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Hepatocellular carcinoma (HCC), the primary cancer of the liver, is life-
threatening, with few or no symptoms, and detection in the early stage will
help for successful treatment with surgery, and transplant for a better life
quality. Here, we proposed two stacking classification models based on deep
learning with differential hybrid feature selection for the early detection of
HCC using novel non-invasive biomarker PIVKA-II. We showed how the
variations in hybrid feature selection affect the performance of stacking
classification and different supervised machine-learning algorithms on a
metaclassifier. The base layers were support vector machine (SVM),
gradient boosting (GB), and linear discriminant analysis (LDA). The meta
classifier was a multilayer perceptron (MLP) with three different optimizers,
stochastic gradient descent (SGD), adaptive moment estimation (ADAM),
and Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS). Our
first model outperformed the second with their hybrid features by improving
accuracy by 1.5% and F1_score by 1% in both SGD and ADAM

optimization, while MLP-LBFGS had a 1.4% increase in accuracy. The
precision had hiked by 1.9%, 3.5%, and 1.7% in SGD, ADAM, and LBFGS,
respectively, in Model-1. Matthew’s correlation coefficient (MCC) for
MLP-SGD increased from 0.82 to 0.85, MLP-ADAM from 0.81 to 0.85, and
MLP-LBFGS from 0.75 to 78 for the first model.
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1. INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most prevalent, asymptomatic cancers around the
globe. It is the most commonly seen liver cancer around the globe, having an elevated mortality rate [1].
More patients affected are above 60 years, especially males [2], [3]. It is the fourth most frequently found
cancer and the second leading cause of death in Asia that is related to cancer [4], [5]. HCC diagnosis at the
beginning stage can give the best remedies like ablation therapy, resection, and liver transplantation, thereby
improving the quality of life and lifespan. Our study looked into the aspects of data mining for an earlier
diagnosis of HCC for a better quality of life span and to reduce global mortality.

In the landscape of HCC, non-alcoholic fatty liver disease (NAFLD) based HCC is the prevalent
type of HCC in Asia [6]. The stages of NAFLD-HCC are from non-alcoholic fatty liver (NAFL) to non-
alcoholic steatohepatitis (NASH), to fibrosis, to cirrhosis, and then finally to HCC [7]. Although there are
invasive and non-invasive procedures for HCC diagnosis, invasive procedures are risky [8]. In most people
having a mean age above 60 years, invasive methods like biopsy show post-procedure bleeding and
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complications [9]. So, the age group and physical fitness should be considered, as the difficulties during
procedures affect physical, emotional, and mental stability to an extent. Another issue was that the liquid
biopsy sometimes fails in the prognosis of HCC due to sampling error [10]. The early diagnosis of
NAFLD-HCC using non-invasive methods is trending since those methods have a massive contribution to the
diagnosis of the disease, in contrast to using invasive procedures. The non-invasive blood serum markers
taken via blood test are strong enough to diagnose the disease, along with the ultrasonography findings like
tumour size, portal vein thrombosis, and portal hypertension [11], [12]. Going deep into the recent aspects of
HCC diagnosis, we understood that the disease can be diagnosed early by combining blood serum values
with ultrasonography findings [13], [14].

Among blood serum markers, alpha-fetoprotein (AFP) was the prominent biomarker traditionally
used for the HCC diagnosis, with other regular attributes [15]. However, the issue was that not all tumours
develop a higher level of AFP [16], [17]. Therefore, it should not be used as one of the pre-eminent biomarkers
for diagnosing HCC in some patients. So we need another first-line non-invasive blood biomarker. Our
investigations revealed that the novel biomarker Des-gamma Carboxy Prothrombin (DCP), also known as
PIVKA-II, can be used along with AFP and other detecting attributes to detect HCC in its early stage [18],
[19]. From the statistics, it is evident that PIVKA-II is positive in HCC patients even if they are negative for
AFP. Elevated values of PIVKA-II in some HCC patients are seen even if AFP is negative [20], [21].

Some of the existing works of HCC diagnosis using machine learning (ML) and their results are
given. The study done by Ali et al. [22] used a hybrid concept of linear discriminant analysis (LDA) for
reducing dimension, and a genetic algorithm (GA) for support vector machine (SVM) optimizer. For
classification, they used SVM, and a hybridization of three models reached 90.3% accuracy, 96.07%
specificity, and 82.25% sensitivity. In another deep-learning model of HBV-related HCC, the accuracy of the
diagnosis was 76.3 [23]. Another deep learning recurrent neural network model of HBC-related HCC
prediction showed a mean area under the receiver operating characteristic curve (AUROC) of 0.806 [24]. A
different prediction model, k-nearest neighbor (K-NN), was chosen by Liu et al. [25] for detecting post-
resection HCC recurrence and found an accuracy of 71% and precision of 70%. Another research using a few
serum markers, PIVKA-II with AFP, increased sensitivity 67%, accuracy 90%, and 100% specificity [26].
They proved the efficiency of AFP and PIVKA-II in the diagnosis of HCC in its early stage.

The issue was that all those studies were focused on a particular category of patients, like Hepatitis
B or Hepatitis C. Also, AFP was the major attribute for HCC diagnosis, even if some patients were negative
for AFP. They did not address HCC occurrence in non-alcoholic fatty liver patients. The scope of a stacking
classification is not mentioned anywhere, especially with a hybrid feature selection. Through our study, we
showed that we can diagnose HCC, particularly in non-alcoholics infected with Hepatitis B or Hepatitis C,
using a novel biomarker, PIVKA-II. We explored the potential of stacking classification by using a neural
network as a meta-classifier with the help of hybrid selected features.

There are four major contributions from our study. The first contribution was to diagnose HCC,
especially in non-alcoholic patients, using data mining algorithms with the help of novel non-invasive
biomarker PIVKA-II in combination with AFP, with ultrasonography findings like tumor size. The second
contribution was the improved accuracy and true positivity compared to the recent studies. The third
contribution is the design of a novel algorithm based on a deep learning stacking classifier built on
conventional ML algorithms, coupled with optimization and cross-validation. The final contribution is that
different variations in feature selection can boost the performance of binary classifications, especially the
hybrid approach of the embedded and filter method for feature selection. Age and gender details are also
listed in the attribute set, as most patients were males older than 60. In this research, we created two different
ML models with differential hybrid feature selection, followed by a common stacking classifier with three
different optimizations for better prediction of HCC. Then, we compared the results of both models and
chose the better one as the proposed model.

2. METHOD

The research applied feature selection by splitting the dataset into training and testing. Here we
constructed two models. ‘Model-1°, the first model, uses hybrid feature selection using selectKBest and
selectFromModel and applying a stacking classifier as a meta classifier. In the second model, ‘Model-2’, we
used hybrid feature selection using selectkKBest and recursive feature elimination (RFE), and applied a
stacking classifier [27]. The workflow is given in Figure 1.

Multilayer perceptron (MLP) will be the meta classifier with three different optimizations. All the
operations were performed in Anaconda Navigator 2.5.2, Jupyter Notebook 6.5.4, Windows 11 operating
system, using Python as the language. The dataset has undergone bootstrapping to obtain multiple subsets of
the data, thereby reducing the risk of overfitting.
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Figure 1. Overall flowchart of hybrid feature selection, stacking classification, and optimization

2.1. Dataset description

The primary data collection was done mainly from Kerala, South India. A cohort study on retrospective
data was done with 364 non-alcoholic liver patients as participants, in which 233 were HCC victims and the
others were HCC-negative. The data of the last three years' participants from Amala Institute of Medical Sciences
and other clinics, Thrissur, Kerala, were collected. The data includes both HCC-positive as well as HCC-negative
patients. The dataset contains blood biomarkers that are essential and inevitable for the detection of HCC [28].
Other pathological values, like tumor size and liver stiffness, are also taken into consideration. We gathered a
dataset with 27 features as our biomarkers and one final ‘CLASS’ column as our target value. The HCC-positive
patients were marked as ‘1’ and others as ‘0’. The detailed biomarker list is given in Table 1.

Table 1. Biomarkers description in the dataset

SI.No Attribute Description SI.No  Attribute Description
1 AGE Age of the participant 15 LYMPHO Lymphocyte
2 GENDER Sex 16 NEUTRO  Neutrophil
3 VIRUS Hepatitis B, C 17 CREAT Creatinine
4 TUMOUR Tumors in the liver 18 TOT_BIL  Total bilirubin
5 PVT Portal vein thrombosis 19 DIR_BIL Direct bilirubin
6 PHTN Portal hypertension 20 SGOT Serum glutamic oxaloacetic transaminase
7 CIRRHOSIS  Liver cirrhosis 21 SGPT Serum glutamate pyruvate transaminase
8 NASH Non-alcoholic steatohepatitis 22 ALP Alkaline phosphate
9 LIV_STIFF Measurement of liver stiffness 23 A/G Albumin-globulin ratio
PIVKA I Protein induced in the absence of 24 NA Sodium
10 vitamin K Antagonist
11 Hb Hemoglobin 25 K Potassium
12 RBC Red blood cells 26 INR International normalized ratio
13 PLATELET Platelet 27 HBAlc The average blood sugar level for 3 months
14 AFP AlphaFetoprotein 28 CLASS HCC positive (1) or not (0)

2.2. Data pre-processing, cleaning, and missing value imputation
The dataset contains categorical and numerical data. Imputation of missing values was done using the
concept of mean imputation. The research filled in the missing values of some variables by considering the
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variable mean of cases that are not missing. Age and gender are the other biomarkers used in the dataset apart from
the blood serum and pathology biomarkers. The categorical data takes male as ‘0’ and female as ‘1’ using a Label
encoder module. The reason is that, as we said earlier, HCC affects more males [29] than females, especially those
aged between 50 and 70. The statistics given in Figure 2 show that most patients were males above 60.
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Figure 2. Frequency of age, gender among HCC-positive patients

2.3. Feature selection

To reduce the complexity and to improve the accuracy of results, we have reduced the number of
features. For feature reduction, we made two parallel models. The first model (Model-1) used hybrid feature
selection by combining the filter method and embedded method. That is, SelectKBest and SelectFromModel
(SFM) use random forest (RF) as our estimator. It is described in section 2.3.1. The second model, Model-2,
used another hybrid feature selection by combining the filter method and the wrapper method. That is,
SelectKBest and RFE using RF as our estimator. It is described in section 2.3.2.

In the two models, we used the SelectKBest filter method [30] as a common method. It selects the top
‘k’ features and aids in focusing on the most relevant and robust features and reducing dimensionality. The k-
best algorithm ranks the features based on a definite criterion and selects the top ‘k’ features. The score
function was ‘f classif’ to compute the ANOVA-F value between each feature and the target. Those features
that are highly dependent on the target variable will be chosen. The following are the steps in the process:
— Step 1. The dataset is divided into a training and testing set to train and test with algorithms.

X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.2, random_state=42)

— Step 2. Score calculation
— Step 3. Feature ranking
— Step 4. Select top-ranked features
The main code snippet is given as (1) and (2):

selector_kbest=SelectKBest (f_classif, k=7) (D)
X_kbest=selector_kbest.fit_transform(X,y) (2

The seven features were selected by assigning k=7 as shown in Figure 3. The two different hybrid
feature selection methods using KBest are given in detail.

Feature selection based on kbest f_classif

50
T A M
PIVKA PLATELET TOT_BIL SGOT SGPT ALP AGE
selected features

100

i
4

F score

Figure 3. Features selected by KBest f_classif method using score value
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2.3.1. Feature selection for Model-1 (SelectKBest+SelectFromModel)

In Model-1, we use the SelectKbest algorithm using the F-value for ranking features. The k value is
the number of features to be selected using the f_classif score function. It is a simple and fast algorithm for
feature ranking. But it may not capture the feature dependencies. So, we decided to integrate another
algorithm and design a hybrid feature selection methodology, and integrated SFM [31], as it considers feature
dependencies. It is a model-based feature selection, which can select the features mainly based on the
important weights assigned to them using a learning estimator. The estimator RF will fit into the data so that
the features will be selected based on the specific threshold value. Those features with weights above the
threshold were selected, while others were discarded. The part of the code is given (3) to (5).

rf_model=RandomForestClassifier(n_estimators=100, max_features=7, random_state=42)  (3)
selector_rf=SelectFromModel(rf_model) (@)
X_rf=selector_rf.fit_transform(X,y) (5)
The parameter ‘n_estimators’ is the number of decision trees we included in the RF (here given the
value ‘100”). An increase in the value will improve the performance of the RF and the computational cost.
Another parameter called ‘max_features’ refers to the maximum number of features we need to get as

selected from the model. The selected 7 features were 'INR’, 'TOT_BIL', 'PIVKA', 'HBALlc', 'AFP’, 'ALP",
and 'PLATELET" as shown in Figure 4.

100 Hybrid Feature selection based on KBest & SelectFrom Model

50

Importance

—INR #TOT_BIL =HBAlc ~PIVKA - AFP =~ ALP . PLATELET

selected features

Figure 4. Features selected by KBest+select from model (SFM-RF) method in Model-1

2.3.2. Feature selection for Model-2 (SelectKBest+RFE)

Model-2 is built based on KBest and RFE hybrid feature selection. RFE [32] is a technique that
removes features by recursion and builds models on the existing remaining features until the desired number
of features is met. In (6), the research uses RF as our RFE estimator. The number of estimators denotes the
number of trees in the forest, which is given as 500. ‘Max_features’ is the number of features under
consideration; here it is *7’ for the best split as in (7).

rf_model=RandomForestClassifier(n_estimators=500, max_features=10, random_state=42) (6)
rfe_selector_rf=RFE (estimator=rf_model,n_features_to_select=7, step=1) @)
X_rfe_rf=rfe_selector_rf.fit_transform(X,y) (8)

The features selected were 'PIVKA', 'PLATELET', 'NEUTRO', 'AFP', 'ALP', 'HBALc', 'INR,
'SGPT', TOT_BIL', and 'SGOT" as in Figure 5.

Here we gave ‘10’ features for selection because we didn’t get PIVKA and AFP together when
giving other values. Here we can see that PIVKA-II, our novel biomarker, was selected as the main feature in
both the feature selection analysis, while reducing the entire 26 features into 7. Here, we can undoubtedly see
that our novel biomarker is strong enough to aid in our study of diagnosis. After the feature reduction, we
finally did the binary classification to know whether the patients have HCC or not.
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Figure 5. Features selected by the Kbest+RFE method in Model-2

2.4. Binary classification and prediction

In this paper, Model-1 and Model-2 used a stacking classifier concept to evaluate the classification
performance. A stacking classifier is an ensemble learning method in which multiple models’ predictions are
combined after training using another model, called the meta-classifier. It aims to improve overall results by
leveraging the strengths of diverse base models with a meta-classifier. Each layer consists of a set of models,
and the predictions of those models can be fed into the meta-model for the next layer. This hierarchical
approach will be able to capture the complex relationships in the data. A base model in stacking refers to the
individual models that can be enough to form the initial layer of the ensemble. Such models will have
different types or even the same type. The configuration will be different. Here in this study, we used SVM,
gradient boost (GB), and LDA as the base layer prediction models. The idea behind the diverse base models
is to get the different patterns or aspects in the data. Each base model can give specifically unique models of
data in particular patterns, so that the research can combine them to predict a more robust and accurate
overall model. The meta classifier above all layers will give an integrated output.

A validation set will be used after the creation of base layers. It will be a subset of our original
dataset. It will be used to fine-tune and validate the performance of the above-said base models and the meta-
model. The dataset is usually divided into three: i) training set, ii) validation set, and iii) test set. The layer of
input grabs the input from the training dataset. It will contribute the same to the hidden layer. The number of
nodes as input regulates the number of dataset features. Each input vector variable is dispensed to each node
of the hidden layers. The hidden layer is the main computational part of the network, which uses the
activation function. Weights are allotted to the edges of the hidden layer, which are multiplied by the values
of the nodes. The output layer provides the output, which is already estimated.

The input node denotes the feature of the dataset. Every input node forwards the vector input value
directly to the invisible hidden layer. The weighted sum is given by (9):

7= i\WiXi+h, ©)

where X; is the input feature, Wi is the corresponding weight, and b is the bias term.

The weighted sum “z’ is passed through an activation function to introduce non-linearity. We used
activation ‘ReLu’ (max(0,z)) for the hidden layer. The output will be handed over to the output layer.
Backpropagation is a method of fine-tuning the weights in a neural network. It is done by passing the error
from the output back into the network. This improves the performance of the network and will be performed
well by reducing the errors in the output. The function used in the output layer was ‘sigmoid’. The loss
function used was ‘binary _crossentropy’ for binary classification.

The binary cross-entropy loss function for MLP is (10):

L=-@() =X, [yilog(®) + (1—y) log(1 — )] (10)
where yi the actual label, §; is the predicted label, and N is the number of samples.
By backpropagation, the gradients of the loss function concerning each weight and bias were

estimated. The error will pass back through layers: The weight and bias will undergo updating by going in
the opposite direction of the gradient. So the loss will be reduced.

w=w =G (11)

where w is the weight, 1 is the learning rate, and OL/Ow is the gradient of the loss function concerning the weight.
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The loss was reduced by optimizing the model with the three optimizers. For MLP as a meta-
classifier in the stacking method, we needed an optimization algorithm for training the neural network. Here
we used three different popular optimization algorithms: stochastic gradient descent (SGD) [33], adaptive
moment estimation (ADAM) [34], and Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [35].
Here is the code snippet of stacking an MLP classifier with SGD as optimizer.

mlp_sgd_classifier=MLPClassifier(random_state=42, solver='sgd’, max_iter=1000) (12)

The maximum iterations for ADAM were ¢700°, whereas for L-BFGS it was ‘2000°. The
learning_rate parameter for SGD for both models was given as [‘constant’, ’adaptive’]. That means the rate
of learning will be constant throughout the training, and it will be adjusted as the loss improves. We used
LBFGS and ADAM instead of SGD to get other optimization results. The Grid search with five-fold cross-
validation can be additionally used as a tuning tool.

stacking_classifier=StackingClassifier(estimators=[(‘svm',svm_classifier),
('lda',Ida_classifier),('gb’,gb_classifier)],final_estimator=mlp_sgd_classifier) (13)

Hyperparameter tuning was done to find the best set of hyperparameters for the ML model to obtain
optimal performance. Hyperparameters and optimal values for 3 optimizers are:

— Casel(SGD) - tuning with SGD optimizer for MLP in alpha value as 0.001 for hidden layer size (50,50)
with an ‘adaptive’ learning rate. The tuning for Model-2 gave 0.0001 as alpha for hidden layer size (100)
with a ‘constant’ learning rate.

— Case 2 (ADAM) - tuning with ADAM optimizer for MLP in Model-1 gave alpha value as 0.0001, hidden
layer size as (50,50) and ‘constant’ learning rate. For Model-2, it was 0.0001 as alpha for hidden layer
size (100) with a ‘constant’ learning rate.

— Case3(L-BFGS) - tuning with L-BFGS optimizer for MLP in Model-1 gave alpha value as 0.01, hidden
layer size as (100), and ‘constant’ learning rate. For Model-2, it was 0.01 as alpha for hidden layer size
(100) with a ‘constant’ learning rate.

The error rate was reduced to 0.26, improving the accuracy and robustness. The results are discussed in the

following section.

3. RESULTS AND DISCUSSION

The models are evaluated concerning accuracy, precision, recall, and true positive rate. Also,
Matthew’s correlation coefficient (MCC), which is a statistical tool for model evaluation, is calculated. They
were calculated using true positive (TP), true negative (TN), false positive (FP), and false negative (FN)
terms.

Accuracy=(TP+TN)/(TP+FP+FN+TN) (14)
Precision=TP/(TP+FP) (15)
Recall=TP/(TP+FN) (16)

precision X recall

F1=2x( ) 17)

precision + recall
MCC=(TP+TN-FP*FN)/np.sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)) (18)

The results obtained showed that among the two models proposed, Model-1 is showing more
accuracy (MLP-SGD 93%, MLP-ADAM 93%, MLP-LBFGS 90.4%), precision for SGD, ADAM, and
LBFGS were 93.9%, 93.9%, and 90.2%, respectively, with an improvement. The F1_score was 94.85 for
SGD and ADAM, and 92.93 for LBFGS and F1_scores. The true positive rate increased by around 1% in
MLP-ADAM. The recall rate was the same for SGD and LBFGS, except for a slight decline for ADAM. All
other metrics in Model-1 performed better than in Model-2. A total of 95.8% of patients were truly identified
as they are having HCC.

Model-2 obtained less accuracy, 91.8% for SGD and ADAM, and only 89% for LBFGS optimized
MLP. The true positive rate was also increased for MLP-SGD by 1%, while all other methods remained the
same. The performance metrics of Model-1 are described in Table 2. The performance metrics of Model-2
are given in Table 3.

Improved non-invasive diagnosis of hepatocellular carcinoma by optimized meta ... (Babitha Thamby)
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Table 2. Performance comparison of three different MLP optimizations in Model-1

Feature selection Base classifiers Meta classifier  Accuracy  Precision Recall F1 score

KBest+RF-SFM  SVM, LDA, and GB  MLP-SGD 93.15 93.88 95.83 94.85
MLP-ADAM 93.15 93.88 95.84 94.85
MLP-LBFGS 90.41 90.2 95.83 92.93

Table 3. Performance comparison of three different MLP optimizations in Model-2

Feature selection Base classifiers Meta classifier Accuracy  Precision Recall F1 score

KBest+RF-RFE ~ SVM, LDA, and GB  MLP-SGD 91.79 92 95.83 93.88
MLP-ADAM 91.78 90.38 97.92 94
MLP-LBFGS 89.04 88.46 95.83 91.99

Overall, the comparative study was done using both models. For a better performance evaluation, we
calculated the MCC [36]. The MCC values for MLP-SGD of Model-1 and Model-2 were 0.85 and 0.82,
respectively. The same for MLP-ADAM were 0.85 and 0.81, whereas for MLP-LBFGS, they were 0.78 and
0.75, respectively, as shown in Figure 6. It showed that Model-1 performs better than Model-2 again, by
statistical evidence. We also tried the two models with the Kaggle HCC survival dataset [37] and found a 3%
increase in accuracy, a 4% increase in F1_score, and a 10% decrease in False negative cases by Model-1.
Performance metrics with 95% confidence interval for accuracy, precision, and MCC and are given in Table 4.

Matthews Correlation

%
i

0.8 S
. HH \ -

MLP-SGD MLP-ADAM MLP-LBFGS
11 Model 1 % Model 2
MCC

MCC coefﬁcient

Figure 6. Performance evaluation of both models by the MCC

Table 4. Performance metrics with 95% confidence intervals
Model Meta classifier  Accuracy (%)  Precision (%) MCC

Model-1  MLP-SGD 92.92--93.48 93.42--93.96  0.845--0.855
Model-1  MLP-ADAM 93.02--93.28 93.71--93.99  0.845--0.855
Model-1  MLP-LBFGS 90.24--90.56 90.09--90.37  0.775--0.785
Model-2 MLP-SGD 91.55--92.01 91.78--92.18 0.815--0.825
Model-2 MLP-ADAM 91.64--91.92 90.12--90.44 0.806--0.814
Model-2  MLP-LBFGS 88.96--89.20 88.32--88.60  0.746--0.754

From the confidence interval, it is evident that Model-1 with MLP-ADAM shows the highest
precision and ties with MLP-SGD for the highest MCC. MLP-LBFGS consistently underperforms across
both models in all metrics. Model-1 outperforms Model-2 across all optimization algorithms, and MLP-
ADAM provides the best balance of all three metrics.

For evaluating the performance ranking of the selected features from both models, we have done
SHapley Additive exPlanations (SHAP) analysis and results are given in Figure 7. It was found that PIVKA
and AFP are strong positive predictors. They produce higher values consistently, pushing the model toward
predicting the positive class (meaning detecting HCC). The NEUTRO biomarker was highlighted with its
positive prediction power in Model 2. PLATELET count has an inverse effect, as lower platelet levels
contribute to a higher risk. So, it is convincing that low platelet count is a contributing factor to HCC. INR
and HbA1c have nonlinear effects. Their high values increase prediction probability, low values decrease it.
TOT_BIL and ALP contribute moderately important, varying per instance. SGOT and SGPT had minimal
negative contributions and were not justified for the diagnosis.
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Figure 7. Feature ranking based on SHAP

For an evaluation in terms of error term, we calculated the error term, misclassification error rate
(MER), as given (19):

MER = 1 — Accuracy (19)

The MER for Model-1 (1-0.9315) and Model-2 (1-0.9179) were calculated as 0.0685 and 0.0821,
respectively. Model-1 has a lower error rate (6.85%) vs. Model-2 (8.21%). Model-1 has higher precision and
recall, meaning lower FPR and FNR, especially under MLP-ADAM and MLP-SGD. It maintains a better
precision-recall trade-off (higher F1). Model-2 may be slightly overfitting or responding to noise in
additional features.

To assess the statistical significance of Model-1 compared to Model-2, the Wilcoxon Signed-Rank
Test was conducted by taking accuracy and F1_score across 10 folds of cross-validation, and the
corresponding p-values were calculated as in Table 5.

Table 5. Significance of Model-1 by Wilcoxon Signed Rank Test
Metric Optimizer W Statistic  p-value  Significant (p<0.05)

Accuracy SGD 0 0.001953 Yes
Accuracy  ADAM 0 0.001953 Yes
Accuracy LBFGS 0 0.001953 Yes
F1_score SGD 1 0.010862 Yes
F1_score ADAM 17.5 0.375 No
F1_score LBFGS 0 0.001953 Yes

For each optimization algorithm (SGD, ADAM, and LBFGS), and both evaluation metrics
(accuracy and F1-score), the difference between Model-1 and Model-2 was all positive as Model-1 has
higher values than Model-2. So, the W+ (sum of positive ranks) was 55.0, and W- (sum of negative ranks)
was 0.0. The Wilcoxon test statistic is the smaller one (e.g.,: 0.0 for accuracy with SGD). The p-values were
calculated, and they were well below 0.05, the standard threshold for statistical significance, except for the
F1 score of ADAM. Since five p-values are below this threshold, the test rejects the null hypothesis that
there is no difference between Model 1 and Model 2. The Wilcoxon for accuracy, Model-1 significantly
outperforms Model-2 across all optimizers. For F1, the advantage of Model-1 is significant with SGD and
LBFGS but not with ADAM (p>0.05).

4. CONCLUSION

Through the analysis of two models, we found that Model-1 outperforms Model-2 and the existing
ML models. While applying the proposed ‘Model-1" algorithm, the maximum accuracy was improved by
3%, and the F1_score by 4%, with an increase in true positivity. The method is helpful in clinical decision-
making capability in healthcare diagnostic areas to identify non-alcoholic HCC from certain data in a primary
stage, so that the patient can take remedial precautions and solutions for a quality lifestyle and life span
improvement. When compared to standard deep learning architectures like CNNs, LSTMs, and Transformer-
based models, the stacking approach is inherently better suited for tabular datasets, which are common in
clinical settings. Furthermore, the model enhances interpretability through tools like SHAP, allowing for
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transparent feature importance analysis, a high aspect in healthcare decision support systems where
explainability is critical. In contrast, deep learning models often function as black boxes and demand
significantly higher computational resources and data volume. Therefore, the proposed stacking model offers
a more interpretable, resource-efficient, and equally accurate alternative to standard deep learning models.

The study also shows that HCC is a more widespread disease in human males who are between 50
and 70 years. The above proposed Model-1 shows its ability to improve accuracy, true positive rate,
F1 score, and MCC, and the Wilcoxon test also proves the statistical relevance of Model-1. The hybrid
feature selection using embedded and filter methods performs better with stacking classification than filter-
wrapper features. The improved predictive power of stacking with diverse optimizers is also useful when
dealing with complex datasets, so that we can improve the accuracy and robustness. The novel biomarker
PIVKA-II is highlighted when used with the conventional biomarker AFP in HCC-positive patients. The
study also shows that HCC is a more widespread disease in human males whose ages were between 50 and
70 years. The comparative SHAP analysis reveals both convergence and divergence in feature utilization
between the two models and the strength of PIVKA and AFP in the early diagnosis. Such insights are
valuable for improving model interpretability, stability, and performance in predictive biomedical modelling.
The above proposed Model-1 shows its ability to improve accuracy, true positive rate, F1_score, and MCC.
So, Model-1 can be deployed not only for HCC detection but also for the life-extending therapies and
survival rate finding, as it performs well with the given data. One limitation of the current study is the
absence of a standalone MLP model as a baseline. In this study, MLP was employed as the meta-classifier in
the stacking ensemble to leverage the predictive power of base models, including SVM, LDA, and GB.
Future work should incorporate this baseline to more clearly isolate the impact of stacking and to determine
whether the complexity of the ensemble structure is justified when compared to a well-optimized individual
model. The other limitation of the study was that the findings were based on a particular region of patients in
South India. The sample size can be increased to get more accurate results. The extension of the study can be
done with globally available data for extensive research on HCC occurrence. Also, the above-proposed
algorithm can be useful in predicting HCC reoccurrence in patients after liver transplantation or ablation
therapy. The survival rate prediction can also be done by doing appropriate feature engineering.
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