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 Thoracic disease is a medical condition in the chest wall region. Accurate 

thoracic disease diagnosis in patients is critical for effective treatment. 

Atelectasis, mass, pneumonia, and pneumothorax are thoracic diseases that 

can lead to life-threatening conditions if not detected and treated early enough. 

When diagnosing these diseases, human expertise can also be susceptible to 

errors due to fatigue or emotional factors. This research proposes developing 

a real-time deep learning-based classification model for thoracic diseases. 

Three deep convolutional neural network (CNN) models - 

MobileNetV3Large, ResNet-50, and EfficientNetB7 - were evaluated for 

classifying thoracic diseases from chest X-ray images. The models were tested 

in 5-class (atelectasis, mass, pneumothorax, pneumonia, and normal), 4-class 

(atelectasis, pneumothorax, pneumonia, and normal), and 3-class (atelectasis, 

pneumonia, and normal) modes to assess the impact of high interclass 

similarity. Retrained MobileNetV3Large achieved the highest classification 

accuracy: 75.72% next to ResNet-50 (75.2%) and last EfficientNetB7 

(73.03%). For the 4-class, EfficientNetB7 (88.08%) led with 

MobileNetV3Large in the last (87.08%), but MobileNetV3Large led the 3-

way with 97.88% with EfficientNetB7 again in the last (96.55%). These 

results indicate that MobileNetV3 can effectively distinguish and diagnose 

thoracic diseases from chest X-rays, even with interclass similarity and 

supports the use of computer-aided detection systems in thoracic disease 

classification. 
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1. INTRODUCTION 

Thoracic disorders encompass a wide range of potentially life-threatening conditions affecting the 

heart, lungs, esophagus, mediastinum, chest wall, and great vessels. According to the World Health 

Organization (WHO), pneumonia is particularly critical among these. Pneumonia, a viral or bacterial infection, 

is a leading cause of death in children globally, especially in low and middle-income countries [1]. These 

statistics highlight the urgent need for accurate and accessible diagnostic tools. CXRs are the preferred 

https://creativecommons.org/licenses/by-sa/4.0/
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diagnostic tool for thoracic diseases such as pneumonia and tuberculosis and signs of heart failure like 

cardiomegaly (enlarged heart), pulmonary edema (fluid in the lungs) and lung cancer indications such as mass 

and nodules. This is because CXR’s are readily accessible in most healthcare facilities, even in remote or 

resource-constrained settings. Compared to more advanced imaging techniques like CT scans or MRIs, CXRs 

offer a cost-effective and low-radiation alternative. However, traditional CXR interpretation relies on the skill 

and experience of radiologists, who can be susceptible to limitations. Radiologists are not infallible and can 

make mistakes in diagnosing chest X-rays, especially when dealing with high workload, fatigue, or complex 

cases requiring more attention and analysis [2]. 

The demand for radiologists often exceeds the supply, especially in remote or rural areas with a 

shortage of qualified and experienced radiologists. This can create disparities in access to accurate and timely 

diagnosis, as patients may have to wait longer or travel farther to get their chest X-rays read and interpreted 

[3]. The time it takes to get a chest X-ray result can significantly impact the patient’s outcome, as some diseases 

may require prompt and urgent treatment to prevent complications or death. However, due to the limited 

number and availability of radiologists, there may be delays in getting the chest X-rays read and interpreted, 

affecting the quality of care and patient satisfaction [4]. 

Accurate classification of thoracic diseases from chest X-ray images is critical for timely and effective 

treatment. Traditional CXR interpretation methods rely heavily on the expertise of radiologists, who can be 

susceptible to human error, particularly under high workloads and fatigue. The availability of radiologists is 

limited, especially in rural and remote areas, leading to delays in diagnosis and treatment. Conventional 

diagnostic processes can be time-consuming and resource-intensive, impacting patient care and  

satisfaction [5]-[7]. Therefore, deep learning approaches like convolutional neural networks (CNNs), which 

offer promising solutions to these challenges by improving accuracy, efficiency, and accessibility in CXR 

analysis, are needed. 

According to Xue et al. [8], the prevalence of atelectasis in hospitalized patients can be as high as 

90% postoperatively. Radiologists often find it challenging to differentiate atelectasis from other conditions 

like pleural effusion or pneumonia due to similar radiographic appearances. AI models, particularly deep 

learning, can provide more consistent and precise analysis, thereby reducing diagnostic errors. Pneumothorax 

is a medical condition characterized by air in the pleural space, causing the lung to collapse partially or 

completely. Advances in AI, particularly deep learning algorithms, aim to enhance the accuracy of 

pneumothorax detection by identifying subtle changes and patterns in chest X-ray images that human 

radiologists may miss [9]. Early and accurate diagnosis of lung mass is crucial, especially for malignant masses, 

to improve patient outcomes through timely and appropriate interventions. Research indicates that 

incorporating AI into diagnostic workflows can enhance the ability to identify and classify lung masses 

accurately [9]. 

Pneumonia is an inflammatory condition of the lung affecting the alveoli, typically caused by 

bacterial, viral, or fungal infections. It can involve any part of the lungs, though bilateral lower lobe 

involvement is common. The challenge for radiologists in diagnosing pneumonia is that it can present with 

radiographic features similar to other conditions, such as atelectasis or pulmonary edema. AI systems can 

improve diagnostic accuracy by identifying specific patterns and anomalies in CXR images that may be subtle 

or difficult for human observers to detect. Studies have demonstrated the efficacy of AI models in enhancing 

the detection and classification of pneumonia, facilitating better clinical decision-making and patient care [5]. 

CXR is the most common and widely used imaging modality for diagnosing and screening various 

thoracic diseases, such as pneumonia, tuberculosis, lung cancer, and pleural effusion [3]. CXRs are relatively 

inexpensive, easy to acquire, and non-invasive compared to other imaging techniques like CT and MRI. 

However, interpreting CXR images is challenging and requires expert knowledge and experience. The demand 

for CXR interpretation is increasing due to the growing prevalence of respiratory diseases and the limited 

availability of radiologists. By leveraging artificial neural networks, deep learning models can automatically 

analyze chest X-ray images, extract intricate features, and highly accurately classify thoracic diseases [6], [10]. 

CNNs are a deep learning model capable of processing pictures and extracting valuable data. They 

consist of multiple layers of artificial neurons that apply mathematical operations to the input data, such as 

convolution, pooling, and activation [3]. These operations help reduce the data's dimensionality and enhance 

the most relevant features. Using [9] as a case study, which used the ResNet-50 architecture to classify over 

100,000 frontal-view images with eight common thoracic disease labels as a benchmark, CNN architectures 

have shown remarkable accuracy in classifying common diseases that affect the lungs and the heart, such as 

pneumonia and cardiomegaly. These diseases have distinctive visual features that CNNs can detect, such as 

opacities, enlargement, and cavities. 

In transfer learning, the initial layers of the pre-trained models are often frozen, making their weights 

static during the training process. In contrast, the later layers might not be frozen depending on the complexity 

of the task to allow for adjustment to higher-level features [10]. 
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Custom layers may be added to the model to address the specific requirements of the new task. For 

instance, a new fully connected layer can be added at the network's end to classify the specific categories in 

the new dataset. 

In the case of thoracic diseases, [11] explored transfer learning using pre-trained AlexNet, 

MobileNetV2 and ResNet-50 and 101 models for classifying diverse lung-related diseases. They compare the 

performance of fine-tuning and freezing pre-trained layers, offering insights into optimizing transfer learning 

strategies for different tasks with remarkable results. 

The design of MobileNetV3 incorporates advancements from both MobileNetV2 and a new 

architecture search technique called NetAdapt, ensuring an optimal balance between computational efficiency 

and accuracy. Its streamlined architecture is particularly beneficial when handling large medical image 

datasets, where computational resources and inference speeds are critical. MobileNetV3Large integrates 

Squeeze-and-Excitation (SE) modules to amplify the representational capacity of its network. SE modules 

adaptively adjust the model's channel-specific feature responses. This is accomplished by explicitly modelling 

the interdependencies between channels. This is accomplished via a squeeze operation to compress the spatial 

dimensions into a channel descriptor and an excitation operation to scale the channel-specific properties. This 

approach allows the network to focus on the most relevant elements, enhancing its ability to detect meaningful 

input patterns [12]. The model in [13] diagnoses COVID-19 from chest X-ray (CXR) images. The researchers 

developed the COV-MobNets model, MobileNetV3Large, which was utilised as part of an ensemble of mobile 

networks. 

ResNet50, short for residual network with 50 layers, and introduced by [14] is one of the most 

renowned deep learning models due to its exceptional performance in image classification tasks. In the 

network, each residual block typically consists of three layers: a 1×1 convolution, a 3×3 convolution, and 

another 1×1 convolution. The output of these layers is then added to the input of the block, forming a shortcut 

connection that allows gradients to flow directly through the network. The researchers in [15] used ResNet50 

to identify pneumonia, tuberculosis, and lung cancer by analyzing chest radiographs. 

EfficientNet's compound scaling algorithm strikes a compromise between network depth, breadth, 

and resolution. This approach entails simultaneously growing its depth, breadth, and resolution to construct a 

sequence of models from EfficientNetB0 to EfficientNetB7, with B7 being the largest and most powerful [16]. 

The model has been used to detect and classify anomalies in mammogram images. In this application, the 

model helps identify potential signs of breast cancer by analyzing mammographic data [17]. 

 

 

2. PROPOSED METHOD 

The conceptual background for this research as illustrated in Figure 1. The proposed method follows 

the Knowledge Discovery in Databases (KDD), which consists of domain understanding, data acquisition and 

understanding, data processing, modelling, evaluation and deployment [18], [19]. 

The selected images were mutually exclusive from recognized and benchmarked dataset. The NIH 

Chest X-ray 14 dataset contains over 100,000 frontal-view X-ray images of 32,717 unique patients. The images 

are labelled with 14 different thoracic disease conditions, making it a significant resource for training and 

evaluating machine learning models in medical imaging and disease detection. The dataset is widely used for 

research in radiology and machine learning [9]. 

The dataset "Chest X-ray Images (Pneumonia)" on Kaggle comprises 5,863 tagged chest X-ray images 

divided into three categories: normal, bacterial, and viral. It is separated into training, testing, and validation 

sets, with photos obtained from paediatric children aged one to five at the Guangzhou Women and Children's 

Medical Centre. The dataset is commonly used for training and evaluating machine-learning models in medical 

imaging and disease detection [20]. 

The input size of the three models used was 224×224 pixels, a standard dimension for many image 

classification tasks, including those involving medical imagery. This inputs size balances, maintaining 

sufficient image detail and ensuring manageable computational requirements. The chosen input size allows the 

model to capture relevant features in chest X-ray images, such as patterns indicative of thoracic diseases, while 

also keeping the processing time feasible for practical use. 

Pre-trained ImageNet weights were used for all three models. Training the model with these weights 

provides a significant advantage by leveraging transfer learning. ImageNet, a large dataset with over a million 

images across a thousand categories, offers a rich feature representation that can be repurposed for different 

tasks. By starting with these pre-trained weights, the model benefits from a well-established foundation of 

learned features, enabling it to converge faster and achieve higher accuracy with fewer training examples 

specific to thoracic diseases. This approach is particularly beneficial in medical imaging, where annotated data 

can be scarce and expensive. 
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Figure 1. Conceptual framework of the developed model 

 

 

Table 1 shows the description of the dataset with atelectasis mass, pneumonia, pneumothorax and 

normal with equal total number of classes, training, validation, and testing data of 1500, 1050, and 300 

respectively. 
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Table 1. Description of dataset 
Classes Total number of CXIs/class Training set Validation set Testing set 

Atelectasis 1500 1050 150 300 
Mass 1500 1050 150 300 

Pneumonia 1500 1050 150 300 

Pneumothorax 1500 1050 150 300 
Normal 1500 1050 150 300 

 

 

The layers introduced to the MobileNetV3Large architecture are carefully chosen to customize the 

model for the specific objective of thoracic illness categorization. The Flatten() layer converts the multi-

dimensional output from the base model into a one-dimensional vector. This transition from convolutional 

layers to fully connected layers is crucial for preparing the data for classification by the dense layers that follow. 

The first Dense(256, activation=swish) layer introduces 256 fully connected neurons with the Swish activation 

function. The Swish activation function as defined by (1): 

 

𝑓(𝑥) = 𝑥 ⋅ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) (1) 

 

is known for its smooth and non-monotonic nature, allowing the model to learn complex, non-linear data 

representations. This enhances the model's ability to capture intricate patterns in the chest X-ray images. 

Dropout(0.5) is a regularization approach for avoiding overfitting. Dropout improves model 

generalizability to new data by randomly setting 50% of neurons to zero during each training cycle. This is 

especially essential in medical imaging jobs since models can quickly recall training data. Dense Layer (128 

units, Swish activation): The second Dense(128, activation=swish) layer adds another set of fully connected 

neurons, further increasing the model's capacity to learn complex features from the data. The Swish activation 

function is again employed here to take advantage of its superior performance in deep learning tasks. Dropout 

layer (50%): another Dropout(0.5) layer is included to maintain the regularization effect, ensuring consistent 

overfitting prevention as the model continues to learn. 

Output layer: the final Dense(K, activation="softmax", kernel_regularizer=l2(0.001)) layer produces 

probability distributions over the dataset's K classes of thoracic diseases. The SoftMax activation function 

ensures that the sum of the output probabilities equals one, allowing for clear and interpretable class 

predictions. The L2 regularization helps prevent overfitting by penalizing large weights, ensuring the model 

remains robust and generalizable. 

This combination of layers at the end of the models' architecture ensures that the model can extract 

relevant features from the chest X-ray images and is adept at making accurate and reliable classifications. Using 

the Swish activation function, dropout for regularization, and L2 regularization in the output layer contributes 

to the model's enhanced performance in the specific task of thoracic disease classification, as shown in  

Figure 2, the transfer-learning pipeline. 
 

 

 
 

Figure 2. Transfer learning pipeline 
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The models will be assessed using four criteria: accuracy, recall, precision, specificity, and the  

F1-score. They are as specified in (2) to (5) [21]-[25]: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃
  (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (4) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (5) 

 

where: TP is true positive, TN is true negative, FN is false negative, and FP is false positive. 

 

2.1.  Environment and parameters settings 

The Table 2 summarize the key training parameters and configurations used for different deep learning 

architectures: MobileNetV3Large, ResNet-50, and EfficientNetB7 across 5, 4, and 3-way classification. Each 

model is trained on a dataset of thoracic disease images using identical settings to ensure a fair comparison of 

their performance. 

 

 

Table 2. Parameters settings 
Parameters MobileNetV3Large ResNet-50 EfficientNetB7 

Image size 224×224 224×224 224×224 

Batch size 64 64 64 
Epoch 20 20 20 

Patience 3 3 3 
Learning rate 0.0010 Scheduler Scheduler 

Optimizer Adam Adam Adam 

Loss Categorical cross-entropy Categorical cross-entropy Categorical cross-entropy 
Training split 0.7 0.7 0.7 

Validation split 0.1 0.1 0.1 

Testing split 0.2 0.2 0.2 
Callbacks EarlyStopping EarlyStopping EarlyStopping 

 

 

The training environment was done in: 

− HP Pavilion Laptop 15-cc0xx; 

− Microsoft Windows 11 Pro 64-bit; 

− Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz with a max clock speed of 2712; 

− 4-partitioned SSD of 256052966400 bytes Storage (Model: MTFDDAV256TBN-1AR15ABHA). 

 

2.2.  Model integration into web and mobile applications 

The developed deep learning model can be used for practical purposes after a successful model 

evaluation. Potential integration scenarios include incorporating the model into: 

− Software for medical imaging analysis would enable practitioners to use the model's categorization powers 

in their current procedures. 

− Web application: a web application has been developed to offer a user-friendly platform for eye disease 

classification activities. 

 

2.2.1. Testing application 

A Python script was made to implement a graphical user interface (GUI) using Tkinter to facilitate 

the loading and testing of Keras models on chest X-ray images to classify thoracic diseases. The application 

consists of several key components: 

− Libraries and dependencies: the code imports necessary libraries such as Tkinter for the GUI, TensorFlow 

for loading and processing the model, and PIL for image handling. ImageDataGenerator from Keras is used 

to apply data augmentation techniques and preprocess the input images. 

− Image data generator: an ImageDataGenerator object is created with specified augmentation parameters 

like rotation, width shift, height shift, and zoom range. This helps to enhance the model's robustness by 

providing varied training examples. 
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− GUI elements: the main application window is initialised with buttons for loading the Keras model and 

image files. Labels are used to display the selected image and the prediction results. Functions 

load_model_file and load_image_file allow the user to select a model and an image file, respectively. The 

selected image is displayed in a thumbnail format within the application. 

− Image preprocessing: the preprocess_image function uses a temporary DataFrame and the 

ImageDataGenerator to preprocess the selected image, ensuring it matches the input requirements of the 

model. 

− Model prediction: the run test function is the core of the testing process. It preprocesses the loaded image 

and uses the loaded model to make a prediction. The predicted probabilities and class names are displayed 

to the user. 

− User interaction: the application provides feedback to the user via message boxes, indicating the success or 

failure of model loading, image loading, and the test run. 

This testing application provides a user-friendly interface for evaluating the performance of Keras models on 

chest X-ray images, aiding in the classification of thoracic diseases. 

 

2.2.2. Web application for classifying thoracic diseases 

With the help of a pre-trained deep learning model, users of this programmed can submit chest  

X-rays and receive diagnoses of eye diseases. It blends two essential components: 

− JavaScript Frontend: Constructed using HTML, CSS, and JavaScript, the front end offers an intuitive user 

experience. Users can: 

a. Upload an image using a specific element. 

b. Press a button to start the classification process. 

c. Examine the classification outcomes as a table or list. 

In the background, JavaScript takes a picture of the submitted file and compresses it (base64) for faster 

transmission. Makes use of an AJAX request to provide the data to the backend. 

− Flask backend: the backend runs server-side processes and is Flask-powered. It gets the frontend's base64-

encoded picture data; It decodes the data back into the original format; the trained deep learning model is 

loaded. Generates predictions on the image using the model. Prepares a response with the highest projected 

classes together with confidence ratings. Returns the response in JSON format to the front end. 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Results 

3.1.1. Results in terms of accuracies and loses 

Confusion matrix analysis was utilised to assess the performance of the classification models and 

provide insights into their behaviour. The confusion matrix has two sorts of elements: diagonal and off 

diagonal. The diagonal elements show occasions when the predicted labels matched the actual labels, 

suggesting proper classifications. Off-diagonal elements describe occasions when the classifier mislabelled or 

misclassified the data.  

The larger the diagonal values in the confusion matrix, the more accurate the predictions the model 

made conversely, the smaller the off-diagonal values, the fewer instances where the model misclassified the 

data. The confusion matrix provides a comprehensive view of the model's classification performance across 

the different classes. 

The training and validation, accuracies and losses experience during the dataset processing with the 

three different architectures are represented in Figures 3-5. While Figures 6-8 displayed the confusion matrixes 

of the models with the class. Across all epochs, the MobileNetV3Small model had the lowest training loss and 

the highest training accuracy, indicating that the lung disease data was trained effectively on the MobileNetV3 

architecture. 

The algorithm was trained to identify and categorize verified lung disease patients using chest X-ray 

pictures. To remove any bias effects, the dataset was created by randomly picking an evenly distributed set of 

chest X-rays from multiple sources. Separate datasets were utilised for training, validation, and testing. 

Notably, the test dataset was unknown to the model beforehand, ensuring that the model performs excellently 

on new, unseen data. 

The implementation for categorizing lung disease cases into five subclasses was trained and validated. 

The model was trained for 20 epochs for all five subclasses with a batch size of 64. The study findings for the 

five subclasses of lung-related disorders, utilizing a balanced dataset and a deep feature extraction 

methodology, are shown here. 

The confusion matrix for the 5-subclass lung-related disease classification using the 

MobileNetV3Small model is presented in Figures 6-8. The results show that pneumonia and pneumothorax 
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achieved better classification performance than the other disease classes. This model can accurately identify 

the occurrence of specific thoracic diseases, enabling patients to quickly take appropriate precautions. In 

addition, the classification performance measures accuracy, recall, and F1-score were determined for each 

illness class for each model and class. The general overview of each model’s results is as illustrated in  

Table 3. 

 

 

  
 

Figure 3. EfficientNetB7’s performance for training and validation accuracy and loss on 5 subclasses 

 

 

  
 

Figure 4. ResNet-50’s performance for training and validation accuracy and loss on 5 subclasses 

 

 

  
 

 

Figure 5. MobileNetV3’s performance for training and validation accuracy and loss on 5 subclasses 
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Table 3. Comparative analysis of various models 
Subclass Metrics Disease MobileNetV3Large (%) ResNet50 (%) EfficientNetB7 (%) 

5-way classification Accuracy 75.72 75.2 73.03 
Precision Atelectasis 55.71 57.91 61.39 

Mass 59.46 60.64 50.29 

Pneumonia 97.01 92.49 93.04 
Pneumothorax 80.32 75.97 69.11 

Normal 94.5 94.40 96.02 

Recall Atelectasis 80.74 67.83 63.39 
Mass 59.66 72.15 57.81 

Pneumonia 94.49 94.02 96.56 

Pneumothorax 46.51 47.22 56.29 

Normal 96.83 92.88 93.66 

F1-score Atelectasis 65.93 62.47 62.37 

Mass 59.56 65.89 53.79 
Pneumonia 95.73 93.24% 94.77 

Pneumothorax 58.91 58.24 62.04 

Normal 95.65 93.64 94.82 

4-way classification Accuracy 87.25 87.08 88.08 

Precision Atelectasis 76.76 78.95 76.53 

Pneumonia 97.32 92.15 96.79 
Pneumothorax 79.25 81.17 83.98 

Normal 95.93 97.74 97.05 
Recall Atelectasis 76.48 80.00 87.26 

Pneumonia 96.67 97.9 96.45 

Pneumothorax 79.01 80.43 71.9 
Normal 97.25 91.23 97.05 

F1-score Atelectasis 76.62 79.47 81.54 

Pneumonia 96.99 94.93 96.61 
Pneumothorax 79.13 80.79 77.47 

Normal 96.58 94.38 97.05 

3-way classification Accuracy 97.44 97.88 96.55 
Precision Atelectasis 100 99.66 99.3 

Pneumonia 96.56 97.46 95.03 

Normal 95.69 96.57 95.49 
Recall Atelectasis 100 99.65 99.3 

Pneumonia 95.58 96.84 95.67 

Normal 96.65 97.24 94.89 
F1-score Atelectasis 100 99.65 99.3 

Pneumonia 96.07 97.15 95.35 

Normal 96.17 96.9 95.19 

 

 

3.1.2. Results in terms of confusion matrices 

In addition to the MobileNetV3Small results, Figures 6(a)-(c) present the confusion matrices for the 

ResNet-50 and InceptionV3 models. These results indicate that the ResNet-50 and EfficientNetB7 models also 

exhibit good classification performance for the various thoracic-related disease classes. 

The MobileNetV3, ResNet50, and EfficientNetB7 architectures were trained on a total dataset of 

7,500 chest X-ray images, covering four thoracic-related diseases and normal: atelectasis, mass, pneumonia, 

normal, and pneumothorax. Each subclass contained 1,500 images, with the dataset divided in a 70:30 ratio for 

training and testing. The training dataset was further split into training and validation sets. 

Figure 7(a) depicts the confusion matrix for the MobileNetV3 model's 4-subclass categorization of 

thoracic-related disorders. Similarly, Figure 7(b) depicts the confusion matrix for the ResNet50 model's  

4-subclass categorization of lung illnesses. Finally, Figure 7(c) shows the confusion matrix for 

EfficientNetB7's 4-subclass categorization of thoracic-related disorders. These confusion matrices give a 

thorough breakdown of the classification performance for each of the thoracic-related illness subtypes across 

all three-model architectures. 

Figures 8 present the confusion matrices corresponding to the 4-class classification of thoracic-related 

disorders using three distinct deep learning models. Specifically, Figure 8(a) illustrates the classification 

performance of the MobileNetV3 model, while Figure 8(b) shows the confusion matrix for the ResNet50 

architecture applied to the same 4-subclass problem. In parallel, Figure 8(c) displays the performance of 

EfficientNetB7 in categorizing thoracic-related diseases. These visual representations collectively offer a 

comprehensive comparison of how each model distinguishes between the four thoracic illness subtypes, 

highlighting their relative strengths and misclassification patterns. 
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(a) (b) 

  

 
(c)  

 

Figure 6. Confusion matrix visualizing performance on classifying 5-subclasses of; (a) MobileNetV3,  

(b) ResNet-50, and (c) EfficientNetB7 

 

 

  
(a) 

 

(b) 
 

 
(c) 

 

Figure 7. Confusion matrix visualizing performance on classifying 4-subclasses of; (a) MobileNetV3,  

(b) ResNet-50, and (c) EfficientNetB7 
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Figure 8. Confusion matrix visualizing performance on classifying 3-subclasses of; (a) MobileNetV3,  

(b) ResNet-50, and (c) EfficientNetB7 

 

 

3.2.  Discussion 

Several key insights emerge from the comparison in evaluating the three deep learning models across 

the 5-way, 4-way, and 3-way classifications. MobileNetV3Large, ResNet50, and EfficientNetB7 demonstrate 

varying performance levels across different metrics and diseases, providing a comprehensive view of their 

strengths and weaknesses. These key insights and the comparative analysis of the various models are show in 

Table 3. 

For the 5-way classification, which includes diseases such as atelectasis, mass, pneumonia, and 

pneumothorax, MobileNetV3Large achieves an overall accuracy of 75.72%, slightly outperforming 

ResNet50's 75.20% but trailing behind EfficientNetB7's 73.03%. Regarding precision, MobileNetV3Large and 

ResNet50 display close performance in Atelectasis with values of 55.71% and 57.91%, respectively, while 

EfficientNetB7 excels at 61.39%. However, ResNet50 performs better in precision for diseases like mass and 

pneumonia than the other two models, with scores of 60.64% and 92.49%, respectively, highlighting its 

robustness in these specific classifications. 

The models show improved overall accuracy in the 4-way classification, which omits one disease 

from the previous set. MobileNetV3Large achieves an accuracy of 87.25%, closely matched by ResNet50 at 

87.08%, but both are surpassed by EfficientNetB7 at 88.08%. The precision metric for pneumonia is 

particularly noteworthy, where MobileNetV3Large scores 97.32%, closely followed by EfficientNetB7 at 

96.79% and ResNet50 at 92.15%, indicating strong performance across the board. For Normal cases, ResNet50 

stands out with a precision of 97.74%, while MobileNetV3Large and EfficientNetB7 are close behind at 

95.93% and 97.05%, respectively. 

In the 3-way classification, which further simplifies the categorisation, all models show significantly 

higher accuracy and precision. MobileNetV3Large achieves an accuracy of 97.44%, ResNet50 slightly higher 

at 97.88%, and EfficientNetB7 at 96.55%. Precision for Atelectasis is perfect for MobileNetV3Large and 

ResNet50, achieving 100%, while EfficientNetB7 is close at 99.30%. Pneumonia precision remains high across 

all models, with ResNet50 leading at 97.46%, MobileNetV3Large at 96.56%, and EfficientNetB7 at 95.03%. 

For the Normal classification, ResNet50 again shows superior performance with 96.57% precision, compared 

to MobileNetV3Large's 95.69% and EfficientNetB7's 95.49%. 

Generally, MobileNetV3Large and ResNet50 perform closely, with ResNet50 often-showing slightly 

better precision in more complex classifications. EfficientNetB7, while generally trailing in precision, shows 

competitive accuracy and robustness across different classification scenarios. 
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4. CONCLUSION 

Key findings highlighted the superior performance of MobileNetV3Large in terms of computational 

efficiency and accuracy, particularly when enhanced with transfer learning and attention mechanisms. 

ResNet50 showed robust performance across different disease classifications, often surpassing the other 

models in precision for complex classifications. EfficientNetB7 demonstrated competitive accuracy, 

highlighting its robustness in various classification scenarios. 

The integration of attention mechanisms within these architectures significantly improved diagnostic 

precision by focusing on critical regions of the chest X-ray images. This approach reduced the dependency on 

radiologists and democratized access to high-quality diagnostic tools, especially in resource-constrained 

settings. The study underscores the transformative potential of AI in medical imaging, paving the way for 

future advancements in AI-powered healthcare. Recommendations for future research include further 

refinement of these models, exploring additional data augmentation techniques, and implementing more 

advanced explainable AI techniques to foster trust and clinical adoption. 
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