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 The increasing dimensionality of gene expression data poses significant 

challenges in cancer classification, particularly in colon cancer. This study 

presents a novel filtering approach (FA) and a gene classifier (GC) to 

enhance gene selection and classification accuracy. Utilizing a dataset of 62 

samples, our methods integrate statistical measures and machine learning 

classifiers, achieving classification accuracies of 96% and 97%, respectively. 

The FA effectively filters out noise and redundancy, allowing for accurate 

predictions with a minimal subset of genes, while the GC leverages multiple 

classifiers for optimal performance. These findings underscore the 

importance of robust feature selection in improving cancer diagnostics and 

suggest potential applications in personalized medicine. By addressing the 

limitations of existing methodologies, our work lays the groundwork for 

future research in cancer genomics, emphasizing the need for adaptive 

strategies to handle complex datasets. 
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1. INTRODUCTION 

Deoxyribonucleic acid (DNA) microarray technology has transformed cancer research, enabling 

simultaneous analysis of thousands of genes, and offering valuable insights into gene interactions crucial for 

early detection, diagnosis, and prognosis [1], [2]. Despite this, significant challenges remain due to the 

imbalance between the large number of genes and the limited sample size in such datasets. Many genes are 

irrelevant to cancer progression or highly interdependent, complicating analyses and potentially leading to 

inaccurate predictions if the entire gene set is used indiscriminately [3], [4]. 

Feature selection is pivotal in overcoming these challenges by reducing dimensionality and 

excluding irrelevant or noisy genes, enhancing classification accuracy and model interpretability [5], [6]. 

Recent advancements in feature selection methods have been made. For instance, Hegazy et al. [7] 

demonstrated the efficacy of differential evolution techniques for colon cancer gene selection, while Ali and 

Saeed [8] developed a hybrid filter-genetic algorithm (GA) that improved classification across various cancer 

types. 

Other studies, including those by Kourou et al. [9] and Hambali et al. [10], highlighted the 

importance of feature selection in cancer classification, noting the need for more refined techniques to 

address the complexity of microarray data. Chowdhary et al. [11] further identified ongoing issues in feature 

selection for high-dimensional datasets. Hybrid methods, such as those combining filter methods with 

algorithms like C5.0, have shown promise, as illustrated by Hamim et al. [12], who achieved significant 

improvements in breast cancer classification. Despite these advancements, current feature selection methods 
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require further refinement to balance classification accuracy, computational efficiency, and gene 

interpretability, especially in colon cancer classification. This study addresses these gaps by proposing an 

innovative approach integrating filter and wrapper methods to identify the most relevant genes, aiming to 

enhance both accuracy and efficiency in cancer diagnostics. 

The structure of this paper is organized as follows: section 2 discusses the materials and methods 

used, detailing the dataset and feature selection strategies. Section 3 presents classification results, focusing 

on accuracy metrics and comparisons with state-of-the-art methods. Section 4 offers a discussion of the 

findings, limitations of the study, and directions for future research. Finally, section 5 concludes the paper by 

summarizing the main contributions and highlighting the significance of the proposed approach. 

 

  

2. METHOD 

Our study employs a streamlined, three-step gene selection approach integrated with classification 

techniques to enhance tumor classification from microarray data. First, a filter approach (FA) reduces the 

feature space using statistical methods like signal-to-noise ratio (SNR) and Pearson correlation coefficient 

(CC), identifying the most relevant genes while eliminating redundancy and noise [13], [14]. Next, a wrapper 

approach refines this selection by iteratively incorporating genes that improve classification performance, 

ensuring the model is optimized for accuracy [14]. Finally, a minimal subset selection ensures the smallest 

gene set is retained, balancing high classification accuracy with computational efficiency [13], [14]. 

 

2.1.  Gene selection procedure 

The three-step gene selection process starts with a FA, followed by a wrapper approach, and ends 

with selecting a minimal subset of genes. Below are the algorithms for each step along with the methods 

utilized. 

 

2.1.1. Step 1: filter approach 

The FA employs statistical methods to assess gene relevance before further refinement. We utilize 

three primary techniques: SNR, Pearson CC, and ReliefF. Algorithm 1 uses statistical measures, including 

SNR, Pearson CC, and ReliefF, to rank genes based on their relevance, selecting the top k genes for further 

analysis. The SNR differentiates gene expression patterns by measuring the maximal average expression 

difference between groups relative to minimal within-group variability [15], [16]. 

 

Algorithm 1. Filter approach for initial gene selection 
Input: Microarray dataset D with m genes and n samples. 

Output: Ranked gene subset G′ based on feature relevance. 

Algorithm Filter_Approach(D) 

    1. Initialize an empty list G' (selected genes) 

    2. For each gene g_i in D: 

        a. Compute Signal-to-Noise Ratio (SNR) 

        b. Compute Pearson Correlation Coefficient (CC) 

        c. Compute ReliefF score 

    3. Rank genes based on the combined score of SNR, CC, and ReliefF. 

    4. Select top k genes (k can be predefined or based on an accuracy threshold). 

    5. Return G' (top k genes) 

End Algorithm 

 

The CC quantifies the strength of the linear relationship between genes. The coefficient ranges from 

-1 to 1, with -1 and 1 indicating a perfect negative or positive linear relationship, respectively, while 0 

represents no linear correlation. A positive correlation means that both genes increase together, whereas a 

negative correlation indicates that one increases while the other decreases [17], [18]. ReliefF, a supervised 

feature-weighting technique, identifies gene relevance by assessing the quality of features, initially developed 

by [19] and later enhanced by [20]. 

 

2.1.2. Step 2: wrapper approach 

In the wrapper approach, we utilize the performance of various classifiers to further refine the gene 

selection process. The method iteratively adds genes and evaluates classification accuracy, retaining only 

those that enhance model performance. 

 

Algorithm 2. Wrapper-based gene selection 
Input: Ranked gene subset G′ from Step 1, Classification algorithm C, Accuracy threshold T. 

Output: Gene subset G′′ with the highest classification accuracy. 

Algorithm Wrapper_Selection(G', C, T) 

    1. Initialize an empty set G'' (final gene subset) 
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    2. Initialize best_accuracy = 0 

    3. For each gene g_i in G': 

        a. Add g_i to G'' 

        b. Train classifier C using G'' and compute accuracy A 

        c. If A > best_accuracy: 

              i. best_accuracy = A 

              ii. Keep g_i in G'' 

        d. Else, remove g_i from G'' 

        e. If best_accuracy > T, break 

    4. Return G'' (genes that maximize accuracy) 

End Algorithm 

 

The wrapper approach adds one gene at a time to the model, evaluates classification accuracy, and only keeps 

genes that improve accuracy. This iterative process continues until accuracy stabilizes or reaches a 

predefined threshold T. 

 

2.1.3. Step 3: minimal subset selection 

In this final step, we aim to select the smallest possible gene subset that maintains classification 

accuracy. This method focuses on optimizing both performance and computational efficiency. Algorithm 3 

ensures that the final gene subset is minimal, retaining only those genes necessary for maintaining 

classification performance. 
 

Algorithm 3. Minimal subset selection 
Input: Gene subset G′′ from Step 2, Classifier C. 

Output: Minimal subset G_{min}. 

    1. Initialize G_{min} = G'' 

    2. For each gene g_i in G'': 

        a. Temporarily remove g_i from G_{min} 

        b. Train classifier C on G_{min} and compute accuracy A 

        c. If A decreases, add g_i back to G_{min} 

    3. Return G_{min} 

End Algorithm 

 

2.2.  Classification methods 

We implemented five classification algorithms: K-nearest neighbor (KNN), support vector machine 

(SVM), linear discriminant analysis (LDA), decision tree (DT), and naive Bayes (NB). Below are the 

pseudocode descriptions of these classifiers. 

 

2.2.1. K-nearest neighbor  
KNN is a simple, instance-based learning algorithm that classifies a test sample based on the classes 

of its nearest neighbors in the feature space. The majority voting mechanism among the KNN determines the 

predicted class. KNN is effective for small datasets and is particularly useful when the decision boundary is 

irregular [21], [22]. 
 

Algorithm 4. KNN classification 
    1. For each sample s in D_{train}: 

        a. Compute Euclidean distance d between x and s 

    2. Sort D_{train} by distance d 

    3. Select top K nearest neighbors 

    4. Return the majority class of the K neighbors as y 

End Algorithm 

 

2.2.2. Classification algorithm: support vector machine 

SVM is a supervised learning model that aims to find the optimal hyperplane that maximizes the 

margin between different classes in a high-dimensional space. By using kernel functions, SVM can 

effectively handle non-linear decision boundaries. It is known for its robustness and effectiveness in high-

dimensional datasets, making it suitable for gene expression data [23]. 
 

Algorithm 5. SVM classification 
Input: Training set D_{train}, Test sample x, Kernel function K. 

Output: Predicted class y. 

Algorithm SVM(D_{train}, x, K) 

    1. Train the SVM model with D_{train} and kernel function K 

    2. Compute the optimal hyperplane H 

    3. Project x onto H 

    4. Return the class of x based on its position relative to H 

End Algorithm 
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2.2.3. Classification algorithm: linear discriminant analysis 

LDA is a linear classifier that finds the linear combination of features that best separates two or 

more classes. It minimizes within-class variance while maximizing between-class variance, making it 

particularly effective for classifying linearly separable data. LDA is widely used in situations where the 

assumption of normality holds [24]. 

  

Algorithm 6. LDA classification 
Input: Training set D_{train}, Test sample x. 

Output: Predicted class y. 

Algorithm LDA(D_{train}, x) 

    1. Compute within-class scatter matrix and between-class scatter matrix 

    2. Calculate the projection vector W that maximizes the ratio of between-class to 

within-class variance 

    3. Project x onto W 

    4. Return the class based on the projection 

End Algorithm 

 

2.2.4. Classification algorithm: decision tree 
DT are tree-like structures that recursively partition the feature space based on attribute values to 

make predictions. They are intuitive, easy to interpret, and can handle both categorical and continuous data. 

However, they may suffer from overfitting if not properly pruned [25], [26]. 
 

Algorithm 7. Decision tree classification 
Input: Training set D_{train}, Test sample x. 

Output: Predicted class y. 

Algorithm Decision_Tree(D_{train}, x) 

    1. Train a decision tree using D_{train} 

    2. Traverse the tree from the root node based on feature values of x 

    3. Arrive at a leaf node representing the predicted class 

    4. Return the class at the leaf node as y 

End Algorithm 

 

2.2.5. Classification algorithm: Naive Bayes 

Naive Bayes is a probabilistic classifier based on Bayes' theorem, assuming independence among 

features given the class label [25]. 
 

Algorithm 8. Naive Bayes classification 
Input: Training set D_{train}, Test sample x. 

Output: Predicted class y. 

Algorithm Naive_Bayes(D_{train}, x) 

    1. For each class c in D_{train}: 

        a. Compute prior probability P(c) 

        b. For each feature f in x, compute likelihood P(f|c) 

    2. Compute posterior probability P(c|x) for each class 

    3. Return class with highest posterior probability as y 

End Algorithm 

 

Classification accuracy was considered the key evaluation metric for the classifiers [27]: 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝑇𝑃+ 𝐹𝑁+ 𝐹𝑃
  (1) 

 

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. 

 

2.3.  Our proposition for gene classification for binary class problems 

In binary class problems, we introduce ensemble-based voting using classifiers such as random 

forest (RF) and extreme gradient boosting (XGBoost), along with other techniques to improve performance. 

 

2.3.1. Step 1: statistical measures of selected genes  

We employ the enhanced statistical techniques described earlier to extract meaningful patterns from 

the gene expression data. Each gene’s statistical measures are calculated, and classification intervals are 

defined using robust methods such as IQR. 

 

2.3.2. Step 2: ensemble-based voting with random forest and extreme gradient boosting  
We extend our ensemble approach by introducing stacking and weighted voting. Our ensemble 

consists of RF, XGBoost, and additional classifiers like light gradient boosting machine (LightGBM), 

adaptive boosting (AdaBoost), and categorical boosting (CatBoost) to increase the robustness and accuracy 
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of classification. A meta-classifier (e.g., logistic regression) is trained to combine the outputs of these base 

classifiers. Additionally, we apply weighted voting, where classifiers with higher individual performance are 

assigned more importance in the final vote. If the confidence of the majority vote falls below a threshold, 

further analysis (e.g., fallback KNN) is triggered. 

 

Algorithm 9. Enhanced_Ensemble_Gene_Voting (G_opt, x, Classifiers) 
    1. Input: Optimized gene subset G_opt, Test sample x, List of Classifiers 

    2. Output: Predicted class y 

    3. Initialize vote_class1 = 0, vote_class2 = 0 

    4. For each gene g_i in G_opt: 

        a. Compute the expression interval [Mean_i - Std_i, Mean_i + Std_i] 

        b. If x_i lies outside the interval for class 1, vote for class 2 

        c. If x_i lies outside the interval for class 2, vote for class 1 

    5. Apply Random Forest, XGBoost, LightGBM, AdaBoost, and CatBoost classifiers to x 

    6. Perform stacking to combine predictions using a meta-classifier (e.g., logistic 

regression) 

    7. Apply weighted voting scheme based on classifier performance 

    8. If majority vote confidence < threshold (e.g., 70%), apply fallback KNN or Isolation 

Forest 

    9. Tally the votes from individual gene decisions and ensemble methods 

    10. Return the class with the majority or weighted vote as y 

End Algorithm 

 

By applying advanced statistical measures, robust ensemble methods, and techniques like stacking, weighted 

voting, and outlier detection, our proposed approach offers a powerful and flexible system for selecting the 

minimal subset of genes and classifying tumors based on microarray data. The combination of RF, XGBoost, 

and other classifiers ensures that our system handles complex datasets with high accuracy and robustness. 

 

2.4.  Data analysis of microarray gene expression in colon cancer 

The microarray dataset utilized in our study is structured as an N×M matrix, where N corresponds to 

the number of biological samples (40 cancerous and 22 normal colon tissue samples) and M refers to the total 

number of genes (over 6,500 human genes). Each entry in this matrix represents the expression level of a 

specific gene in a particular sample. 

 

2.4.1. Context and significance 

Colon cancer, also referred to as colorectal cancer, arises from malignancies in the lining of the 

colon and rectum, resulting from uncontrolled cell proliferation. This proliferation can lead to the invasion of 

surrounding tissues and potential metastasis to distant organs, making early detection and accurate 

classification critical for effective treatment. The gene expression profiling of colon tissues can provide 

insights into the underlying molecular mechanisms of cancer progression and help identify potential 

biomarkers for diagnosis and therapy. 

 

2.4.2. Dataset description and preprocessing 

The dataset includes gene expression measurements from 40 cancerous and 22 normal samples, 

obtained via the Affymetrix oligonucleotide array platform, which analyzes over 6,500 genes with high 

accuracy. To ensure reliability, 2,000 genes were selected based on high signal intensity, variability between 

cancerous and normal samples, and excluding those with more than 10% missing data. Normalization 

techniques, like quantile normalization and robust multi-array average (RMA), were applied to adjust for 

technical variability, while outlier detection helped exclude anomalous samples. The final dataset, with 2,000 

genes, was used for gene selection, classification, and validation. Full dataset details are available at [28]. A 

complete description of the dataset can be found at [28] and the data is downloadable from genomics-

pubs.princeton.edu/oncology/affydata/index.html. 

 

 

3. RESULTS AND DISCUSSION  

The experiments were conducted on a laptop with the following hardware configuration: an Intel® 

Core™ i5 CPU M 250 @ 2.4 GHz processor, dual-core, with 4 GB of RAM. The system operated on 

Windows 10 (64-bit), providing a standard computational environment. The MATLAB software package 

(version R2023a) was used to implement the algorithms, execute the data analysis, and perform classification 

tasks. Although this setup is not highly specialized for large-scale computations, it was adequate for handling 

the size of the colon cancer dataset, consisting of 2,000 genes across 62 samples. 
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3.1.  Results corresponding to the new filtering approach 

In this study, we assessed the performance of various classifiers combined with different feature 

selection methods on colon cancer data, aiming to achieve optimal classification accuracy while minimizing 

the number of selected genes. The results demonstrate the significant impact of the FA in enhancing 

classification performance. As shown in Table 1, the classification accuracies varied across classifiers 

depending on the feature selection technique used. For the SNR method, classification accuracy ranged from 

85.7% to 92.8% when using 2 to 29 genes. However, when SNR was combined with the FA method, the 

accuracy improved to 96%, with only 4 to 6 genes selected. Similarly, the CC method yielded accuracies 

between 85.7% and 92.8% with 2 to 27 genes, while the FA integration raised the accuracy to 96%, requiring 

just 3 to 5 genes. The ReliefF method, which initially produced accuracies ranging from 78.5% to 90% using 

11 to 78 genes, achieved 94% accuracy when combined with FA, using only 4 to 5 genes. 

 

 

Table 1. Performance of various classifiers with different feature selection methods for colon cancer 

Feature selection methods 
Classifiers 

KNN SVM LDA DT NB 

SNR 92.80% (5) 85.70% (29) 92.80% (2) 91% (21) 85.70% (22) 

SNR_FA 96% (4) 92.80% (9) 94% (5) 92.80% (6) 91% (6) 

CC 92.80% (7) 85.70% (2) 92.80% (27) 92.80% (21) 85.70% (5) 
CC_FA 96% (5) 95% (4) 95% (4) 95% (5) 91% (4) 

ReliefF 85.70% (40) 85.70% (11) 78.50% (78) 90% (26) 85.70% (64) 

ReliefF_FA 91% (5) 92.80% (4) 91% (4) 94% (5) 92.80% (5) 

 

 

These results indicate that the proposed FA strategy consistently improved classification accuracy 

while simultaneously reducing the number of selected genes. This dimensionality reduction is critical for 

enhancing efficiency and minimizing overfitting in cancer diagnostics. Table 2 shows a summary of the 

selected genes and the corresponding classification accuracies, where the classification was re-predicted by 

each classifier using the FA method to better assess their importance. In the following table, one can see 

which genes are chosen by each specific method and their efficacy in achieving high classification accuracy. 

 

 

Table 2. Colon classification accuracy of different classifiers using genes selected by various feature 

selection methods 
Classifier Selection method Selected genes Classification accuracy (%) 

kNN SNR-FA M22382, J02854, T57619, T92451 96 

CC-FA M76378, T71025, H64489, Z24727, T57619, 96 

ReliefF-FA T92451, L09209, M63391, Z50753, H64489 91 
SVM SNR-FA M63391, R87126, M22382, T92451, U09564, T57619, 

M26697, R08183, H64489 

92.8 

CC-FA M76378, H64489, T95018, R87126 95 
ReliefF-FA M63391, H43887, T60155, T62947 92.8 

LDA SNR-FA H64489, M63391, T92451, T57619, M22382 94 

CC-FA H64489, M63391, M76378, R08183 95 
ReliefF-FA M63391, T92451, U09564, Z24727 91 

DT SNR-FA H64489, M63391, T92451, T57619, M22382, J02854 92.8 

CC-FA H64489, M63391, R87126, R08183, T95018 95 
ReliefF-FA H64489, M63391, U09564, M26697, H43887 94 

NB SNR-FA H64489, M63391, T92451, T57619, M76378, J02854 91 

CC-FA M63391, M76378, R87126, M26697 91 
ReliefF-FA H64489, M63391, T92451, T57619, T71025 92.8 

 

 

This table reveals that the chosen genes are important in achieving good classification accuracy 

across various classifiers. The repeated selection of some genes, such as H64489 and M63391, demonstrates 

their critical role in distinguishing between tumor and non-tumor samples. After identifying the major genes 

for colon cancer, we used all categorization techniques to assess how often each gene is selected. The 

frequency of picking each gene, as well as the most useful and important genes in the classification of colon 

cancer, are depicted in Figure 1. 

Following the identification of the major genes, their expression levels were studied across 62 

samples. Figures 2(a)-(d) details the gene expression of the four major genes—M63391, H64489, T92451, 

and T57619—in various samples, categorized into tumor and normal classes. The x-axis represents the 

samples, numbered from 1 to 62, while the y-axis represents the gene expression levels. This figure clearly 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 2, April 2025: 1476-1485 

1482 

captures the variation in expression levels for these genes between the colon cancer groups, facilitating more 

accurate sample classification. 

 

 

 
 

Figure 1. Number of hits for each selected gene for colon cancer 

 

 

   
(a) (b) 

  

  
(c) (d) 

 

Figure 2. Gene expression values for: (a) gene T92451, (b) gene T57619, (c) gene M63391, and (d) gene 

H64489 in normal and tumor samples 

 

 

3.2.  Results corresponding to the new gene classifier 

This section compares the performance of the proposed gene classifier (GC) with KNN, SVM, 

LDA, DT, and NB. The GC's effectiveness is evaluated using gene subsets selected through the SNR filter 

within the FA. For colon cancer classification, the SNR-FA method identified four key genes (Table 3), 

enhancing both accuracy and efficiency across all models, with GC showing superior performance. The 

results demonstrate that our proposed GC achieved the best classification accuracy of 97%, surpassing all 
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other classifiers, including KNN (96%), LDA (94%), DT (94%), and NB (94%). In addition, the GC 

significantly reduced computation time, requiring only 19 seconds to perform the classification, which is a 

notable improvement compared to the other classifiers, particularly DT (47 s) and SVM (40 s). 

 

 

Table 3. Colon cancer classification accuracy and processing time of various classifiers using SNR_FA 

Selection method 
Classifiers 

KNN SVM LDA DT NB GC 

SNR_FA 96% 92.8% 94% 94% 94% 97% 
cost time 37 s 40 s 33 s 47 s 41 s 19 s 

 

 

3.3.  Interpretation of results 

The results from both the FA and the GC reveal substantial improvements in classification accuracy 

and computational efficiency for colon cancer classification. By implementing the FA, we significantly 

reduced the number of selected genes while maintaining or enhancing performance across classifiers. This 

dimensionality reduction is particularly valuable for high-dimensional datasets like microarrays, where many 

irrelevant or redundant genes can negatively impact classifier performance. 

The SNR filter, when combined with FA, consistently boosted classification accuracy across 

multiple classifiers. Specifically, it achieved 96% accuracy with KNN and SVM, and 94% with DT and NB, 

using only 4-6 genes. This demonstrates that the FA method effectively identifies a compact yet informative 

set of genes, thereby improving both efficiency and accuracy in classification. 

Furthermore, the GC further refined classification performance, achieving the highest accuracy of 

97% with a processing time of just 19 seconds. This highlights the potential of a custom classifier optimized 

for selected gene subsets, surpassing traditional classifiers like KNN, SVM, and LDA in both speed and 

accuracy. These findings underscore the importance of integrating advanced feature selection techniques with 

tailored classifiers to achieve robust cancer classification from gene expression data. 

 

3.4.  Limitations 

Despite the promising results, several limitations must be addressed. Firstly, the small sample size 

(62 samples) used in this study may limit the generalizability of the findings. Larger datasets are needed to 

validate the robustness and scalability of both the FA and GC methods across diverse clinical contexts. 

Secondly, the dataset's class imbalance, with more tumor samples than normal ones, could potentially bias 

the classifiers, leading to an overestimation of accuracy for the majority class. Addressing this issue through 

techniques like resampling or stratification could ensure more reliable evaluations. 

Moreover, the proposed methods were tested exclusively on colon cancer data. Future research 

should investigate the applicability of FA and GC across other cancer types and broader biological datasets. 

Lastly, while the computational efficiency of GC was demonstrated, further testing on larger datasets is 

necessary to evaluate its scalability in more complex scenarios, especially when handling hundreds or 

thousands of samples. 

 

 

4. DISCUSSION 

In this section, we critically evaluate the proposed FA and GC against prominent methodologies in 

cancer classification using microarray data. The Isomap-GA method [29], which integrates Isomap for 

nonlinear dimensionality reduction with a GA for gene selection, achieved 85.8% accuracy using 11 genes. 

In contrast, our FA method excels by removing noise and redundancy, yielding a higher accuracy of 96% 

with fewer genes, thereby offering more robust classification while enhancing computational efficiency. 

Similarly, the hybrid gene selection method employing XGBoost and a multi-objective genetic 

algorithm (MOGA) [30] achieved 90.2% accuracy with 62 genes, but at the cost of computational intensity. 

Our FA, focusing on key statistical measures, simplifies gene selection, achieving higher efficiency. 

Additionally, the GC outperformed this method by reaching 97% accuracy in just 19 seconds, a notable 

improvement in both accuracy and speed. 

Compared to the entropy-based gene selection method [31], which achieved 91.9% accuracy with 9 

genes, our FA addresses a critical limitation by incorporating noise filtering, ensuring that only relevant 

genes are selected. When combined with the GC’s majority voting across classifiers such as KNN, SVM, and 

LDA, our approach achieved 97% accuracy with minimal computational overhead. In summary, the FA and 

GC methods surpass existing techniques in accuracy, computational efficiency, and robustness in gene 

selection. By effectively eliminating noise and redundancy while reducing the number of selected genes, our 
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approach significantly improves colon cancer diagnostics and paves the way for further advancements in 

cancer genomics. 

 

 

5. CONCLUSION 

In this study, we have introduced a novel FA for gene selection and a GC for colon cancer 

classification, significantly enhancing classification accuracy while reducing the number of genes required. 

Our results demonstrate that by effectively filtering out noise and redundancy, we can improve diagnostic 

accuracy to 96% and 97% for our proposed methods, outperforming existing techniques in the field. These 

findings not only contribute to a deeper understanding of gene interactions in colon cancer but also offer a 

practical framework for the application of microarray data in clinical settings. 

The implications of our research extend beyond the immediate findings, highlighting the importance 

of robust gene selection methods in cancer diagnostics. By focusing on minimizing dimensionality while 

maximizing classification performance, our approach provides a valuable tool for researchers and clinicians 

aiming to utilize gene expression data for early detection and personalized treatment strategies. Furthermore, 

the integration of diverse classifiers in our GC emphasizes the need for adaptive methodologies in the 

evolving landscape of cancer genomics. 

Looking forward, future research could explore the application of our methods in other cancer types, 

as well as their integration with emerging technologies such as artificial intelligence and machine learning. 

This could facilitate more comprehensive analyses of large-scale genomic datasets and improve the accuracy 

of cancer classifications. Moreover, investigating the biological relevance of the selected genes could provide 

insights into the underlying mechanisms of tumorigenesis and inform the development of targeted therapies. 

In conclusion, our study not only addresses current challenges in gene selection and cancer classification but 

also sets the stage for future advancements in the field. By fostering a collaborative approach between 

computational methods and biological research, we can enhance our understanding of cancer and ultimately 

improve patient outcomes. 
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