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Gait trajectory tracking control is an essential component of a lower limb reha-
bilitation exoskeleton (LLRE). Meanwhile, the proportional-integral-derivative
(PID) controller remains popular for a variety of applications, including LLRE.
Nonetheless, employing PID presents a significant issue, namely determining
how to choose or tune the parameters. This paper addresses the LLRE’s hip-
knee angular position tracking system based on an online PID-NN controller,
i.e., a PID controller, whose parameters are online modified by a trained neu-
ral network (NN). A proposed framework for designing the PID-NN controller
is elaborated. Numerical verifications are carried out by comparing the per-
formance of the PID-based control system, whose parameters have been tuned
using Ziegler-Nichols (ZN), without and using NN. Performance comparisons
involving the presence of external disturbance are also carried out. The sim-
ulation results show that the proposed PID-NN-based control system provides
better performance with lower mean squared error (MSE), root mean squared
error (RMSE), and mean absolute error (MAE) values.
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1. INTRODUCTION

The robotics exoskeleton for the lower limbs is a human-wearable mechatronics system that combines
sensing, control, information, and other multidisciplinary domains to regulate joint movement [1], [2]. It may
be classified into two sorts based on its function: assistive and rehabilitative.

The assistive one supports the body, boosts human strength, and alleviates the physical strain of man-
ual labor at work. For example, Tu et al. [3] introduced E-Leg, an assistive robotic exoskeleton for the lower
limb that may alleviate stress and tension on the musculoskeletal system during long-term squatting exercises
by altering the needed squat height. Meanwhile, the rehabilitative one, also known as the lower limb rehabili-
tation exoskeleton (LLRE), is utilized to aid or constrain the user’s movement to stimulate the muscle or nerve
system exhibiting gait abnormalities. An LLRE can be used to treat persons with partial gait impairment, such
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as the elderly [2], stroke [4], spinal cord injury [3]], spinocerebellar ataxia (SCA) [6], and other neuromuscular
disorders. There are many subjects studied in this area, e.g., mechanism [[7]], virtual reality [8]], and control [9],
to name a few. This study focuses on an important part of LLRE: gait trajectory tracking.

Trajectory tracking control is a difficult challenge in robot control, particularly LLRE, because of the
general nonlinear and complicated system and external disturbances [[10]. A control algorithm or scheme is im-
plemented in the LLRE to track the desired gait trajectory so that the limbs and exoskeleton can move together.
The interface between the body and the exoskeleton necessitates a good controller for effective tracking per-
formance. Besides, it improves the efficiency of rehabilitative therapy [[L1]. Parikesit and Maneetham in [12]
improved the LLRE for the gait trainer using the computed torque controller (CTC) approach. Proportional-
integral-derivative (PID)-based LLRE is used for comparison. Yu et al. [13]], proposed a sliding mode controller
optimized bu the grey wolf optimization algorithm for LLRE. In addition, a fractional proportional derivative
with active disturbance rejection control(fractional PD-ADRC) to control knee exoskeleton for rehabilition is
proposed by Alawad et al. [14].

PID is a controller that is still popular for many applications, e.g., process systems [[15], [16] and
power system [17]], despite the existence of many other control techniques. These are due to the PID structure’s
simplicity, robustness, and ease of understanding [[18]—[20]. In addition to [[12], [[14]] we mentioned above, for
the LLRE application, Zhu et al. [21] utilized biomechanical signals with PID control on LLRE that identify
human gait characteristics and generate angular trajectory tracking close to the reference angle.

Selecting or tuning the PID parameters is a key stage in its use. Various optimization methods are
widely applied in selecting PID parameters for LLRE. Amiri et al. [22] designed an LLRE control system using
hybrid optimization based on a combination of genetic algorithm and particle swarm optimization. Another
study by Al-Waeli et al. [23] utilized a trained neural network (NN) to optimize PID parameters offline on an
LLRE for obtaining constant PID parameters to be used in the system operation.

However, the approach in the above studies does not consider the system’s adaptability. PID-based
control system performance depends on the value of the PID parameters. If the system changes or there is a
change in the environment that is regarded as an uncertainty, then the PID parameters might need to be changed
dynamically so that the problem of the uncertainty can be resolved [24], [25]. Furthermore, uncertainties in
LLRE systems could be divided into periodic uncertainties (due to interactions between users and LLRE)
and non-periodic uncertainties (due to unmodeled LLRE dynamics and other additional disturbances) [11].
Therefore, a more adaptive and intelligent PID control scheme is essential in LLRE systems. One of the most
widely used intelligent methods is NN because of its ability to handle periodic and non-periodic uncertainties
simultaneously in control systems [[11]. Principally, NN is a nonlinear mathematical structure consisting of a
set of interconnected neurons, or nodes [26]. Aside from its features, the implementation for control system
purposes is reasonably simple, with a variety of algorithms available both online and offline [25]], [27].

In this work, we propose a framework that utilizes the NN algorithm for modifying the PID param-
eters online, which means that the PID parameters could be updated while the system is running. The main
contributions of this paper are:

- This research provides a framework for designing an LLRE angular position tracking system that utilizes an
NN to modify online PID parameters, including how to create the datasets and train the NN.

- This research compares the performance of properly tuned PID parameters by the Ziegler-Nichols (ZN)

method with and without online changes by the trained NN.
This paper is organized as follows. In section 2, the LLRE mathematical model is presented. This

subsection also elaborates our proposed framework for designing the online PID-NN-based angular position
tracking control of the LLRE. In section 3, we present numerical examples to demonstrate the effectiveness of
our proposed method and analysis. Conclusions are made in section 4.

2. METHOD
2.1. Modeling

The dynamics model of LLRE consists of external skeleton modeling and DC motor modeling as
a joint driver in the patient’s leg [28]]. For representing basic movements such as walking, LLRE could be
represented by a 2-degree of freedom (2-DoF) model that focuses on the dynamics of the hip and knee joints,
which play an important part in these activities [29]. Linearized dynamics of the hip and knee joints in transfer
function form, based on the LLRE dynamics modeling in [30], [31], is shown in (I}, where 6,_; denotes the
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hip (¢ = 1) and knee (¢ = 2) link angles, U; denotes input voltages of the hip and knee actuators, and the model
parameters values are given in Table[I] Figure|[T]illustrates the hip and knee link angle of the 2-DoF LLRE that
focuses on the hip-knee dynamics.

Gz(S) _ esh,i(s) _ b (1)

Ui(s) a;15% + aj252 + a;35 + a4

Table 1. LLRE model parameters

Joint 7 b a;1 ;2 a;3 A4
Hip 1 26.4499 0.001 0.2362 1.6060 4.6603
Knee 2 25.9909 0.001 0.0641 0.5658 1.7326
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scheme
NN;

External
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Figure 1. 2-DoF of LLRE model, online PID-NN control system, and dataset preparation scheme

2.2. Controller design framework
The scheme of the LLRE angular position tracking system is depicted in Figure [T} It describes that
a trained NN would dynamically update the PID parameters by providing (AKp ;, AKy ;, AKp ;) while the
system runs. The proposed methodical design process for the LLRE angular position tracking system is de-
scribed in detail below.
Step 1: Determining the nominal PID parameters.
Nominal PID parameters (Kp_;, K7, Kp_;) are the initial PID parameters before these are online
updated by a trained NN, which is explained in steps 2—4. The nominal PID parameters must be
selected properly. For example, it could be obtained by following the famous heuristic tuning method
ZN [32].
Step 2: Preparing dataset.
A training step must be conducted to completely design an NN using a predetermined structure for
obtaining the weights. Dataset is needed to train the NN. The dataset is created by running the system
employing the reference signals (the gait trajectories) 0,..¢; by substituting the NN with a random
number generator to provide (AKp_;, AKy ;, AKp_;) while recording the error value e; and the con-
trol signals from the PID block w;. Thus, the recorded (e;, u;) represents the feature and the generating
random (AKp_;, AK;;, AKp ;) represents the target. Figure [I|depicts the scheme for preparing the
dataset.
The complete dataset is a collection of several packages of data pairs. A package of data pairs consists
of constant random values of (AKp_;, AK;;, AKp_) and values of (e;, u;) obtained from a single
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system run within the specified start and stop time ranges. It is important to note that, in addition to the
start and ending time ranges, the dataset length is determined by time sampling. It is also worth noting
that external disruption is not considered when compiling the dataset.
Step 3: Defining the NN structure.
This step consists of defining the hidden layer(s) and their nodes and selecting the activation function.
Note that the input and output layers must be appropriately sized to match the features and targets of
the prepared dataset.
Step 4: Training the NN.
In this step, the defined NN structure is trained using the prepared dataset once the training method has
been specified.
Step 5: Verifying the designed online PID-NN controller.
In this step, we could have the controller structure as depicted in Figure[I] Thus, verification of the
effectiveness of the designed control system for LLRE can be conducted.
These steps are detailed and illustrated in the next section, making it easier to follow the framework
and replicate or even improve it. For comparison, a step-by-step explanation is not presented in [24]], [25].
Meanwhile, Kumar et al. [[19] provides a step-by-step explanation that focuses on the NN training procedure.

3.  RESULT AND DISCUSSION
In this work, our proposed method is realized numerically using MATLAB/Simulink. Following the
flow described in the previous section, we specify the setting below:
Step 1: The nominal PID parameters are determined by following the ZN rule [32]. The parameters values are
given in Table[2]

Table 2. Nominal PID parameters
Joint Kp Ky Kp
Hip 8.4990 4.4048  4.0997
Knee 0.7971 5.9842 0.0265

Step 2: Reference signals-the gait data from [33] are used as reference signals. Specifically, for the hip and
knee link angles, respectively, we use the right hip flexion/extension and right knee flexion/extension
data of {raw data participantO0 - gait speed = 0.5m/s - corridorl - straight}. It is worth noting that
a package of data pairs is prepared by utilizing only 8s long reference signals, i.e., from 4s to 12s of
right hip flexion/extension and from 5.8s to 13.8s of right knee flexion/extension data. Each signal is
only about 18% of the total 44.333s. These represent twice wavelengths. Figure[2|depicts the reference
signals.

Generating (AKp_;, AK;;,AKp_): in this numerical study, random signals between 0 and 1 are
utilized.

Solver setting: simulations are run using Variable-step type and Automatic solver selection.

Dataset collection: the complete dataset is a collection of 100 packages of data pairs. In other words,
the simulation is run 100 times using the same reference signals but random (AKp_;, AK;;, AKp_;).
It yields dataset lengths of 151068 and 52229 for hip and knee joints, respectively. In addition, the
dataset is normalized to be within a range between —1 and 1.

Step 3: NN structure: it has an input layer with 2 nodes, one hidden layer with 6 nodes, and an output layer with
3 nodes. Every node of hidden and output layers uses hyperbolic tangent sigmoid activation function.
In addition, every node of hidden and output layers consists of weight and bias to be determined by
training.

Step 4: Training setting and result: the NN training for each joint utilizes the Gradient descent with momentum
backpropagation. Values of (Epochs, Learning rate, M omentum constant) are (1000, 0.5,0.9)
and (1000, 0.25, 0.85) for hip and knee joints, respectively. The best mean square error (MSE) of the
NN training for hip and knee joints are 0.0896 and 0.04365, respectively.

Step 5: Verification: the designed controllers for hip and knee joints are verified numerically by performing
the designed control systems using the entire length of reference signals. It is important to note that
the designed NN is represented within a MATLAB function block of Simulink in the verification step,
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whereas using a MATLAB toolbox in the training step (see subsection [2.2]).

Two scenarios run are without and with the presence of external disturbances. Random numbers —30
to 30V and —1.5 to 1.5V are used to simulate external disturbances at U; (hip) and Us (knee), respec-
tively.

40

Dataset Hip 50

1 | | A 1 \
% | 0 | | \ I 40 fl

20 30 Il

Ores1(%)
Ores2(°)
8

0 10 20 30 40 i 0 10 20 30 40
Time (s) Time (s)

Figure 2. Reference signals

In this study, we evaluate the effectiveness of PID-based hip and knee joint control systems both
with and without the intended NN to modify the PID parameters while the systems are in operation. When a
control system employs PID without NN, it indicates that it solely uses the PID controller, whose nominal PID
parameters are determined by applying the ZN rule. In the meantime, the PID with NN denotes the suggested
control system, the detailed instructions for which are shown above.

The 2-DoF hip-knee LLRE time response comparisons are depicted in Figure [3] Meanwhile, control
signal comparisons are shown in Figure ] The performance of PID and PID-NN is identical in both scenarios,
that is, without and with external disturbances. We can, however, verify that the 2-DoF LLRE with PID-NN is
shown with lower mean squared error (MSE), root mean square error (RMSE), and mean absolute error (MAE)
values. It demonstrates how effective the suggested 2-DoF LLRE-with PID-NN is. These values are shown in
Tables[3|and @ for without and with the presence of external disturbances, respectively. In addition, the changes
in PID parameters of the PID-NN control systems are presented in Figure 3}
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Figure 3. Time responses of the hip-knee dynamics
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Figure 4. Control signals of the hip-knee PID-NN control system

Table 3. Performance comparisons without the presence of external disturbances

Index performance Hip joint Knee joint
PID PID-NN PID PID-NN
MSE 0.0421 0.0399 1.8436 1.2780
RMSE 0.2051 0.1997 1.3578 1.1305
MAE 0.1684  0.1634  0.8837  0.7107

Table 4. Performance comparisons with the presence of external disturbances

Index performance Hip joint Knee joint
PID PID-NN PID PID-NN
MSE 0.5245 0.5077  3.7315 2.3733
RMSE 0.7243  0.7125 1.9317 1.5405
MAE 0.5853  0.5770 1.4735 1.1710

Furthermore, one significant point should be highlighted in this work: in these numerical simulations,
the NNs for hip and knee are trained with trivial datasets (see step 2 in this part). However, trained NNs may
change the PID value, which improves performance for tracking LLRE systems that use PID-NN.

However, this designed control system is not without weakness. We might see that the control signal
for the hip is relatively large; there are even value spikes up to the order of +/ — 100 (figure not shown). This
may be difficult when applied in actual systems due to saturation of the DC motor, which is the joint actuator.
This saturation will result in a mismatch between the calculated control signal from the controller and the actual
control signal sent to the real system. To address this issue, an anti-windup compensator can be utilized [34],
[35]]. This will be fascinating for further research and development.
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Figure 5. Parameters of PID changes for the hip-knee PID-NN control system

4. CONCLUSION

The proposed framework for designing Hip-Knee LLRE angular position control system based on PID
that is online modified by a trained is presented. This framework consists of step-by-step design procedure,
including how to create the datasets and train the NN. Numerical simulations confirm that the designed PID-
NN-based LLRE control system demonstrates its superiority based on several performance index computations,
i.e., MSE, RMSE, and MAE. According to the simulation findings, even if the dataset utilized by NN is very
simple, performance improvements can be seen. This demonstrates that using better datasets has the potential
to lead to greater speed improvements. In addition, the resulting control signal could be large. despite the fact
that it only appears as spikes. This may degrade the performance due to the actuator’s saturation, which results
in a mismatch between the calculated control signal from the controller and the actual control signal sent to
the real system. It would be fascinating to do further investigation into this topic, such as using an anti-windup
compensator.
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