
Bulletin of Electrical Engineering and Informatics 

Vol. 14, No. 4, August 2025, pp. 2899~2911 

ISSN: 2302-9285, DOI: 10.11591/eei.v14i4.9500      2899  

 

Journal homepage: http://beei.org 

Image encryption algorithm based on a new one-dimensional 

chaotic map’s generator 
 

 

Mohamed Htiti1, Ismail Akharraz2, Abdelaziz Ahaitouf1 
1Laboratory of Engineering Sciences (LSI), Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Fez, Morocco 

2Laboratory of Mathematical and Informatics Engineering, Ibnou Zohr University, Agadir, Morocco 

 

 

Article Info  ABSTRACT 

Article history: 

Received Oct 31, 2024 

Revised Mar 29, 2025 

Accepted May 27, 2025 

 

 Encryption plays a crucial role in protecting sensitive data, including 

communications, financial transactions, and personal information, from 

cyber threats. One significant area of encryption is image encryption, which 

ensures the privacy of visual content, such as in secure image transmission, 

cloud storage, and medical image processing. Recent advancements in image 

encryption leverage chaotic maps based on chaos theory, generating 

unpredictable patterns ideal for securing images. This paper presents a novel 

chaotic map generator that enhances the dynamics of existing chaotic maps. 

Based on this generator, we propose a new encryption scheme that operates 

on the entire input image, obscuring the relationship between the original 

and encrypted images while spreading pixel changes across the entire 

encrypted image in one step. The scheme also produces an encrypted image 

of a different size, making it more efficient and resilient to attacks. While 

some steps of the proposed system are symmetric, others are asymmetric, 

ensuring a higher level of security. Based on the obtained results, this 

approach significantly enhances both security and performance in image 

encryption. 
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1. INTRODUCTION 

In today’s digital world, encryption is essential for protecting sensitive data, securing 

communications, financial transactions, and personal information against cyber threats [1]. One significant 

application of encryption is image encryption, where visual data is transformed into an unreadable format to 

prevent unauthorized access. This is used in secure image transmission, cloud storage, and in medical image 

processing ensuring that sensitive visual content remains private. A recent advancement in image encryption 

involves chaotic maps, based on chaos theory, which generate unpredictable patterns ideal for secure 

encryption [2]. 

Several studies suggest integrating chaotic systems with cryptographic methods to enhance 

encryption security, such as using Feistel networks with chaotic maps [3], [4], combining advanced 

encryption standard (AES) with image band scrambling and chaos [5], and employing chaotic maps with the 

Hill cipher [6]. Other approaches include utilizing polynomial Chebyshev and fractal Tromino methods [7], 

[8], Fibonacci sequences with AES [9], and genetic algorithms with chaotic maps [10]. For image encryption, 

advanced methods combining wavelet transform and chaotic maps [11], chaotic maps with DNA coding [12], 

and Arnold-Tent map with Walsh-Hadamard transforms [13] have been proposed, alongside hyper-chaotic 

https://creativecommons.org/licenses/by-sa/4.0/
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systems [14] and improvements to existing algorithms like CAST 128-bit with magic squares [15]. In 

specialized domains, satellite image encryption with chaotic maps and AES [16], medical image encryption 

[17], and encryption for satellite images during processing and storage [18] have been explored. Most of 

existing encryption systems process images in blocks and apply confusion and diffusion techniques 

separately, while also aiming to maintain the encrypted image's size identical to the original. They also apply 

the same type of encryption, whether symmetric or asymmetric. These approaches can make the systems 

vulnerable to cryptanalysis attacks. 

In this paper, we introduce a novel chaotic map generator that enhances the dynamics of existing 

chaotic maps. Based on this generator, we introduce a new encryption scheme that processes the entire 

image, rather than just in blocks. Our approach simultaneously applies confusion and diffusion. Additionally, 

the scheme produces an encrypted image of a different size. Some steps of our proposed system are 

symmetric, while others are asymmetric. Furthermore, the integration of chaotic maps introduces 

unpredictability, which further enhances the system's resistance to cryptanalysis attacks. 

This paper is structured as follows: section 2 details our map generator and the proposed encryption 

scheme. Section 3 covers the validation tests of the generator's chaotic properties and provides security test 

results and analysis of the proposed encryption system. Section 4 presents the concluding idea. 

 

 

2. CHAOTIC GENERATOR MAP AND ENCRYPTION SYSTEM 

2.1.  Proposed chaos map generator 

Figures 1 (a) to (c) illustrate two key issues with the logistic, sine, and tent maps. Firstly, chaotic behavior 

is limited to a small zone. Secondly, the output chaotic sequences have a non-uniform data distribution. To address 

these issues, this section introduces a new one-dimensional chaotic map generator. The proposed generator 

leverages previous maps as inputs to construct a new chaotic system. Mathematically, it is defined as (1): 
 

𝑥𝑛+1 = |cos(𝛼𝜋𝑔(𝑥𝑛 , 𝛽))(1 − sin(𝛼𝜋𝑔(𝑥𝑛 , 𝛽)))| (1) 
 

where 𝑔(𝑥, 𝛽)is the input map, 𝛽 is its control parameter, and 𝛼 is a hyper-parameter of the generator. 

Table 1 displays the mathematical definition of the created maps. With: 

− 𝐿(𝑥, 𝛽) is the generated map taking logistic map as input map. 

− 𝑆(𝑥, 𝛽) is the generated map taking Sine map as input map. 

− 𝑇(𝑥, 𝛽) is the generated map taking Tent map as input map. 
 

 

   

(a) (b) (c) 
 

Figure 1. Bifurcation diagram of the; (a) logistic map, (b) sine map, and (c) tent map; for β ϵ [0,1] 
  

 

Table 1. Generation of chaotic maps using our map generator 
𝑔(𝑥, 𝛽) Abbreviation Definition 

𝐿(𝑥, 𝛽) Generator_𝐿𝑔(𝑥, 𝛼, 𝛽) 𝑥𝑛+1 = |cos(4𝛼𝜋𝛽𝑥𝑛(1 − 𝑥𝑛))(1 − sin(4𝛼𝜋𝛽𝑥𝑛(1 − 𝑥𝑛)))| 
𝑆(𝑥, 𝛽) Generator_𝑆𝑛(𝑥, 𝛼, 𝛽) 𝑥𝑛+1 = |cos(𝛼𝜋𝛽 sin(𝜋𝑥𝑛))(1 − sin(𝛼𝜋𝛽 sin(𝜋𝑥𝑛)))| 
𝑇(𝑥, 𝛽) Generator_𝑇𝑛(𝑥, 𝛼, 𝛽) 

𝑥𝑛+1 = {
|cos(2𝛼𝜋𝛽𝑥𝑛)(1 − sin(2𝛼𝜋𝛽𝑥𝑛))|, 𝑥𝑛 < 0.5

|cos(2𝛼𝜋𝛽(1 − 𝑥𝑛))(1 − sin(2𝛼𝜋𝛽(1 − 𝑥𝑛)))|, 𝑥𝑛 ≥ 0.5
 

 

 

2.2.  Proposed image encryption and decryption scheme 

2.2.2.  Encryption scheme 

The proposed scheme is shown in Figure 2. In Step 1, the algorithm generates two sequences of 

integers under 256 that have the same size as the image's array. These sequences are generated using our map 

generator. Then, the algorithm applies two XOR operations between the specific array seq1 and seq2. 
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Figure 2. Images encryption process based on our chaotic maps’ generator 
 

 

In Step 2, the array generated in Step 1 is converted into binary form and then split into 9-bit blocks. 

Without dividing the array into blocks, we might encounter sequences like 23 consecutive bits of the same 

type (all zeros or all ones). This could confuse the receiver, who might interpret “23” as two ones followed 

by three zeros, or vice versa. To prevent this, we split the input array into 9-bit blocks. For each block, we 

count the number of 0s and 1s, saving these counts along with the first bit in a resulting array and an internal 

key, respectively. This key will be used during the decryption process. The resulting array contains numbers 

between 1 and 9, which are concatenated to form an array of integers less than 255. This algorithm is called 

bitBC, which stands for bits block count. Figure 3 provides an example to illustrate this step. 
 

 

 
 

Figure 3. Example of bitBC 
 
 

Step 3: once the resulting matrix is generated in Step 2, it is XORed with sequence seq3. After 

performing the XOR operation, the resulting array is converted into binary format and split into blocks of 

size less than or equal to 64. Each block is then split and resized into an (8,8) shape. Finally, the transpose of 

each block is taken. We refer to this algorithm as bits block transpose (BBT). The resulting arrays are 

concatenated and then converted from binary to decimal format. Once the array is in decimal format, it is 

XORed with a sequence of numbers named seq4. 

In Step 4, we add a set of numbers called seq5, which is generated by the key generator. The last 

array produced in Step 3 has a different size than the original image and, hence, cannot be reshaped into an 

image shape. To obtain an image shape, we need to add the seq5 to our array. The algorithm hides important 

information, including the internal key, the original image shape, the size of seq5 (to be deleted in the 

decryption process), and the average of the main key within seq5. 
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In Step 5: the matrix obtained from Step 4 is subjected to XOR operations with sequences seq6 and 

seq7. Before each XOR operation, the BBT algorithm is applied. Subsequently, the array is reshaped into a new 

dimension. Finally, the resulting output will be the cipher image. The five steps are outlined in Algorithm 1. 
 

Algorithm 1. Encryption scheme 

Input: Plain image, main_key 

Output: Cipher image 

Begin 

 Step1: 

1. Calculate average of main_Key 

2. Generate seq1 and seq2 using calculated average to increase key sensitivity 

3. Result1=Plain_Image ⨁ seq1 

4. Result2=result1 ⨁ seq2 

 Step2 

5. Convert result2 into binary form 

6. Split it into blocks of size 9 

7. For each block 

− count the number of 0s and 1s  

− save counted number in a resulting_Array 

− save the first bit in an internal_Key  

8. The resulting array contains numbers between 1 and 9, which are concatenated to obtain an array 

of integers under 256 

9. Return resulting_Array, internal_Key 

 Step3 

10. Generate seq3, seq4 

11. Result4=resulting_Array ⨁ seq3 

12. Convert result4 into binary form 

13. Split it into blocks of size 64 

14. For each block 

− Reshape it into 2D matrix (8,8) 

− Transpose it 

− Append each block in result5 

15. Result6=result5 ⨁ seq4 

 Step4 

16. Generate seq5  

17. Result7=concatenation (result6, seq5, internal_Key, width, height, average_Key, size of seq5) 

 Step5 

18. Generate seq6 and seq7 

19. Convert result7 into binary form 

20. Split it into blocks of size 64 

21. For each block 

− Reshape it into 2D matrix (8,8) 

− Transpose it 

− Append each block in result8 

22. Result9=result8 ⨁ seq6 

23. Result10=result9 ⨁ seq7 

24. Reshape the resulting array into a new dimension 

End 

 

2.2.1. Key and sequences generation 

The main key is given as: 𝑚𝑎𝑖𝑛𝑘𝑒𝑦 = [(𝑥0, 𝛽, 𝛼)𝑖=1→7, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7].  

Where (𝑥0, 𝛽, 𝛼)𝑖=1→7 = [𝑥01, 𝛽1, 𝛼1, 𝑥02, 𝛽2, 𝛼2, 𝑥03, 𝛽3, 𝛼3, … … … . 𝑥07, 𝛽7, 𝛼7] are of type float and used as 

initial values of the Generator map to create the needed chaotic sequences (seq1, seq2, seq3, seq4, seq5, seq6, 

and seq7). The seven last key elements are of type integer (take as values; 1: Logistic, 2: Sine, or 3: Tent) to 

specify which original map will be used as input for our map generator. For example: we can generate 

sequence seq1 using (2). The initial value of x is 𝑥01. 

 

𝑥𝑛+1 = |cos(4𝛼1𝜋𝛽1𝑥𝑛(1 − 𝑥𝑛))(1 − sin(4𝛼1𝜋𝛽1𝑥𝑛(1 − 𝑥𝑛)))| (2) 
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2.2.3. Decryption scheme 

The decryption process aims to reverse the encryption and retrieve the plaintext image. In 

symmetric encryption, the same operations can be applied in reverse for decryption. However, it is important 

to note that Steps 2 and 4 have specific versions (not symmetric). Figure 4 illustrates the decryption process. 

 

 

 

 

Figure 4. Decryption process 

 

 

Step 2: in this step, known as "Delete&Reshape", we extract the width and height of the plaintext 

image along with an internal key that was formed during the encryption process. These hidden elements are 

retrieved from the encrypted image, and subsequently, the added sequence is removed from the end of the 

encrypted image, with its size being the difference between the current size and the original size of the image. 

Afterwards, we reshape the resulting array to match the original size of the plain image. This step provides 

four essential elements: width, height, the principal array, and the internal key. 

Step 4: where we convert each digit in the principal array into a specific number of bits based on the 

internal key (refer to Figure 5). For example, if the internal key is [1, 1, 1, 0, …] and the principal array is 

[241, 29, 81, 4, …], we proceed as follows: 

− The first item in the internal key is 1. Therefore, we convert: 

Digit "2" to "11" 

Digit "4" to "0000" 

Digit "1" to "1" 

Digit "2" to "00" 

− We collect these bits. If the total number of bits is 9, we move to the second item in the internal key, 

alternating between 0 and 1 since the collected number is 9. Thus: 

Digit "9" converts to "111111111" 

Digit "8" converts to "11111111" 

− The third item in the internal key is 1, so we convert: 

Digit "1" to "0" 

Digit "4" to "0000" (since the fourth item in the internal key is 0) 

The resulting bit sequence is [1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

0, 0, 0, 0, 0, …]. When converted to decimal form, it becomes [194, 127, 255, 224, …], which matches the 

original array shown in Figure 3. The encryption and the decryption process are outlined in Algorithms 1 and 

2 respectively. 
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Figure 5. An illustration of step 4 in the decryption process (inverse of biBC) 

 

 

Algorithm 2. Decryption scheme 

Input: Cipher image, main_key 

Output: Decrypted image 

Begin 

 Step1: 

1. Generate seq6, seq7 

2. Result1=Cipher image ⨁ seq7 

3. Result2=result1 ⨁ seq6 

4. Convert result2 into binary form 

5. Split it into blocks of size 64 

6. For each block 

− Reshape it into 2D matrix (8,8) 

− Transpose it 

− Append each block in result3 

 Step2 

7. Extract internal_Key, width, height, average_Key and size of seq5 

8. Delete internal_Key, width, height, average_Key and seq5 

9. Reslult4=result3-(internal_Key, width, height, average_Key and size of seq5) 

 Step3 

10. Generate seq4, seq3 

11. Result5=result4 ⨁ seq4 

12. Convert result5 into binary form 

13. Split it into blocks of size 64 

14. For each block 

− Reshape it into 2D matrix (8,8) 

− Transpose it 

− Append each block in result6 

15. Result7=result6 ⨁ seq3 

 Step4 

16. Convert result7 to integer form number (Each number has one, two or three digit) 

17. we convert each digit into ones or zeros, depending on the content of the internal_Key 

 Step5 

18. Generate seq2, seq1 using average_Key 

19. Result9=result8 ⨁ seq3 

20. Result10=result9 ⨁ seq3 

21. Reshape the resulting array into the dimension (width, height). 

End 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Analysis of the proposed chaotic map generator 

3.1.1. Bifurcation diagram and trajectory analysis 

To evaluate the chaotic behavior of our map generator, we use the bifurcation diagram. Figure 6 

shows the bifurcation diagrams corresponding to traditional chaotic mappings and their respective improved 

iterations. Figures 6(a) to (c) show the bifurcation diagrams for the Logistic, Sine, and Tent maps, 

respectively. With β in the range [0,1] and α=560, these diagrams show the evolution of the values of Xi, 

thus highlighting areas of stability, periodicity, and chaotic behavior. Figures 6(d) to (f) show the bifurcation 

diagrams of the improved above-mentioned maps. These improvements were made to enhance dynamic 
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complexity and the range of chaotic behavior. The resultant diagrams show a more densely packed and 

uniform distribution of values, which is especially beneficial for applications in fields like cryptography and 

pseudo-random number generation. 

 

 

   
(a) (b) (c) 

   

   
(d) (e) (f) 

 

Figure 6. Bifurcation diagram of the; (a) logistic map, (b) sine map, (c) tent map, (d) generator-logistic map, 

(e) generator-sine map, and (f) generator-tent map for β ϵ [0,1] and α=560 

 

 

3.1.2. Sensitivity analysis 

The "Lyapunov Exponent" concept has been widely used in computer science, especially to study 

dynamical systems and prove whether they are chaotic or not. If our system can be described by 𝐹(𝑥𝑖) , the 

Lyapunov exponent can be mathematically defined as (3): 

 

𝐿𝐸 = lim
𝑛→∞

1

𝑛
∑ ln|𝐹′(𝑥𝑖)|𝑛−1

𝑖=0  (3) 

 

Figure 7 shows that our map generator has a larger chaotic range compared to its input map in all 

three cases. The Lyapunov exponent of the existing maps is below 1 in the best case and below zero in most 

cases. However, the improved version ranges from 4 to 8. 

 

3.1.3. Sample entropy 

We use sample entropy to measure the randomness of our one-dimensional chaotic map generator. 

A large value of sample entropy means that the maps have better chaos. For a time series X of size 

𝑁(𝑥1, 𝑥2, 𝑥3, … 𝑥𝑁), we can generate vectors with the size of m and m+1. 

 

𝑈𝑚(𝑖) = (𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2, … … 𝑥𝑖+𝑚−1) , 𝑈𝑚+1(𝑖) = (𝑥𝑖 , 𝑥𝑖+1, 𝑥𝑖+2, … … 𝑥𝑖+𝑚) (4) 

 

𝑉𝑚(𝑗) = (𝑥𝑗 , 𝑥𝑗+1, 𝑥𝑗+2, … … 𝑥𝑗+𝑚−1) , 𝑉𝑚+1(𝑗) = (𝑥𝑗 , 𝑥𝑗+1, 𝑥𝑗+2, … … 𝑥𝑗+𝑚) (5) 

 

where: 𝑑𝑚(𝑈(𝑖), 𝑉(𝑗)) is the Cheybyshev distance between 𝑈𝑚 and 𝑉𝑚. 

The sample entropy equation is defined as (6):  
 

𝑆𝐸(𝑚, 𝑟, 𝑁) = − 𝑙𝑜𝑔
𝐴

𝐵
 (6) 

 

where A is the number of vectors U(i) that satisfy the following condition 𝑑𝑚+1 < 𝑟, and B is the number of 

vectors U(i) that satisfy the following condition 𝑑𝑚 < 𝑟, r is the acceptable tolerance. We set m=2 and  

𝑟 = 0.2 × 𝑠𝑡𝑑(𝑋) to follow the recommendations provided in [19]. Based on the results obtained, it appears 
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that our map generator has demonstrated an improvement in entropy for the three input maps. The entropy 

value approaches 2, which is notably higher compared to the maximum value of 0.75 observed in the input 

maps (logistic, sine, and tent). This means that our map generator exhibits a higher degree of chaos, as shown 

in Figure 8. 

 

 

 

 

Figure 7. LE evaluation results: improved_logistic; improved _Sine; improved_Tent and input maps for  

𝛼 = 560 

 

 

 
 

Figure 8. SE evaluation results, generator-logistic; generator-Sine; generator-Tent generated and input maps 

for 𝛼 = 560 

 

 

3.2.  Encryption system analysis 

In this section, we will present the validation tests for our proposed encryption system. The test set 

includes images from the USC-SIPI miscellaneous dataset 1, as well as other standard images that are 

commonly used. 

 

3.2.1. Key space analysis 

The main key used in our system consists of 21 float numbers and 7 integers; therefore, our 

algorithm has a key length of 357 bits, resulting in a key space size of 2357, which is much larger than the 

theoretical limit of 2100 for a brute force attack [20]. 

 

𝑚𝑎𝑖𝑛𝑘𝑒𝑦 = [(𝑥0, 𝛽, 𝛼)𝑖=1→7, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7]  
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The brute force attack method involves trying every possible key while the correct one is not found; as 

a result, the key space needs to be sufficiently large to prevent a brute force attack from being successful in a 

reasonable amount of time, thereby ensuring the overall security of the encryption system. Table 2 provides a 

comparative analysis of the key space characteristics among various encryption algorithms and our model. 
 

 

Table 2. Key space evaluation comparison 
Scheme Ref [21] Ref [22] Ref [23] Our system 

Key space 2140 2128 2224 2357 

 

 

3.2.2. Histogram analysis 

Based on the findings in Figure 9, our encryption process successfully produces a cipher image with 

a uniform histogram from the plain image. Various types of images, including grayscale and RGB, were 

subjected to experimentation. Plain images, histograms of plain images, cipher images, histograms of cipher 

images, and deciphered images are presented in the first to fifth columns, respectively. The findings show 

that the process appropriately encrypts, and decrypts plain_images and prevents statistical attacks. 
 
 

 
 

Figure 9. Analysis of the histogram for the proposed image encryption and decryption 

 

 

3.2.3. Information entropy analysis 

Information entropy is a useful tool that can be used to quantify the level of randomness that is 

responsible for determining the images level of security. It can be mathematically represented as (7) [24]: 
 

𝐻(𝑚) = − ∑ 𝑝(𝑚𝑖)𝑙𝑜𝑔2(𝑝(𝑚𝑖))𝐿−1
𝑖=0  (7) 

 

where mi represents the pixel value ranging from 0 to 255, and p(mi) indicates the probability of the gray 

value mi. For an 8-bit grayscale image where L equals 256, the optimal value for information entropy (H) is 

8. This means that when the value of H approaches 8, there is an increase in the degree of randomness seen in 

the image pixel distribution. The local shannon entropy (LSE) is a measure of the average entropy of k 

randomly selected non-overlapping blocks. Where Pi represents non-overlapping blocks, and Tb represents 

the number of pixels in each block for a given image. 

 

𝐻𝑘,𝑇𝑏
̅̅ ̅̅ ̅̅ ̅(𝐼𝑚) = ∑ 𝐻(𝑃𝑖)/𝑘𝑘

𝑖=0  (8) 

 

This test was done by Wu et al. [24] on 25 8-bit gray-scale images from the USC-SIPI 

"Miscellaneous" dataset. The test was performed with k=30, Tb=1936, and 𝛼 = 0.001 significance level. An 
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image can pass the test if its Hk,Tb value falls within the range (7.901515698, 7.903422936), with the ideal 

value being 7.902469317. Table 3 compares the proposed algorithm to three existing research studies. The 

global entropy of the proposed method consistently achieves values close to the ideal maximum of 8, with 

results ranging from 7.998437 to 7.998832 across different images, demonstrating effective randomness in 

the encrypted images. The local entropy for the proposed method also shows strong performance, with an 

average pass rate of 4/6, outperforming the three cited references. The standard deviation for local entropy 

(0.0009907) is the lowest among all methods, reflecting the method’s high stability and consistency. The 

significant improvement in both global and local entropy compared to the references confirms its 

effectiveness in preventing unauthorized information extraction and resisting cryptanalysis attacks. 
 

 

Table 3. The local and global information entropy of the "Miscellaneous" image dataset 

File name 
Global entropy Local entropy (k, Tb, α)=(30,1936,0.001) 

Plain image Proposed Plain image Ref [25] Ref [26] Ref [27] Proposed 

5.1.09 6.70931 7.998577 6.380955 7.90272 7.90192 7.90093 7.90338251 

5.1.10 7.3118 7.998832 7.086833 7.90061 7.90007 7.89976 7.90272544 

5.1.11 6.45227 7.9986 5.331843 7.90142 7.90077 7.90105 7.90264014 
5.1.12 6.70566 7.998655 5.498883 7.90381 7.902 7.90307 7.90463714 

5.1.13 1.54831 7.998437 1.494765 7.90505 7.90104 7.90107 7.90343722 

5.1.14 7.34243 7.998594 6.808383 7.903 7.90352 7.90509 7.90282400 
Pass rate -- -- -- 2/6 2/6 1/6 4/6 

Std -- -- -- 0.00114 0.00106 0.00149 0.0009907 

 

 

3.2.4. Differential attack analysis 

This method encrypts two plain-images with the same key and compares their cipher images' 

differences. High sensitivity makes the system more resistant to known plain-image attacks. Only one pixel 

in the original image is modified by adding or subtracting 1, and then the cipher images, C1 and C2, are 

compared. Two widely used metrics for measuring the resistance of cryptographic systems to differential 

attacks are the number of pixel change rate (NPCR) and the unified average change intensity (UACI). NPCR 

compares whether the pixel values at the two images corresponding positions are the same, while UACI 

compares their differences. In (9) calculates these metrics: 

 

𝑁𝑃𝐶𝑅 =
∑ 𝐷(𝑖,𝑗)𝑖,𝑗

𝑀.𝑁
. 100%, 𝑈𝐴𝐶𝐼 =

1

𝑀.𝑁
∑

|𝐶1(𝑖,𝑗)−𝐶2(𝑖,𝑗)|

𝐿
. 100%𝑖,𝑗  (9) 

 

M and N represent the images height and width, respectively, and L represents the maximum 8-bit pixel 

value, L=255. The difference between C1 and C2 is denoted by (i, j): 
 

𝐷(𝑖, 𝑗) = {
1 𝑖𝑓 𝐶1(𝑖, 𝑗) ≠ 𝐶2(𝑖, 𝑗)

0 𝑖𝑓 𝐶1(𝑖, 𝑗) = 𝐶2(𝑖, 𝑗)
 (10) 

 

An excellent encryption system should successfully meet the NPCR and UACI standards [28]. The critical 

value of the NPCR, at a given level of significance 𝛼, is calculated as (11): 
 

𝑁𝛼
∗ =

𝐿−𝜙−1(𝛼)√𝐿/𝑀𝑁

𝐿+1
 (11) 

 

The inverse cumulative density function (CDF) of a standard normal distribution N (0, 1) is 𝜙−1. 

For an encrypted image to pass the NPCR test, its NPCR value must exceed 𝑁𝛼
∗. In (9) define the critical 

values for the UACI test (12) and (13): 

 

𝑈𝛼
∗− = 𝜇𝑢 − 𝜙−1 (

𝛼

2
) 𝜎𝑢, 𝑈𝛼

∗+ = 𝜇𝑢 + 𝜙−1(
𝛼

2
)𝜎𝑢 (12) 

 

𝜇𝑢 =
𝐿+2

3𝐿+3
 , 𝜎𝑢 =

(𝐿+2)(𝐿2+2𝐿+3)

18(𝐿+1)2𝐿𝑀𝑁
 (13) 

 

If cipher-image UACI values are within the range (𝑈𝛼
∗(−)

, 𝑈𝛼
∗(+)

), it is considered to have passed the 

UACI test. Table 4 shows the UACI and NPCR results. The average UACI and NPCR values were 33.38% 

and 99.61%, respectively. According to the findings of Liu and Miao [25], the values presented in this study 

closely match the expected values for grayscale images, specifically 33.464% for UACI and 99.609% for 

NPCR. 
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Table 4. Comparison of "Miscellaneous" image dataset NPCR and UACI values 

File name 
NPCR:  𝑁𝛼

∗≥99.5693 UACI: (𝑈𝛼
∗(−)

, 𝑈𝛼
∗(+)

)=(33.2824, 33.6447) 

Proposed Ref [23] Ref [27] Ref [19] Proposed Ref [23] Ref [27] Ref [19] 

5.1.09 99.60897 99.6078 99.6016 99.6064 33.5504 33.4563 33.47 33.4456 

5.1.10 99.60943 99.6098 99.6191 99.6154 33.43374 33.451 33.4826 33.4946 
5.1.11 99.59903 99.6077 99.6042 99.6244 33.47071 33.4832 33.5648 33.5541 

5.1.12 99.61019 99.6033 99.5956 99.5703 33.50509 33.4538 33.4725 33.4302 

5.1.13 99.61586 99.6066 99.6109 99.6109 33.54058 33.4363 33.4813 33.4438 
5.1.14 99.59715 99.6129 99.6199 99.6364 33.45738 33.4848 33.4725 33.4655 

Std 0.007525 0.00376 0.00527 0.01364 0.033581 0.02298 0.02421 0.0342 

 

 

The proposed method demonstrates excellent performance in terms of NPCR and UACI, key 

metrics for evaluating image encryption robustness. The NPCR values for the proposed method consistently 

exceed or match those of reference methods [19], [23], [27] across all test images, with a notably high value 

of 99.61586 for image "5.1.13." The low standard deviation (0.007525) highlights its stability and reliability. 

Compared to the researcher [23] shows slightly lower variability but generally underperforms in NPCR, 

while [19] exhibits the highest variability. These results confirm the proposed method’s superior ability to 

achieve significant pixel changes during encryption. 

In UACI analysis, the proposed method achieves competitive intensity change rates, ranging from 

33.43374 to 33.5504, with moderate variability (standard deviation=0.033581). Wang et al. [27] occasionally 

outperforms the proposed method in specific cases (e.g., image "5.1.11"), the proposed method maintains 

consistent performance and outmatches Hua et al. [19] in stability. Overall, the proposed method's strong 

NPCR and UACI values affirm its capability to ensure secure and reliable image encryption, proving it to be 

a robust choice for enhancing image security. 

 

 

4. CONCLUSION 

In this paper, we presented a novel encryption scheme based on a proposed chaotic map generator, 

which offers significant improvements in both security and efficiency for image encryption. Our findings 

demonstrate that by integrating both symmetric and asymmetric steps, the proposed system successfully 

obfuscates the relationship between the original and encrypted images, while ensuring that even small 

changes in a single pixel influence the entire encrypted image. This design enhances resistance to 

cryptanalysis attacks, making the system more robust than traditional encryption methods. 

The implications of this work extend beyond its theoretical contribution, as our approach provides a 

practical solution for secure image transmission and storage, particularly in fields such as medical imaging, 

cloud storage, and satellite imagery. The ability to generate encrypted images of a different size further 

enhances the system’s efficiency, increasing its complexity. Future work could focus on optimizing the 

system for real-time processing and exploring its potential in multi-layer encryption schemes. Additionally, 

the proposed chaotic map generator could be applied to other maps, specifically two-dimensional maps. 
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