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Speech recognition is crucial for helping individuals with physical
disabilities access digital content. However, current systems have significant
flaws that hinder user experience and complicate daily tasks. Environmental
disturbances can cause misinterpretation, and existing automatic speech
recognition (ASR) systems struggle with comprehending acoustic and

linguistic nuances and handling diverse speaking styles and accents. To

address these issues, a new model integrates bidirectional encoder
representations from transformers (BERT) and transformer features with
natural language processing (NLP) capabilities. This model aims to
consolidate semantic, linguistic, and acoustic information extracted from the
! Kaldi speech recognition toolkit and improve accuracy by rescoring the list
representations from of N-best hypotheses. The innovative approach leverages advancements in
transformers NLP to enhance speech recognition's accuracy and robustness across various
GPT-2 scenarios. Evaluations on the LibriSpeech dataset show that integrating
Natural language processing BERT, transformer encoder, and generative pretrained transformer 2 for
Transformer rescoring N-best hypotheses significantly improves transcription accuracy.
The proposed model achieves a word error rate (WER) of 17.98%,
outperforming other models. This development paves the way for
advancements in speech recognition technology, offering better user
experiences in real-world applications.
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1. INTRODUCTION

With the gradual advancement of technology in the past decades, speech recognition is gaining
popularity across most of the devices we use nowadays. Speech recognition, which was developed in the
early 1900s, is an engineering technology that identifies and converts sound signals into text or commands
has significantly changed how we live [1]. However, there still exists some reluctance that the current speech
recognition technology is not able to comprehend the spoken words accurately, which results in erroneous
commands being executed. Natural language processing (NLP) is a field of artificial intelligence (Al) and
Linguistics designed to allow computers to recognize human’s spoken words [2], [3], which has been
empowering machine translation, automatic summarization, coreference resolution and much more for over
35 years. It is gradually shifting its focus from machine learning to deep learning-based algorithms to tackle
with difficult tasks [4]. By applying this knowledge, the accuracy of comprehending audio signals would be
improved, increasing the user’s satisfaction level.

Contemporary speech recognition systems encounter significant obstacles in accurately transcribing
audio inputs to text, primarily due to the intricate variability of human speech patterns and the disruptive
influence of environmental disturbances. Malik et al. [5] stated that the prevalence of diverse regional
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dialects and individual speaking styles poses substantial challenges to achieving precise audio-to-text
conversion. In addition, environmental factors, including ambient noise, significantly impede the system's
ability to discern and interpret speech accurately, particularly in dynamic real-world environments [6].
Moreover, Han et al. [7] addressed the issue, rarely considering contextual information, which complicates
the selection of the most accurate hypothesis, leading to inaccuracies in generating transcription.

Recent advancements in connectionist temporal classification (CTC) models have significantly
improved speech recognition accuracy and efficiency through various innovative approaches [8], [9].
Omachi et al. [10] proposed a CTC model integrated with a conditional masked language model (CMLM),
utilizing global and type-wise mask-predict algorithms, which showed superior performance on the CSJ and
SLURP datasets. Lu and Chen [11] introduced context-aware knowledge transfer techniques, incorporating an
enhanced Vanilla wav2vec2.0 and bidirectional encoder representations from transformer (BERT), which
improved performance on the AISHELL-1 and AISHELL-2 datasets. Deng et al. [12] developed KT-RL and KT-
CL models, employing BERT and GPT2 for knowledge transfer, with KT-RL-CIF achieving a 4.2% character
error rate (CER) on the AISHELL-1 corpus. Additionally, Salazar et al. [13] introduced SAN-CTC, a self-
attentional network that predicts tokens concurrently, achieving a 4.7% CER on the eval92 dataset and 2.8% CER
on the LibriSpeech dataset. Jiang et al. [14] addressed the challenges of transformer-based speech recognition
models, such as transcription difficulties and limited labeled data, by proposing an unsupervised pre-training
algorithm called masked predicative coding (MPC). MPC utilizes a masked language model (MLM) applied to
FBANK input and encoder output directly, aiming to enhance recognition in varied speech patterns and
environmental conditions. Testing on the HKUST dataset during pre-training achieved a 23.3% CER, with
increased pre-training data further reducing CER by 11.8% compared to the baseline. Nigmatulina et al. [15]
introduced the ASR-NLP model to enhance automatic speech recognition (ASR) performance in noisy
environments and improve callsign identification accuracy. This model first reduces the weights of likely callsign
n-grams in the grammar finite-state transducer (G.fst) or decoding lattices and compares NLP-boosting ASR
outputs, derived through named entity recognition (NER) based on the BERT model with surveillance data. A
significant improvement from 32.1% to 60.4% is shown in recognition accuracy.

BERT-based models have significantly improved speech recognition by addressing various
challenges [16]. Chaudhari et al. [17] utilized a BERT model to identify and correct speech recognition errors
in radiology reports, achieving 75% accuracy. Baevski et al. [18] showed that fine-tuning BERT with
transcribed speech data in the vg-wav2vec model reduces word error rate (WER). The proposed
RescoreBERT [19] includes a MLM and discriminative loss functions, achieving a WER of 4.36 on the
LibriSpeech dataset. Song et al. [20] introduced learning-to-rescore (L2RS), integrating BERT for text
feature extraction and ESPnet for acoustic features, achieving a WER of 13.41% on the TED-LIUM dataset.
Chuang et al. [21] highlighted BERT's improved performance with contextual word embeddings in ASR.
Shin et al. [22] developed biSANLM, incorporating BERT for n-best list rescoring, achieving lower WER on
the LibriSpeech task. Bai et al. [23] proposed LASO, a non-autoregressive model using BERT for token
sequence generation, showing 50 times faster speed and low CERs. Fohr and Illina [24] suggested BER Ty,
and BERT,;;..,, models for rescoring ASR hypotheses, with BERT;s.,, cOmbined with ac./GPT-2 achieving
the best performance. Illina and Fohr [25] improved BERTg5em With BERTgigem—rg aNd P — BERTgi5em,
reducing WER by 1-3%. Chiu and Chen [26] proposed TPBERT, combining BERT with unsupervised topic
modeling for N-best hypothesis reranking, achieving a WER of 20.49% on the AMI dataset. BERT-ASR,
proposed by Nguyen et al. [27], utilizes whole word masking for efficient next word classification, showing
lower perplexity and CER on the AISHELL-1 dataset. Finally, Yu et al. [28] introduced NAR-BERT-ASR,
combining pretrained LM benefits with non-autoregressive capabilities, achieving the lowest CERs on the
AISHELL-1 dataset with significant speed improvements.

Transformer-based models have shown significant improvements in ASR. Hrinchuk et al. [29]
proposed a transformer ASR correction model, achieving an average WER of 14% on LibriSpeech datasets
by applying transformer-based encoder-decoder architecture to a deep-convolutional E2E model called
Jasper. Zhang et al. [30] developed a transformer-based spelling correction model that achieved a CER of
3.41% on a Mandarin dataset. Chen et al. [31] introduced a transformer with a directional decoder (STBD),
achieving a CER of 5.8% on AISHELL-1. Wang et al. [32] highlighted that transformer-based models
outperform BLSTM models in hybrid acoustic modeling. Li et al. [33] modified the self-attention decoder of
the transformer by integrating it with DACS, achieving a WER of 5.5% on WSJ and a CER of 7.4% on
AISHELL-1. Finally, Kim et al. [34] proposed Squeezeformer, which uses Temporal U-Net structure and
depth-wise down-sampling, achieving the lowest WER of 2.27 on LibriSpeech.

RNN-based models have shown promising results in improving ASR. Klosowski [35] proposed an
RNN model with an embedding layer, two LSTM hidden layers, and dense layers, which achieved increased
accuracy from 0.402 to 0.936 and decreased loss from 2.779 to 0.265 after training for 500 epochs using
Polish text data. Oruh et al. [36] applied an LSTM RNN model to address bandwidth limitations in ASR,
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achieving 99.36% accuracy on the Pannous dataset. Hori et al. [37] developed an RNN language model
(RNN-LM) with a look-ahead mechanism, achieving 5.1% WER on WSJ and 5.4% WER on LibriSpeech.
CNN-based models have been effectively combined with ASR systems to enhance topic detection accuracy.
Sun et al. [38] proposed a multi-stream CNN framework using two ASR systems, HMM-BIiLSTM and CTC,
which process word embeddings. This model, tested on the Japanese CTS dataset, outperformed both an
unsupervised model and a CNN with single-stream input. Additionally, Aitoulghazi et al. [39] introduced
DarSpeech, a model based on deep speech with two CNN layers for feature extraction, demonstrating
increased accuracy with larger input data sizes.

To overcome the issues identified earlier, this paper primarily aims to develop an advanced
algorithm that can accurately refine the hypothesis in the presence of background noises, thereby mitigating
the impact of environmental disturbances. This research aims to enhance the existing algorithm's capacity to
comprehend diverse human speech patterns, accents, and linguistic nuances by integrating NLP
methodologies to generate contextually relevant transcription. Lastly, to boost the accuracy of the output
generated by NLP-based speech recognition, the existing algorithm will be refined to select the hypothesis
that contains the lowest WER or CER, ensuring the highest accuracy score, from N-best hypotheses list.

2. METHOD

In this research work, a proposed model incorporating NLP techniques in enhancing speech
recognition is introduced to increase the reliability and efficiency of ASR. The experimental setup and
implementation of the proposed model of this research work are shown in the following subsections in
providing a comprehensive understanding. As the proposed NLP-enhanced speech recognition is used to
process the audio data consisting of acoustic signals carrying diverse semantic information (SI), some key
presumptions must be adhered to achieve higher accuracy and efficiency in the proposed algorithm. One of
the most important presumptions is that the contextual information of the audio data should be clearly
defined in the presence of minimal background noise. Moreover, English language audio data should be used
without long pausing between utterances, containing only one speaker, and with accurate transcriptions of
test data. Lastly, only the first ten best hypotheses generated will be considered.

2.1. Dataset

LibriSpeech corpus, particularly the test-other subset, is chosen to be the primary dataset in
evaluating the models due to its extensive collection of English-language audiobook recordings and the
presence of more background noises, diverse accents, and other acoustic variations, which could increase the
reliability of the results. This dataset is a widely recognized benchmark in the domain of ASR systems.

2.2. Data preprocessing

Kaldi voice recognition toolbox, an open-source toolkit utilizing a dynamic neural network capable of
performing data preprocessing and extracting features required by our proposed model, is selected to generate
the features required by our model. Kaldi must be installed in a Unix-like environment to allow the operations
and audio test data in LibriSpeech to be converted into .wav format. Figure 1 depicts the flowchart of
operations performed by Kaldi in generating the features required. To produce N-best hypotheses list, vectors
are extracted and utilized in recognizing speakers and digitization tasks. This decoding process creates a lattice
file that contains information about the probability of various sequences of words given the input.

The lattice file generated is converted into a list of N-best hypotheses, which consist of linear
sequences of words, as shown in Figure 2. In addition, the lattices will be transformed into human-readable
texts, representing the most likely word sequence, as shown in Figure 3. In extracting acoustic features from
audio datasets, Mel-frequency cepstral coefficients (MFCCs) are computed, which provide the details of the
signal's spectral envelope that assist in configuring vocal tract. These coefficients are essential for further
analysis and model training. The MFCCs computed will be required to compute the cepstral mean and variance
normalization (CMVN) statistics, which normalize the characteristics, ensuring consistency across different
utterances and speakers. Prior to processing the data with the proposed model, hypothesis pairs will be created.

2.3. Bidirectional encoder representations from transformers and transformer architecture model

Figure 4 summarizes the architecture of the combination of BERT and transformer model. To create
a format that the pre-trained BERT model can accept, the text of the hypothesis pair will be tokenized into
individual units using BERT Tokenizer. The pre-trained BERT model used will accept the tokens of words
from the transcript of hypothesis pair and produce embedding vectors that carry the contextualized
representations of each token owing to its ability to capture contextual information from the tokens in
bidirectional (left and right) simultaneously.
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Figure 1. Flowchart of feature extraction with Kaldi

THE BLACK NIGHT WITH PORTENTOUS STRENGTH FORCE 3 ¥ INWARD IN DESPITE OF THE PRAISE THEE AND HIS FOLLOWERS

THE BLACK NIGHT WITH PORTENTOUS STRENGTH FORCE 3 Y IN WARD IN DESPITE OF THE PRAISE THEE AND HIS FOLLOWERS
3 THE BLACK NIGHT WITH PORTENTOUS STRENGTH FORCE N WOOD IN DESPITE OF THE PRAISE THEE AND HIS FOLLOWERS
4 THE BLACK NIGHT WITH PORTENTOUS STRENGTH FORCE ¥ IN WOULD IN DESPITE OF THE PRAISE THEE AND HIS FOLLOWERS

THE BLACK NIGHT WITH PRETEND TO STRENGTH FORCE ¢ INWARD IN DESPITE OF THE PRAISE THEE AND HIS FOLLOWERS

6 THE BLACK NIGHT WITH PORTENTOUS STRENGTH FORCES SWAIN WOULD IN DESPITE OF THE PRAISE THEE AND HIS FOLLOWERS

BLACK NIGHT WITH PRETEND TO STRENGTH FORCE HIS WAY IN WARD IN DESPITE OF THE PRAISE THEE AND HIS FOLLOWERS

BLACK NIGHT WITH PRETEND TO STRENGTH FORCE HIS WAY IN WOOD IN DESPITE OF THE PRAISE THEE AND HIS FOLLOWERS

-9 THE BLACK NIGHT WITH PRETEND TO STRENGTH FORCE HIS WAY IN WOULD IN DESPITE OF THE PRAISE THEE AND HIS FOLLOWERS
8461-281231-0010-10 THE BLACK NIGHT WITH PRETEND TO STRENGTH FORCES SWAIN WOULD IN DESPITE OF THE PRAISE THEE AND HIS FOLLOWERS

Figure 2. Sample of generated N-best hypotheses list

8461-281231-0010 THE BLACK NIGHT WITH PORTEND TER STRENGTH FORCE HIS SWAIN WARD IN DESPITE OF THE BRACELY AND IS FOLLOWERS

Figure 3. Sample of best generated hypothesis

The initial step in preparing BERT embeddings is crucial. Transformer encoder, which consists of 6
layers of blocks stacked hierarchically, will refine these outputs based on the attention-weighted relationships
between tokens in the sentence, achieved with PyTorch. These transformer encoder blocks, each applying
self-attention mechanisms to capture contextual relationships within the input text, learn hierarchical
representations of the input text so more contextual information will be acquired, enhancing the contextual
information captured in the initial step. As a result, a new set of embeddings will be produced. Acoustic
features extracted from the Kaldi voice recognition toolbox will be concatenated with transformer
embeddings using linear transformation to match the embedding dimension before being passed to two Bi-
LSTM layers and several pooling operations. Bi-LSTM layers identify the dependencies in terms of sequence
in bi-directional (forward and backward), which aids in understanding the temporal relationships, while
average pooling and max pooling aggregate the data across the sequence and reduce the dimensionality of the
data. The pooling operations performed significantly improve computation efficiency, reduce overfitting
issues, and generate a more concise representation. The output from average and max pooling will be
processed through two fully connected layers with the rectified linear unit (ReLU) activation function to
allow the learning of complex relations as well as patterns of the features concatenated to develop more
comprehensive representations. The first fully connected layer reduces the dimensionality of the feature
representations, while the second fully connected layer produces the final output logits. The integrated
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feature representation will be passed into a sigmoid activation function to squash the output logits to a range
between 0 and 1, facilitating binary classification tasks generating an output that carries the sentence-level SI
by combining contextual, acoustic, and sequential information, producing a rich and comprehensive

representation.
< Start ’ e
Input text of Converts into SI by FC layer
hypothesis pair with sigmoid function

Input higher-level
Tokenize the representation
hypothesis pair +

Perform learning through
FC Layer with ReLU
Produce BERT

embedding vectors
Aggregate data with Reduce dimensionality
average pooling with max pooling
Ieml;;(jB[jllzrf;: Identify dependencies with J
Bi-LSTM
Produce Transformer Concatenate acoustic features
embeddings with embeddings

Figure 4. Flowchart of BERT and transformer architecture model

2.4. Fine-graining with GPT-2 model

In generating fine-grained information required to fine-tune the model’s understanding of text,
GPT-2 model provides embeddings and token probabilities. The pre-trained GPT-2 model allows more
flexibility in targeting the most appropriate word tokens [40] with its attention mechanisms. This model takes
the hypothesis pair text as input and tokenizes it using GPT-2 tokenizer. This tokenized text is then passed
through the GPT-2 model to generate the last hidden states, representing each token's embeddings in the
sequence. These embeddings are transformed into probabilities using a SoftMax function, resulting in a
probability distribution over the vocabulary for each token in the sentence. This approach aims to generate
fine-grained information with additional features applicable in various downstream tasks. The flowchart
below depicts the summarized procedures taken in fine-graining.

2.5. The main architecture

The selected hypothesis pair will then be passed to the BERT model to generate contextualized
token embeddings, followed by a transformer encoder later to refine the embeddings based on attention-
weighted relationships between tokens. This generates sentence-level Sl. Besides that, fine-graining the pair
of hypotheses using the GPT-2 model is conducted to generate representations with more features.
Simultaneously, GPT-2 model is implemented in computing the probabilities of linguistic information of the
hypothesis pair, which is P;,,, (h;). This linguistic probability is multiplied with acoustic probability for each
hypothesis, as shown in (1), to integrate both acoustic and linguistic information:

Pac(hi) * le (hi) (1)

Concatenation of all the outputs from BERT and transformer architecture model, fine-graining using
GPT-2 model, and combination of linguistic and acoustic probabilities from the hypothesis pair is carried out
prior to processing it through fully connected layer (FC) with sigmoid activation function to compute the
output, v;;. This output will be defined as 1 if the WER of the first hypothesis, h;, is less than the second in
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the pair, h;, and 0 otherwise. The scores for each hypothesis in the pair will be updated based on v;;, as stated
in (2) and (3):

scoresem (h)+= v;; 2
scoresom (hj)+= 1—v; 3)

The cumulated score generated for each hypothesis will be used to select the top N hypotheses, with
N representing the total number of hypotheses generated, to compute the pseudo probability, while Py, (h;),
the pseudo probability is multiplied by the linguistic probability and acoustic probability using weighted
combinations of a, B,y = 1, see (4):

W = argmaxhiEH Pac (hi)a * le(hi)ﬁ * sem(hi)y (4)

The hypothesis with the best score will be chosen based on the above computations. The WER is
computed between the best hypothesis and transcription, while the total duration includes processing and
Kaldi durations. This proposed model can learn all the semantic, linguistic, and acoustic information of the
audio data, hence empowering the accuracy of ASR in NLP in the recognition of spoken words.

2.6. Experimental setup

The baseline model, namely the Kaldi voice recognition tool, is set up in an open-source Linux-
based operating system to allow its seamless integration and utilization within our research framework. This
ensures compatibility with the required dependencies and libraries, such as CUDA for GPU acceleration,
versions of Python, i.e., Python 3.10, and C++ compilers. A pretrained model is integrated, allowing the ASR
to decode audio files using a time-delay neural network (TDNN) acoustic model to generate the word lattices
for transcription. Utilizing the transcriptions generated, the recurrent neural network language model
(RNNLM) is employed to select the best hypothesis. In experimenting with the proposed model, alpha («),
beta (8), and gamma (y) are adjusted to 1 for the generation of the best hypothesis. Alpha («) controls the
weight of the acoustic probabilities which affect the acoustic feature alignment during transcription, beta (8
adjusts the effect of language modelling on transcription results by modifying the impact of linguistic
probability obtained from GPT-2, while gamma (y) is a parameter provides additional control over the final
selection based on combined scores for pseudo-probabilities used in ranking top-N hypotheses. These three
parameters are adjusted as shown in (5), which is used to calculate the best hypothesis, as depicted in (4).

commbined probability = P,.(h))* * Py (h))? * Pygp (h))Y (5)

Besides that, a random selection model is developed to serve as a benchmark for comparison in our
assessment. This model does not take into account auditory characteristics or contextual information when
choosing words or sentences at random from a predefined vocabulary or corpus. Its inclusion guarantees an
equitable comparison between various approaches. With these configurations, we hope to guarantee a fair
comparison of the models and a thorough comprehension of the experimental process. The results obtained
from the experiments conducted on the proposed model, Kaldi baseline model, and the random selection
methodology are analyzed and discussed in the following chapter.

3. RESULTS AND DISCUSSION

In this section, the result of the proposed model is discussed in detail alongside a comparison with
the baseline model and random selection methodologies, which are utilized to rescoring the list of N-best
hypotheses. Table 1 illustrates the results obtained by evaluating each model with the LibriSpeech dataset, in
which the key performance metrics utilized to assess their performance are the WER as well as the execution
time. These results will be further elaborated in the subsections.

Table 1. The performance of different models on LibriSpeech dataset
Performance metrics

Model WER (%) Execution time (s)
Kaldi model 23.3974 157.599918
Random selection ~ 18.5971 157.602507
Proposed model 17.9783 198.089685
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3.1. Word error rate

The bar chart, as illustrated in Figure 5, shows the mean WER obtained by the three models used in
the experiment. Kaldi's baseline model achieved the highest WER compared to the other two models. By
applying random selection to the N-best hypotheses generated by the baseline model, the WER s reduced to
18.5971%. However, using our proposed model to restore the N-best hypotheses generated by the baseline
model further reduces the WER to 17.9783%, making it the model with the best accuracy. Moreover,
Figure 5 also provides more detailed information on the distribution of WER across the models, showing that
the proposed model has the lowest median WER.

Mean WER Comparison WER Comparison

0.5+

0.2340

0.20
0.4

0.15-

Mean WER

0.10

0.05

0.00

0.0—

. . . I [ I
Proposed Model ~ Kaldi Baseline ~ Random Selection Proposed Model ~ Kaldi Baseline ~ Random Selection

Model Model

Figure 5. Comparison of WER of each model

3.2. Execution time

On the other hand, the details of the execution time of all the models are depicted in Figure 6. Based
on Figure 6, the mean execution time of the proposed model is the longest at 198.09 seconds, which is
approximately 40.5 seconds longer than the execution time of the baseline model. The random selection
methodology has a difference of less than 0.01 seconds compared to the baseline model. More details on the
distribution of the mean execution time are shown in Figure 6, where the Kaldi baseline model and random
selection methodology have almost the same median execution time.

Mean Duration Comparison Duration Comparison
198.09 220
200 |
175 - 2107
o~ z
£ 150 = 200
g 2
,g 125 = 190
i -
g 100 5 150
= a
= 170
& 5o o o
@
= 160 ©
25— ﬁ
o 150 o o
I [ I
Proposed Model Kaldi Random Selection Proposed Model Kaldi Baseline =~ Random Selection
Model Model

Figure 6. Bar chart of mean duration of each model
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Based on the calculation obtained, which can be seen in Figure 7, the analysis shows that the
proposed model outperforms both the baseline and random selection models in terms of WER, indicating
higher accuracy in transcription. Specifically, it shows a significant WER improvement of 23.16%, despite
requiring higher computational resources, as evidenced by the higher execution time. The experimental
findings highlight the pivotal role of rescoring techniques in achieving accurate transcriptions, notably by
integrating advanced NLP models such as BERT, transformer encoder, and GPT-2. Despite the increased
computational demands associated with this approach, the results consistently demonstrate the proposed
model's capability to generate highly reliable transcriptions. Its proficiency in refining hypotheses and
enhancing transcription fidelity positions the proposed model as the optimal choice for NLP tasks prioritizing
accuracy.

WER Improvement over Kaldi

23.1611%

20.5163%

10

WER Improvement (%)

0

Random Selection Proposed Model

Model

Figure 7. Bar chart of WER improvement shown by each model

4. CONCLUSION

In conclusion, a novel model integrating BERT, transformer encoder, and GPT-2 models is to
overcome the limitations of the existing ASR, which include the inability to identify the spoken words in a
noisy condition accurately, the presence of diverse speaking patterns leading to wrong transcriptions being
produced, and the failure to choose the hypothesis with the most relevant contextual information due to the
negligence of linguistic and acoustic features. With the proposed model, a significant improvement of
23.16% in WER, achieving a WER of 17.98% which outperforms other models, has been demonstrated while
being evaluated with LibriSpeech, indicating enhanced transcription accuracy. However, a comparative
analysis with other state-of-the-art models such as DeepSpeech, Wav2Vec 2.0, Conformer, ESPnet, and
Whisper is necessary to highlight the relative performance of our model. To further improve the transcription
accuracy of the proposed model, it would be beneficial to incorporate additional audio datasets, including
multilingual and multidialectal audio files. This approach could optimize performance by allowing the model
to adapt to diverse audio characteristics and nuances, thereby improving the transcription quality across
different languages and dialects. Moreover, there exists a significant possibility of optimizing the model's
configuration by adjusting its hyperparameters. To determine the settings that optimize performance
measures like accuracy, efficiency, and resilience in a variety of real-world scenarios, this procedure may
entail more methodical experimentation. Furthermore, while the results from the present small-scale datasets
are encouraging, expanding to bigger and more diverse audio datasets would be advantageous. With a richer
training environment brought about by this extension, the model could recognize more complex
dependencies in audio inputs. Additionally, future work should also focus on assessing the model’s
performance in real-time speech applications, considering factors such as efficiency, latency, and scalability
for real-world deployment. The computational costs, inference speed, and memory usage of the transformer-
based architecture should also be carefully evaluated, especially given the typical computational expense of
such models.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for the suggestions to improve the paper.

Enhanced speech recognition in natural language processing (Siu-Hong Chang)



4740 O3 ISSN: 2302-9285

FUNDING INFORMATION
The authors received no funding from any party for the research and publication of this article.

AUTHOR CONTRIBUTIONS STATEMENT
This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author
contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo | R D O E Vi Su P Fu
Siu-Hong Chang v v v v v v v v v

Kok-Why Ng Y v v v v v v v v
Su-Cheng Haw v v v v v 4
Yih-Jian Yoong v v v v v

C . Conceptualization I Investigation Vi : Visualization

M : Methodology R : Resources Su : Supervision

So : Software D : Data Curation P : Project administration

Va : Validation O : Writing - Original Draft Fu : Funding acquisition

Fo : Formal analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT
Authors state no conflict of interest.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding author, NKW,
upon reasonable request.

REFERENCES

[1] K. Q. Yip, P. Y. Goh, and L. Y. Chong, “Social Messaging Application with Translation and Speech-to-Text Transformation,”
Journal of Informatics and Web Engineering, vol. 3, no. 2, pp. 169-187, Jun. 2024, doi: 10.33093/jiwe.2023.3.2.13.

[2] D. Khurana, A. Koli, K. Khatter, and S. Singh, “Natural language processing: state of the art, current trends and challenges,”
Multimedia Tools and Applications, vol. 82, no. 3, pp. 3713-3744, Jan. 2023, doi: 10.1007/s11042-022-13428-4.

[31 T. A. Khan, R. Sadig, Z. Shahid, M. M. Alam, and M. M. Su’ud, “Sentiment Analysis using Support Vector Machine and
Random Forest,” Journal of Informatics and Web Engineering, vol. 3, no. 1, pp. 67-75, Feb. 2024, doi: 10.33093/jiwe.2024.3.1.5.

[4] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based natural language processing [Review
Article],” IEEE Computational Intelligence Magazine, vol. 13, no. 3, pp. 55-75, Aug. 2018, doi: 10.1109/MCI.2018.2840738.

[5] M. Malik, M. K. Malik, K. Mehmood, and I. Makhdoom, “Automatic speech recognition: a survey,” Multimedia Tools and
Applications, vol. 80, no. 6, pp. 9411-9457, Mar. 2021, doi: 10.1007/s11042-020-10073-7.

[6] A. Sriram, H. Jun, Y. Gaur, and S. Satheesh, “Robust speech recognition using generative adversarial networks,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, Apr. 2018, pp. 5639—
5643, doi: 10.1109/ICASSP.2018.8462456.

[71 M. Han et al., “Improving End-To-End Contextual Speech Recognition With Fine-Grained Contextual Knowledge Selection,” in
ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, May
2022, pp. 8532-8536, doi: 10.1109/ICASSP43922.2022.9747101.

[8] S. Wang and F. Long, “Robot Human-Machine Interaction Method Based on Natural Language Processing and Speech
Recognition,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 12, pp. 759-767, 2023, doi:
10.14569/IJACSA.2023.0141278.

[91 Q. Q. Wong, K. W. Ng, and S. C. Haw, “Shirt-color recognition for the color-blindness,” MethodsX, vol. 13, pp. 1-9, Dec. 2024,
doi: 10.1016/j.mex.2024.102866.

[10] M. Omachi, Y. Fujita, S. Watanabe, and T. Wang, “Non-Autoregressive End-To-End Automatic Speech Recognition
Incorporating Downstream Natural Language Processing,” in ICASSP 2022 - 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Singapore, May 2022, pp. 67726776, doi: 10.1109/ICASSP43922.2022.9746067.

[11] K. H. Lu and K. Y. Chen, “A Context-Aware Knowledge Transferring Strategy for CTC-Based ASR,” in 2022 IEEE Spoken
Language Technology Workshop (SLT), Doha, Qatar, Jan. 2023, pp. 6067, doi: 10.1109/SLT54892.2023.10022825.

[12] K. Deng et al., “Improving Ctc-Based Speech Recognition Via Knowledge Transferring From Pre-Trained Language Models,” in
ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, May
2022, pp. 8517-8521, doi: 10.1109/ICASSP43922.2022.9747887.

[13] J. Salazar, K. Kirchhoff, and Z. Huang, “Self-attention Networks for Connectionist Temporal Classification in Speech
Recognition,” in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Brighton, UK, May 2019, pp. 7115-7119, doi: 10.1109/ICASSP.2019.8682539.

[14] D. lJiang et al., “Improving Transformer-based Speech Recognition Using Unsupervised Pre-training,” arXiv, 2019, doi:
10.48550/arXiv.1910.09932.

Bulletin of Electr Eng & Inf, VVol. 14, No. 6, December 2025: 4732-4742



Bulletin of Electr Eng & Inf ISSN: 2302-9285 O 4741

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
371

[38]

[39]

[40]

I. Nigmatulina, J. Zuluaga-Gomez, A. Prasad, S. S. Sarfjoo, and P. Motlicek, “a Two-Step Approach To Leverage Contextual
Data: Speech Recognition in Air-Traffic Communications,” in ICASSP 2022 - 2022 |IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Singapore, May 2022, pp. 6282-6286, doi: 10.1109/ICASSP43922.2022.9746563.

J. Jayaram, Y. Kulkarni, L. V. Ganesh, P. Naveen, and E. A. Anaam, “Treatment Recommendation using BERT Personalization,”
Journal of Informatics and Web Engineering, vol. 3, no. 3, pp. 41-62, Oct. 2024, doi: 10.33093/jiwe.2024.3.3.3.

G. R. Chaudhari et al., “Application of a Domain-specific BERT for Detection of Speech Recognition Errors in Radiology
Reports,” Radiology: Artificial Intelligence, vol. 4, no. 4, Jul. 2022, doi: 10.1148/ryai.210185.

A. Baevski, M. Auli, and A. Mohamed, “Effectiveness of self-supervised pre-training for speech recognition,” arXiv, 2019, doi:
10.48550/arXiv.1911.03912.

L. Xu et al., “Rescorebert: Discriminative Speech Recognition Rescoring With Bert,” in ICASSP 2022 - 2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, May 2022, pp. 6117-6121, doi:
10.1109/ICASSP43922.2022.9747118.

Y. Song et al., “L2RS: A Learning-to-Rescore Mechanism for Hybrid Speech Recognition,” in Proceedings of the 29th ACM
International Conference on Multimedia, New York, NY, USA: ACM, Oct. 2021, pp. 1157-1166, doi:
10.1145/3474085.3481542.

S. P. Chuang, A. H. Liu, T. W. Sung, and H. Y. Lee, “Improving automatic speech recognition and speech translation via word
embedding prediction,” IEEE/ACM Transactions on Audio Speech and Language Processing, vol. 29, pp. 93-105, 2021, doi:
10.1109/TASLP.2020.3037543.

J. Shin, Y. Lee, and K. Jung, “Effective Sentence Scoring Method Using BERT for Speech Recognition,” Proceedings of
Machine Learning Research, vol. 101, pp. 1081-1093, 2019.

Y. Bai, J. Yi, J. Tao, Z. Tian, Z. Wen, and S. Zhang, “Fast End-to-End Speech Recognition Via Non-Autoregressive Models and
Cross-Modal Knowledge Transferring from BERT,” IEEE/ACM Transactions on Audio Speech and Language Processing, vol.
29, pp. 1897-1911, 2021, doi: 10.1109/TASLP.2021.3082299.

D. Fohr and L. Illina, “BERT-based semantic model for rescoring N-best speech recognition list,” in Proceedings of the Annual
Conference of the International Speech Communication Association, INTERSPEECH, ISCA: ISCA, Aug. 2021, pp. 966-970, doi:
10.21437/Interspeech.2021-313.

I. Tllina and D. Fohr, “Semantic Information Investigation for Transformer-based Rescoring of N-best Speech Recognition,” Ltc
2023, 2023, [Online]. Available: https://hal.science/hal-03965397.

S. H. Chiu and B. Chen, “Innovative Bert-Based Reranking Language Models for Speech Recognition,” in 2021 IEEE Spoken
Language Technology Workshop (SLT), Shenzhen, China, Jan. 2021, pp. 266-271, doi: 10.1109/SLT48900.2021.9383557.

T. H. Nguyen, T. B. Nguyen, Q. T. Do, and T. L. Nguyen, “End-To-end named entity recognition for Vietnamese speech,” in
2022 25th Conference of the Oriental COCOSDA International Committee for the Co-ordination and Standardisation of Speech
Databases and Assessment Techniques (O-COCOSDA), Hanoi, Vietnam, Nov. 2022, pp. 1-5, doi: 10.1109/0-
COCOSDA202257103.2022.9997862.

F. H. Yu, K. Y. Chen, and K. H. Lu, “Non-Autoregressive ASR Modeling Using Pre-Trained Language Models for Chinese
Speech Recognition,” IEEE/ACM Transactions on Audio Speech and Language Processing, vol. 30, pp. 1474-1482, 2022, doi:
10.1109/TASLP.2022.3166400.

O. Hrinchuk, M. Popova, and B. Ginsburg, “Correction of Automatic Speech Recognition with Transformer Sequence-To-
Sequence Model,” in ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, May 2020, pp. 7074-7078, doi: 10.1109/ICASSP40776.2020.9053051.

S. Zhang, M. Lei, and Z. Yan, “Automatic Spelling Correction with Transformer for CTC-based End-to-End Speech
Recognition,” arXiv, 2019, doi: 10.48550/arXiv.1904.10045.

X. Chen, S. Zhang, D. Song, P. Ouyang, and S. Yin, “Transformer with bidirectional decoder for speech recognition,” in
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, Oct. 2020, pp.
1773-1777, doi: 10.21437/Interspeech.2020-2677.

Y. Wang et al., “Transformer-Based Acoustic Modeling for Hybrid Speech Recognition,” in ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, May 2020, pp. 6874-6878,
doi: 10.1109/ICASSP40776.2020.9054345.

M. Li, C. Zorila, and R. Doddipatla, “Transformer-Based Online Speech Recognition with Decoder-end Adaptive Computation
Steps,” in 2021 IEEE Spoken Language Technology Workshop (SLT), Shenzhen, China, Jan. 2021, pp. 771-777, doi:
10.1109/SL.T48900.2021.9383613.

S. Kim et al., “Squeezeformer: An Efficient Transformer for Automatic Speech Recognition,” Advances in Neural Information
Processing Systems, vol. 35, 2022.

P. Klosowski, “Deep learning for natural language processing and language modelling,” in 2018 Signal Processing: Algorithms,
Architectures, Arrangements, and Applications (SPA), Poznan, Poland, Sep. 2018, pp. 223-228, doi:
10.23919/SPA.2018.8563389.

J. Oruh, S. Viriri, and A. Adegun, “Long Short-Term Memory Recurrent Neural Network for Automatic Speech Recognition,”
IEEE Access, vol. 10, pp. 30069-30079, 2022, doi: 10.1109/ACCESS.2022.3159339.

T. Hori, J. Cho, and S. Watanabe, “End-to-end Speech Recognition with Word-Based Rnn Language Models,” in 2018 IEEE
Spoken Language Technology Workshop (SLT), Athens, Greece, Dec. 2018, pp. 389-396, doi: 10.1109/SLT.2018.8639693.

J. Sun, W. Guo, Z. Chen, and Y. Song, “Topic Detection in Conversational Telephone Speech Using CNN with Multi-stream
Inputs,” in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton,
UK, May 2019, pp. 7285-7289, doi: 10.1109/ICASSP.2019.8682201.

O. Aitoulghazi, A. Jaafari, and A. Mourhir, “DarSpeech: An Automatic Speech Recognition System for the Moroccan Dialect,” in
2022 International Conference on Intelligent Systems and Computer Vision (ISCV), Fez, Morocco, May 2022, pp. 1-6, doi:
10.1109/ISCV54655.2022.9806105.

A. Khan, K. Khan, W. Khan, S. N. Khan, and R. Haq, “Knowledge-based Word Tokenization System for Urdu,” Journal of
Informatics and Web Engineering, vol. 3, no. 2, pp. 86-97, Jun. 2024, doi: 10.33093/jiwe.2024.3.2.6.

Enhanced speech recognition in natural language processing (Siu-Hong Chang)



4742 O3 ISSN: 2302-9285

BIOGRAPHIES OF AUTHORS

Siu-Hong Chang ) £:J B3 €2 completed his bachelor's degree from the Faculty of Computing
and Informatics at Multimedia University. He is currently working at Huawei Malaysia as a
data scientist to develop innovative solutions. His research interests are natural language
processing (NLP), speech recognition, machine learning model, and GPT-2. He is committed
to exploring emerging technologies to drive advancements in artificial intelligence and
machine learning. He can be contacted at email: siuhong2075@gmail.com.

Kok-Why Ng £:J B4 2 is a senior lecturer in the Faculty of Computing and Informatics
(FCI) in Multimedia University (MMU), Malaysia. He did his B.Sc. (Math) in USM, Penang,
and his M.Sc. (IT) and Ph.D. (IT) in MMU, Malaysia. His research interests are in natural
language processing, speech recognition, recommender system, 3D geometric modeling, and
animation. He is also active in some research projects related to artificial intelligence, deep
learning, and human blood cells. He can be contacted at email: kwng@mmu.edu.my.

Su-Cheng Haw Bl 2 is Professor at the Faculty of Computing and Informatics,
Multimedia University, where she leads several funded research projects on the XML
databases. Her research interests include XML databases, query optimization, data modeling,
the semantic web, and recommender systems. She is also the chief editor for the Journal of
Informatics and Web Engineering (JIWE). She can be contacted at email:
sucheng@mmu.edu.my.

Yih-Jian Yoong BJ B3 © received B.Sc. (Hons) in statistics and a Master of Science in
applied statistics from Universiti Putra Malaysia in 1998 and 2000. He is a lecturer in the
Faculty of Computing and Informatics, Multimedia University, Cyberjaya, Malaysia. His
research interest is in applied statistics. He can be contacted at email: yjyoong@mmu.edu.my.

Bulletin of Electr Eng & Inf, VVol. 14, No. 6, December 2025: 4732-4742


https://orcid.org/0009-0006-5814-608X
https://www.webofscience.com/wos/author/record/LRD-1130-2024
https://orcid.org/0000-0003-4516-4634
https://scholar.google.com/citations?hl=en&user=_PI0lEwAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=29467661900
https://www.webofscience.com/wos/author/record/AGX-6081-2022
https://orcid.org/0000-0002-7190-0837
https://scholar.google.com/citations?hl=en&user=P_k30bcAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57885692500
https://www.webofscience.com/wos/author/record/ABE-3251-2021
https://orcid.org/0000-0002-0787-8858
https://scholar.google.com/citations?hl=en&user=KWA43pEAAAAJ&view_op=list_works&sortby=pubdate
https://www.scopus.com/authid/detail.uri?authorId=57215533393
https://www.webofscience.com/wos/author/record/CAI-0665-2022

