conditions would be valuable. Future studies could also consider incorporating uncertainties in
system parameters, such as stochastic task arrival rates or processor failures. These environments often
involve more complex communication protocols, which are critical considerations in large-scale distributed
systems. Moreover, empirical validation in real-world applications could refine the model and improve its
applicability to practical distributed computing frameworks.
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