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 Hepatocellular carcinoma (HCC), the primary cancer of the liver, is life-

threatening, with few or no symptoms, and detection in the early stage will 

help for successful treatment with surgery, and transplant for a better life 

quality. Here, we proposed two stacking classification models based on deep 

learning with differential hybrid feature selection for the early detection of 

HCC using novel non-invasive biomarker PIVKA-II. We showed how the 

variations in hybrid feature selection affect the performance of stacking 

classification and different supervised machine-learning algorithms on a 

metaclassifier. The base layers were support vector machine (SVM), 

gradient boosting (GB), and linear discriminant analysis (LDA). The meta 

classifier was a multilayer perceptron (MLP) with three different optimizers, 

stochastic gradient descent (SGD), adaptive moment estimation (ADAM), 

and Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). Our 

first model outperformed the second with their hybrid features by improving 

accuracy by 1.5% and F1_score by 1% in both SGD and ADAM 

optimization, while MLP-LBFGS had a 1.4% increase in accuracy. The 

precision had hiked by 1.9%, 3.5%, and 1.7% in SGD, ADAM, and LBFGS, 

respectively, in Model-1. Matthew’s correlation coefficient (MCC) for 

MLP-SGD increased from 0.82 to 0.85, MLP-ADAM from 0.81 to 0.85, and 

MLP-LBFGS from 0.75 to 78 for the first model. 
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1. INTRODUCTION 

Hepatocellular carcinoma (HCC) is one of the most prevalent, asymptomatic cancers around the 

globe. It is the most commonly seen liver cancer around the globe, having an elevated mortality rate [1]. 

More patients affected are above 60 years, especially males [2], [3]. It is the fourth most frequently found 

cancer and the second leading cause of death in Asia that is related to cancer [4], [5]. HCC diagnosis at the 

beginning stage can give the best remedies like ablation therapy, resection, and liver transplantation, thereby 

improving the quality of life and lifespan. Our study looked into the aspects of data mining for an earlier 

diagnosis of HCC for a better quality of life span and to reduce global mortality. 

In the landscape of HCC, non-alcoholic fatty liver disease (NAFLD) based HCC is the prevalent 

type of HCC in Asia [6]. The stages of NAFLD-HCC are from non-alcoholic fatty liver (NAFL) to non-

alcoholic steatohepatitis (NASH), to fibrosis, to cirrhosis, and then finally to HCC [7]. Although there are 

invasive and non-invasive procedures for HCC diagnosis, invasive procedures are risky [8]. In most people 

having a mean age above 60 years, invasive methods like biopsy show post-procedure bleeding and 

https://creativecommons.org/licenses/by-sa/4.0/
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complications [9]. So, the age group and physical fitness should be considered, as the difficulties during 

procedures affect physical, emotional, and mental stability to an extent. Another issue was that the liquid 

biopsy sometimes fails in the prognosis of HCC due to sampling error [10]. The early diagnosis of  

NAFLD-HCC using non-invasive methods is trending since those methods have a massive contribution to the 

diagnosis of the disease, in contrast to using invasive procedures. The non-invasive blood serum markers 

taken via blood test are strong enough to diagnose the disease, along with the ultrasonography findings like 

tumour size, portal vein thrombosis, and portal hypertension [11], [12]. Going deep into the recent aspects of 

HCC diagnosis, we understood that the disease can be diagnosed early by combining blood serum values 

with ultrasonography findings [13], [14]. 

Among blood serum markers, alpha-fetoprotein (AFP) was the prominent biomarker traditionally 

used for the HCC diagnosis, with other regular attributes [15]. However, the issue was that not all tumours 

develop a higher level of AFP [16], [17]. Therefore, it should not be used as one of the pre-eminent biomarkers 

for diagnosing HCC in some patients. So we need another first-line non-invasive blood biomarker. Our 

investigations revealed that the novel biomarker Des-gamma Carboxy Prothrombin (DCP), also known as 

PIVKA-II, can be used along with AFP and other detecting attributes to detect HCC in its early stage [18], 

[19]. From the statistics, it is evident that PIVKA-II is positive in HCC patients even if they are negative for 

AFP. Elevated values of PIVKA-II in some HCC patients are seen even if AFP is negative [20], [21]. 

Some of the existing works of HCC diagnosis using machine learning (ML) and their results are 

given. The study done by Ali et al. [22] used a hybrid concept of linear discriminant analysis (LDA) for 

reducing dimension, and a genetic algorithm (GA) for support vector machine (SVM) optimizer. For 

classification, they used SVM, and a hybridization of three models reached 90.3% accuracy, 96.07% 

specificity, and 82.25% sensitivity. In another deep-learning model of HBV-related HCC, the accuracy of the 

diagnosis was 76.3 [23]. Another deep learning recurrent neural network model of HBC-related HCC 

prediction showed a mean area under the receiver operating characteristic curve (AUROC) of 0.806 [24]. A 

different prediction model, k-nearest neighbor (K-NN), was chosen by Liu et al. [25] for detecting post-

resection HCC recurrence and found an accuracy of 71% and precision of 70%. Another research using a few 

serum markers, PIVKA-II with AFP, increased sensitivity 67%, accuracy 90%, and 100% specificity [26]. 

They proved the efficiency of AFP and PIVKA-II in the diagnosis of HCC in its early stage. 

The issue was that all those studies were focused on a particular category of patients, like Hepatitis 

B or Hepatitis C. Also, AFP was the major attribute for HCC diagnosis, even if some patients were negative 

for AFP. They did not address HCC occurrence in non-alcoholic fatty liver patients. The scope of a stacking 

classification is not mentioned anywhere, especially with a hybrid feature selection. Through our study, we 

showed that we can diagnose HCC, particularly in non-alcoholics infected with Hepatitis B or Hepatitis C, 

using a novel biomarker, PIVKA-II. We explored the potential of stacking classification by using a neural 

network as a meta-classifier with the help of hybrid selected features. 

There are four major contributions from our study. The first contribution was to diagnose HCC, 

especially in non-alcoholic patients, using data mining algorithms with the help of novel non-invasive 

biomarker PIVKA-II in combination with AFP, with ultrasonography findings like tumor size. The second 

contribution was the improved accuracy and true positivity compared to the recent studies. The third 

contribution is the design of a novel algorithm based on a deep learning stacking classifier built on 

conventional ML algorithms, coupled with optimization and cross-validation. The final contribution is that 

different variations in feature selection can boost the performance of binary classifications, especially the 

hybrid approach of the embedded and filter method for feature selection. Age and gender details are also 

listed in the attribute set, as most patients were males older than 60. In this research, we created two different 

ML models with differential hybrid feature selection, followed by a common stacking classifier with three 

different optimizations for better prediction of HCC. Then, we compared the results of both models and 

chose the better one as the proposed model. 

 

 

2. METHOD 

The research applied feature selection by splitting the dataset into training and testing. Here we 

constructed two models. ‘Model-1’, the first model, uses hybrid feature selection using selectKBest and 

selectFromModel and applying a stacking classifier as a meta classifier. In the second model, ‘Model-2’, we 

used hybrid feature selection using selectKBest and recursive feature elimination (RFE), and applied a 

stacking classifier [27]. The workflow is given in Figure 1. 

Multilayer perceptron (MLP) will be the meta classifier with three different optimizations. All the 

operations were performed in Anaconda Navigator 2.5.2, Jupyter Notebook 6.5.4, Windows 11 operating 

system, using Python as the language. The dataset has undergone bootstrapping to obtain multiple subsets of 

the data, thereby reducing the risk of overfitting. 
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Figure 1. Overall flowchart of hybrid feature selection, stacking classification, and optimization 

 

 

2.1.  Dataset description 

The primary data collection was done mainly from Kerala, South India. A cohort study on retrospective 

data was done with 364 non-alcoholic liver patients as participants, in which 233 were HCC victims and the 

others were HCC-negative. The data of the last three years' participants from Amala Institute of Medical Sciences 

and other clinics, Thrissur, Kerala, were collected. The data includes both HCC-positive as well as HCC-negative 

patients. The dataset contains blood biomarkers that are essential and inevitable for the detection of HCC [28]. 

Other pathological values, like tumor size and liver stiffness, are also taken into consideration. We gathered a 

dataset with 27 features as our biomarkers and one final ‘CLASS’ column as our target value. The HCC-positive 

patients were marked as ‘1’ and others as ‘0’. The detailed biomarker list is given in Table 1. 
 

 

Table 1. Biomarkers description in the dataset 
Sl.No Attribute Description Sl.No Attribute Description 

1 AGE Age of the participant 15 LYMPHO Lymphocyte 

2 GENDER Sex 16 NEUTRO Neutrophil 

3 VIRUS Hepatitis B, C 17 CREAT Creatinine 

4 TUMOUR Tumors in the liver 18 TOT_BIL Total bilirubin 

5 PVT Portal vein thrombosis 19 DIR_BIL Direct bilirubin 
6 PHTN Portal hypertension 20 SGOT Serum glutamic oxaloacetic transaminase 

7 CIRRHOSIS Liver cirrhosis 21 SGPT Serum glutamate pyruvate transaminase 

8 NASH Non-alcoholic steatohepatitis 22 ALP Alkaline phosphate 
9 LIV_STIFF Measurement of liver stiffness 23 A/G Albumin-globulin ratio 

10 

PIVKA II Protein induced in the absence of 

vitamin K Antagonist 

24 NA Sodium 

11 Hb Hemoglobin 25 K Potassium 

12 RBC Red blood cells 26 INR International normalized ratio 

13 PLATELET Platelet 27 HBA1c The average blood sugar level for 3 months 
14 AFP AlphaFetoprotein 28 CLASS HCC positive (1) or not (0) 

 

 

2.2.  Data pre-processing, cleaning, and missing value imputation 

The dataset contains categorical and numerical data. Imputation of missing values was done using the 

concept of mean imputation. The research filled in the missing values of some variables by considering the 
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variable mean of cases that are not missing. Age and gender are the other biomarkers used in the dataset apart from 

the blood serum and pathology biomarkers. The categorical data takes male as ‘0’ and female as ‘1’ using a Label 

encoder module. The reason is that, as we said earlier, HCC affects more males [29] than females, especially those 

aged between 50 and 70. The statistics given in Figure 2 show that most patients were males above 60. 
 

 

 
 

Figure 2. Frequency of age, gender among HCC-positive patients 

 

 

2.3.  Feature selection 

To reduce the complexity and to improve the accuracy of results, we have reduced the number of 

features. For feature reduction, we made two parallel models. The first model (Model-1) used hybrid feature 

selection by combining the filter method and embedded method. That is, SelectKBest and SelectFromModel 

(SFM) use random forest (RF) as our estimator. It is described in section 2.3.1. The second model, Model-2, 

used another hybrid feature selection by combining the filter method and the wrapper method. That is, 

SelectKBest and RFE using RF as our estimator. It is described in section 2.3.2. 

In the two models, we used the SelectKBest filter method [30] as a common method. It selects the top 

‘k’ features and aids in focusing on the most relevant and robust features and reducing dimensionality. The k-

best algorithm ranks the features based on a definite criterion and selects the top ‘k’ features. The score 

function was ‘f_classif’ to compute the ANOVA-F value between each feature and the target. Those features 

that are highly dependent on the target variable will be chosen. The following are the steps in the process: 

− Step 1. The dataset is divided into a training and testing set to train and test with algorithms. 

X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.2, random_state=42) 

− Step 2. Score calculation 

− Step 3. Feature ranking 

− Step 4. Select top-ranked features 

The main code snippet is given as (1) and (2): 
 

selector_kbest=SelectKBest (f_classif, k=7) (1) 
 

X_kbest=selector_kbest.fit_transform(X,y) (2) 
 

The seven features were selected by assigning k=7 as shown in Figure 3. The two different hybrid 

feature selection methods using KBest are given in detail. 
 

 

 
 

Figure 3. Features selected by KBest f_classif method using score value 
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2.3.1. Feature selection for Model-1 (SelectKBest+SelectFromModel) 

In Model-1, we use the SelectKbest algorithm using the F-value for ranking features. The k value is 

the number of features to be selected using the f_classif score function. It is a simple and fast algorithm for 

feature ranking. But it may not capture the feature dependencies. So, we decided to integrate another 

algorithm and design a hybrid feature selection methodology, and integrated SFM [31], as it considers feature 

dependencies. It is a model-based feature selection, which can select the features mainly based on the 

important weights assigned to them using a learning estimator. The estimator RF will fit into the data so that 

the features will be selected based on the specific threshold value. Those features with weights above the 

threshold were selected, while others were discarded. The part of the code is given (3) to (5). 

 

rf_model=RandomForestClassifier(n_estimators=100, max_features=7, random_state=42) (3) 

 

selector_rf=SelectFromModel(rf_model) (4) 

 

X_rf=selector_rf.fit_transform(X,y) (5) 

 

The parameter ‘n_estimators’ is the number of decision trees we included in the RF (here given the 

value ‘100’). An increase in the value will improve the performance of the RF and the computational cost. 

Another parameter called ‘max_features’ refers to the maximum number of features we need to get as 

selected from the model. The selected 7 features were 'INR', 'TOT_BIL', 'PIVKA', 'HBA1c', 'AFP', 'ALP', 

and 'PLATELET' as shown in Figure 4. 

 

 

 
 

Figure 4. Features selected by KBest+select from model (SFM-RF) method in Model-1 

 

 

2.3.2. Feature selection for Model-2 (SelectKBest+RFE) 

Model-2 is built based on KBest and RFE hybrid feature selection. RFE [32] is a technique that 

removes features by recursion and builds models on the existing remaining features until the desired number 

of features is met. In (6), the research uses RF as our RFE estimator. The number of estimators denotes the 

number of trees in the forest, which is given as 500. ‘Max_features’ is the number of features under 

consideration; here it is ’7’ for the best split as in (7). 

 

rf_model=RandomForestClassifier(n_estimators=500, max_features=10, random_state=42) (6) 

 

rfe_selector_rf=RFE (estimator=rf_model,n_features_to_select=7, step=1) (7) 

 

X_rfe_rf=rfe_selector_rf.fit_transform(X,y) (8) 

 

The features selected were 'PIVKA', 'PLATELET', 'NEUTRO', 'AFP', 'ALP', 'HBA1c', 'INR', 

'SGPT', 'TOT_BIL', and 'SGOT' as in Figure 5. 

Here we gave ‘10’ features for selection because we didn’t get PIVKA and AFP together when 

giving other values. Here we can see that PIVKA-II, our novel biomarker, was selected as the main feature in 

both the feature selection analysis, while reducing the entire 26 features into 7. Here, we can undoubtedly see 

that our novel biomarker is strong enough to aid in our study of diagnosis. After the feature reduction, we 

finally did the binary classification to know whether the patients have HCC or not. 
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Figure 5. Features selected by the Kbest+RFE method in Model-2 

 

 

2.4.  Binary classification and prediction 

In this paper, Model-1 and Model-2 used a stacking classifier concept to evaluate the classification 

performance. A stacking classifier is an ensemble learning method in which multiple models’ predictions are 

combined after training using another model, called the meta-classifier. It aims to improve overall results by 

leveraging the strengths of diverse base models with a meta-classifier. Each layer consists of a set of models, 

and the predictions of those models can be fed into the meta-model for the next layer. This hierarchical 

approach will be able to capture the complex relationships in the data. A base model in stacking refers to the 

individual models that can be enough to form the initial layer of the ensemble. Such models will have 

different types or even the same type. The configuration will be different. Here in this study, we used SVM, 

gradient boost (GB), and LDA as the base layer prediction models. The idea behind the diverse base models 

is to get the different patterns or aspects in the data. Each base model can give specifically unique models of 

data in particular patterns, so that the research can combine them to predict a more robust and accurate 

overall model. The meta classifier above all layers will give an integrated output. 

A validation set will be used after the creation of base layers. It will be a subset of our original 

dataset. It will be used to fine-tune and validate the performance of the above-said base models and the meta-

model. The dataset is usually divided into three: i) training set, ii) validation set, and iii) test set. The layer of 

input grabs the input from the training dataset. It will contribute the same to the hidden layer. The number of 

nodes as input regulates the number of dataset features. Each input vector variable is dispensed to each node 

of the hidden layers. The hidden layer is the main computational part of the network, which uses the 

activation function. Weights are allotted to the edges of the hidden layer, which are multiplied by the values 

of the nodes. The output layer provides the output, which is already estimated. 

The input node denotes the feature of the dataset. Every input node forwards the vector input value 

directly to the invisible hidden layer. The weighted sum is given by (9): 
 

z=∑iwixi+bz (9) 
 

where Xi is the input feature, Wi is the corresponding weight, and b is the bias term. 

The weighted sum ‘z’ is passed through an activation function to introduce non-linearity. We used 

activation ‘ReLu’ (max(0,z)) for the hidden layer. The output will be handed over to the output layer. 

Backpropagation is a method of fine-tuning the weights in a neural network. It is done by passing the error 

from the output back into the network. This improves the performance of the network and will be performed 

well by reducing the errors in the output. The function used in the output layer was ‘sigmoid’. The loss 

function used was ‘binary_crossentropy’ for binary classification. 

The binary cross-entropy loss function for MLP is (10): 
 

𝐿 = −(
1

𝑁
) 𝛴𝑖=1

𝑁  [𝑦ᵢ 𝑙𝑜𝑔(ŷᵢ) + (1 − 𝑦ᵢ) 𝑙𝑜𝑔(1 − ŷᵢ)] (10) 

 

where yi the actual label, ŷᵢ is the predicted label, and N is the number of samples. 

By backpropagation, the gradients of the loss function concerning each weight and bias were 

estimated. The error will pass back through layers: The weight and bias will undergo updating by going in 

the opposite direction of the gradient. So the loss will be reduced. 
 

𝑤 = (𝑤 − 𝜂) ∗ (
𝜕𝐿

𝜕𝑤
) (11) 

 

where w is the weight, η is the learning rate, and ƏL/Əw is the gradient of the loss function concerning the weight. 

https://www.geeksforgeeks.org/binary-cross-entropy-log-loss-for-binary-classification/
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The loss was reduced by optimizing the model with the three optimizers. For MLP as a meta-

classifier in the stacking method, we needed an optimization algorithm for training the neural network. Here 

we used three different popular optimization algorithms: stochastic gradient descent (SGD) [33], adaptive 

moment estimation (ADAM) [34], and Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [35]. 

Here is the code snippet of stacking an MLP classifier with SGD as optimizer. 

 

mlp_sgd_classifier=MLPClassifier(random_state=42, solver='sgd', max_iter=1000) (12) 

 

The maximum iterations for ADAM were ‘700’, whereas for L-BFGS it was ‘2000’. The 

learning_rate parameter for SGD for both models was given as [‘constant’, ’adaptive’]. That means the rate 

of learning will be constant throughout the training, and it will be adjusted as the loss improves. We used 

LBFGS and ADAM instead of SGD to get other optimization results. The Grid search with five-fold cross-

validation can be additionally used as a tuning tool. 

 

stacking_classifier=StackingClassifier(estimators=[('svm',svm_classifier), 

('lda',lda_classifier),('gb',gb_classifier)],final_estimator=mlp_sgd_classifier) (13) 

 

Hyperparameter tuning was done to find the best set of hyperparameters for the ML model to obtain 

optimal performance. Hyperparameters and optimal values for 3 optimizers are: 

− Case1(SGD) - tuning with SGD optimizer for MLP in alpha value as 0.001 for hidden layer size (50,50) 

with an ‘adaptive’ learning rate. The tuning for Model-2 gave 0.0001 as alpha for hidden layer size (100) 

with a ‘constant’ learning rate. 

− Case 2 (ADAM) - tuning with ADAM optimizer for MLP in Model-1 gave alpha value as 0.0001, hidden 

layer size as (50,50) and ‘constant’ learning rate. For Model-2, it was 0.0001 as alpha for hidden layer 

size (100) with a ‘constant’ learning rate.  

− Case3(L-BFGS) - tuning with L-BFGS optimizer for MLP in Model-1 gave alpha value as 0.01, hidden 

layer size as (100), and ‘constant’ learning rate. For Model-2, it was 0.01 as alpha for hidden layer size 

(100) with a ‘constant’ learning rate. 

The error rate was reduced to 0.26, improving the accuracy and robustness. The results are discussed in the 

following section. 

 

 

3. RESULTS AND DISCUSSION 

The models are evaluated concerning accuracy, precision, recall, and true positive rate. Also, 

Matthew’s correlation coefficient (MCC), which is a statistical tool for model evaluation, is calculated. They 

were calculated using true positive (TP), true negative (TN), false positive (FP), and false negative (FN) 

terms. 

 

Accuracy=(TP+TN)/(TP+FP+FN+TN) (14) 

 

Precision=TP/(TP+FP) (15) 

 

Recall=TP/(TP+FN) (16) 

 

𝐹1 = 2 ∗ (
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
)  (17) 

 

MCC=(TP∗TN-FP∗FN)/np.sqrt((TP+FP)∗(TP+FN)∗(TN+FP)∗(TN+FN)) (18) 

 

The results obtained showed that among the two models proposed, Model-1 is showing more 

accuracy (MLP-SGD 93%, MLP-ADAM 93%, MLP-LBFGS 90.4%), precision for SGD, ADAM, and 

LBFGS were 93.9%, 93.9%, and 90.2%, respectively, with an improvement. The F1_score was 94.85 for 

SGD and ADAM, and 92.93 for LBFGS and F1_scores. The true positive rate increased by around 1% in 

MLP-ADAM. The recall rate was the same for SGD and LBFGS, except for a slight decline for ADAM. All 

other metrics in Model-1 performed better than in Model-2. A total of 95.8% of patients were truly identified 

as they are having HCC. 

Model-2 obtained less accuracy, 91.8% for SGD and ADAM, and only 89% for LBFGS optimized 

MLP. The true positive rate was also increased for MLP-SGD by 1%, while all other methods remained the 

same. The performance metrics of Model-1 are described in Table 2. The performance metrics of Model-2 

are given in Table 3. 
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Table 2. Performance comparison of three different MLP optimizations in Model-1 
Feature selection Base classifiers Meta classifier Accuracy Precision Recall F1_score 

KBest+RF-SFM SVM, LDA, and GB MLP-SGD 93.15 93.88 95.83 94.85 
MLP-ADAM 93.15 93.88 95.84 94.85 

MLP-LBFGS 90.41 90.2 95.83 92.93 

 

 

Table 3. Performance comparison of three different MLP optimizations in Model-2 
Feature selection Base classifiers Meta classifier Accuracy Precision Recall F1_score 

KBest+RF-RFE SVM, LDA, and GB MLP-SGD 91.79 92 95.83 93.88 

MLP-ADAM 91.78 90.38 97.92 94 

MLP-LBFGS 89.04 88.46 95.83 91.99 

 

 

Overall, the comparative study was done using both models. For a better performance evaluation, we 

calculated the MCC [36]. The MCC values for MLP-SGD of Model-1 and Model-2 were 0.85 and 0.82, 

respectively. The same for MLP-ADAM were 0.85 and 0.81, whereas for MLP-LBFGS, they were 0.78 and 

0.75, respectively, as shown in Figure 6. It showed that Model-1 performs better than Model-2 again, by 

statistical evidence. We also tried the two models with the Kaggle HCC survival dataset [37] and found a 3% 

increase in accuracy, a 4% increase in F1_score, and a 10% decrease in False negative cases by Model-1. 

Performance metrics with 95% confidence interval for accuracy, precision, and MCC and are given in Table 4. 

 

 

 
 

Figure 6. Performance evaluation of both models by the MCC 

 

 

Table 4. Performance metrics with 95% confidence intervals 
Model Meta classifier Accuracy (%) Precision (%) MCC 

Model-1 MLP-SGD 92.92--93.48 93.42--93.96 0.845--0.855 

Model-1 MLP-ADAM 93.02--93.28 93.71--93.99 0.845--0.855 

Model-1 MLP-LBFGS 90.24--90.56 90.09--90.37 0.775--0.785 

Model-2 MLP-SGD 91.55--92.01 91.78--92.18 0.815--0.825 
Model-2 MLP-ADAM 91.64--91.92 90.12--90.44 0.806--0.814 

Model-2 MLP-LBFGS 88.96--89.20 88.32--88.60 0.746--0.754 

 

 

From the confidence interval, it is evident that Model-1 with MLP-ADAM shows the highest 

precision and ties with MLP-SGD for the highest MCC. MLP-LBFGS consistently underperforms across 

both models in all metrics. Model-1 outperforms Model-2 across all optimization algorithms, and MLP-

ADAM provides the best balance of all three metrics. 

For evaluating the performance ranking of the selected features from both models, we have done 

SHapley Additive exPlanations (SHAP) analysis and results are given in Figure 7. It was found that PIVKA 

and AFP are strong positive predictors. They produce higher values consistently, pushing the model toward 

predicting the positive class (meaning detecting HCC). The NEUTRO biomarker was highlighted with its 

positive prediction power in Model 2. PLATELET count has an inverse effect, as lower platelet levels 

contribute to a higher risk. So, it is convincing that low platelet count is a contributing factor to HCC. INR 

and HbA1c have nonlinear effects. Their high values increase prediction probability, low values decrease it. 

TOT_BIL and ALP contribute moderately important, varying per instance. SGOT and SGPT had minimal 

negative contributions and were not justified for the diagnosis. 
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Figure 7. Feature ranking based on SHAP 

 

 

For an evaluation in terms of error term, we calculated the error term, misclassification error rate 

(MER), as given (19): 

 

𝑀𝐸𝑅 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (19) 

 

The MER for Model-1 (1-0.9315) and Model-2 (1-0.9179) were calculated as 0.0685 and 0.0821, 

respectively. Model-1 has a lower error rate (6.85%) vs. Model-2 (8.21%). Model-1 has higher precision and 

recall, meaning lower FPR and FNR, especially under MLP-ADAM and MLP-SGD. It maintains a better 

precision-recall trade-off (higher F1). Model-2 may be slightly overfitting or responding to noise in 

additional features. 

To assess the statistical significance of Model-1 compared to Model-2, the Wilcoxon Signed-Rank 

Test was conducted by taking accuracy and F1_score across 10 folds of cross-validation, and the 

corresponding p-values were calculated as in Table 5. 

 

 

Table 5. Significance of Model-1 by Wilcoxon Signed Rank Test 
Metric Optimizer W Statistic p-value Significant (p<0.05) 

Accuracy SGD 0 0.001953 Yes 

Accuracy ADAM 0 0.001953 Yes 
Accuracy LBFGS 0 0.001953 Yes 

F1_score SGD 1 0.010862 Yes 

F1_score ADAM 17.5 0.375 No 
F1_score LBFGS 0 0.001953 Yes 

 

 

For each optimization algorithm (SGD, ADAM, and LBFGS), and both evaluation metrics 

(accuracy and F1-score), the difference between Model-1 and Model-2 was all positive as Model-1 has 

higher values than Model-2. So, the W+ (sum of positive ranks) was 55.0, and W- (sum of negative ranks) 

was 0.0. The Wilcoxon test statistic is the smaller one (e.g.,: 0.0 for accuracy with SGD). The p-values were 

calculated, and they were well below 0.05, the standard threshold for statistical significance, except for the 

F1_score of ADAM. Since five p-values are below this threshold, the test rejects the null hypothesis that 

there is no difference between Model 1 and Model 2. The Wilcoxon for accuracy, Model-1 significantly 

outperforms Model-2 across all optimizers. For F1, the advantage of Model-1 is significant with SGD and 

LBFGS but not with ADAM (p>0.05). 

 

 

4. CONCLUSION 

Through the analysis of two models, we found that Model-1 outperforms Model-2 and the existing 

ML models. While applying the proposed ‘Model-1’ algorithm, the maximum accuracy was improved by 

3%, and the F1_score by 4%, with an increase in true positivity. The method is helpful in clinical decision-

making capability in healthcare diagnostic areas to identify non-alcoholic HCC from certain data in a primary 

stage, so that the patient can take remedial precautions and solutions for a quality lifestyle and life span 

improvement. When compared to standard deep learning architectures like CNNs, LSTMs, and Transformer-

based models, the stacking approach is inherently better suited for tabular datasets, which are common in 

clinical settings. Furthermore, the model enhances interpretability through tools like SHAP, allowing for 
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transparent feature importance analysis, a high aspect in healthcare decision support systems where 

explainability is critical. In contrast, deep learning models often function as black boxes and demand 

significantly higher computational resources and data volume. Therefore, the proposed stacking model offers 

a more interpretable, resource-efficient, and equally accurate alternative to standard deep learning models. 

The study also shows that HCC is a more widespread disease in human males who are between 50 

and 70 years. The above proposed Model-1 shows its ability to improve accuracy, true positive rate, 

F1_score, and MCC, and the Wilcoxon test also proves the statistical relevance of Model-1. The hybrid 

feature selection using embedded and filter methods performs better with stacking classification than filter-

wrapper features. The improved predictive power of stacking with diverse optimizers is also useful when 

dealing with complex datasets, so that we can improve the accuracy and robustness. The novel biomarker 

PIVKA-II is highlighted when used with the conventional biomarker AFP in HCC-positive patients. The 

study also shows that HCC is a more widespread disease in human males whose ages were between 50 and 

70 years. The comparative SHAP analysis reveals both convergence and divergence in feature utilization 

between the two models and the strength of PIVKA and AFP in the early diagnosis. Such insights are 

valuable for improving model interpretability, stability, and performance in predictive biomedical modelling. 

The above proposed Model-1 shows its ability to improve accuracy, true positive rate, F1_score, and MCC. 

So, Model-1 can be deployed not only for HCC detection but also for the life-extending therapies and 

survival rate finding, as it performs well with the given data. One limitation of the current study is the 

absence of a standalone MLP model as a baseline. In this study, MLP was employed as the meta-classifier in 

the stacking ensemble to leverage the predictive power of base models, including SVM, LDA, and GB. 

Future work should incorporate this baseline to more clearly isolate the impact of stacking and to determine 

whether the complexity of the ensemble structure is justified when compared to a well-optimized individual 

model. The other limitation of the study was that the findings were based on a particular region of patients in 

South India. The sample size can be increased to get more accurate results. The extension of the study can be 

done with globally available data for extensive research on HCC occurrence. Also, the above-proposed 

algorithm can be useful in predicting HCC reoccurrence in patients after liver transplantation or ablation 

therapy. The survival rate prediction can also be done by doing appropriate feature engineering. 
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