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 Speech recognition is crucial for helping individuals with physical 

disabilities access digital content. However, current systems have significant 

flaws that hinder user experience and complicate daily tasks. Environmental 

disturbances can cause misinterpretation, and existing automatic speech 

recognition (ASR) systems struggle with comprehending acoustic and 

linguistic nuances and handling diverse speaking styles and accents. To 

address these issues, a new model integrates bidirectional encoder 

representations from transformers (BERT) and transformer features with 

natural language processing (NLP) capabilities. This model aims to 

consolidate semantic, linguistic, and acoustic information extracted from the 

Kaldi speech recognition toolkit and improve accuracy by rescoring the list 

of N-best hypotheses. The innovative approach leverages advancements in 

NLP to enhance speech recognition's accuracy and robustness across various 

scenarios. Evaluations on the LibriSpeech dataset show that integrating 

BERT, transformer encoder, and generative pretrained transformer 2 for 

rescoring N-best hypotheses significantly improves transcription accuracy. 

The proposed model achieves a word error rate (WER) of 17.98%, 

outperforming other models. This development paves the way for 

advancements in speech recognition technology, offering better user 

experiences in real-world applications. 
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1. INTRODUCTION 

With the gradual advancement of technology in the past decades, speech recognition is gaining 

popularity across most of the devices we use nowadays. Speech recognition, which was developed in the 

early 1900s, is an engineering technology that identifies and converts sound signals into text or commands 

has significantly changed how we live [1]. However, there still exists some reluctance that the current speech 

recognition technology is not able to comprehend the spoken words accurately, which results in erroneous 

commands being executed. Natural language processing (NLP) is a field of artificial intelligence (AI) and 

Linguistics designed to allow computers to recognize human’s spoken words [2], [3], which has been 

empowering machine translation, automatic summarization, coreference resolution and much more for over 

35 years. It is gradually shifting its focus from machine learning to deep learning-based algorithms to tackle 

with difficult tasks [4]. By applying this knowledge, the accuracy of comprehending audio signals would be 

improved, increasing the user’s satisfaction level. 

Contemporary speech recognition systems encounter significant obstacles in accurately transcribing 

audio inputs to text, primarily due to the intricate variability of human speech patterns and the disruptive 

influence of environmental disturbances. Malik et al. [5] stated that the prevalence of diverse regional 
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dialects and individual speaking styles poses substantial challenges to achieving precise audio-to-text 

conversion. In addition, environmental factors, including ambient noise, significantly impede the system's 

ability to discern and interpret speech accurately, particularly in dynamic real-world environments [6]. 

Moreover, Han et al. [7] addressed the issue, rarely considering contextual information, which complicates 

the selection of the most accurate hypothesis, leading to inaccuracies in generating transcription. 

Recent advancements in connectionist temporal classification (CTC) models have significantly 

improved speech recognition accuracy and efficiency through various innovative approaches [8], [9].  

Omachi et al. [10] proposed a CTC model integrated with a conditional masked language model (CMLM), 

utilizing global and type-wise mask-predict algorithms, which showed superior performance on the CSJ and 

SLURP datasets. Lu and Chen [11] introduced context-aware knowledge transfer techniques, incorporating an 

enhanced Vanilla wav2vec2.0 and bidirectional encoder representations from transformer (BERT), which 

improved performance on the AISHELL-1 and AISHELL-2 datasets. Deng et al. [12] developed KT-RL and KT-

CL models, employing BERT and GPT2 for knowledge transfer, with KT-RL-CIF achieving a 4.2% character 

error rate (CER) on the AISHELL-1 corpus. Additionally, Salazar et al. [13] introduced SAN-CTC, a self-

attentional network that predicts tokens concurrently, achieving a 4.7% CER on the eval92 dataset and 2.8% CER 

on the LibriSpeech dataset. Jiang et al. [14] addressed the challenges of transformer-based speech recognition 

models, such as transcription difficulties and limited labeled data, by proposing an unsupervised pre-training 

algorithm called masked predicative coding (MPC). MPC utilizes a masked language model (MLM) applied to 

FBANK input and encoder output directly, aiming to enhance recognition in varied speech patterns and 

environmental conditions. Testing on the HKUST dataset during pre-training achieved a 23.3% CER, with 

increased pre-training data further reducing CER by 11.8% compared to the baseline. Nigmatulina et al. [15] 

introduced the ASR-NLP model to enhance automatic speech recognition (ASR) performance in noisy 

environments and improve callsign identification accuracy. This model first reduces the weights of likely callsign 

n-grams in the grammar finite-state transducer (G.fst) or decoding lattices and compares NLP-boosting ASR 

outputs, derived through named entity recognition (NER) based on the BERT model with surveillance data. A 

significant improvement from 32.1% to 60.4% is shown in recognition accuracy. 

BERT-based models have significantly improved speech recognition by addressing various 

challenges [16]. Chaudhari et al. [17] utilized a BERT model to identify and correct speech recognition errors 

in radiology reports, achieving 75% accuracy. Baevski et al. [18] showed that fine-tuning BERT with 

transcribed speech data in the vq-wav2vec model reduces word error rate (WER). The proposed 

RescoreBERT [19] includes a MLM and discriminative loss functions, achieving a WER of 4.36 on the 

LibriSpeech dataset. Song et al. [20] introduced learning-to-rescore (L2RS), integrating BERT for text 

feature extraction and ESPnet for acoustic features, achieving a WER of 13.41% on the TED-LIUM dataset. 

Chuang et al. [21] highlighted BERT's improved performance with contextual word embeddings in ASR. 

Shin et al. [22] developed biSANLM, incorporating BERT for n-best list rescoring, achieving lower WER on 

the LibriSpeech task. Bai et al. [23] proposed LASO, a non-autoregressive model using BERT for token 

sequence generation, showing 50 times faster speed and low CERs. Fohr and Illina [24] suggested 𝐵𝐸𝑅𝑇𝑠𝑒𝑚 

and 𝐵𝐸𝑅𝑇𝑎𝑙𝑠𝑒𝑚 models for rescoring ASR hypotheses, with 𝐵𝐸𝑅𝑇𝑎𝑙𝑠𝑒𝑚 combined with ac./GPT-2 achieving 

the best performance. Illina and Fohr [25] improved 𝐵𝐸𝑅𝑇𝑎𝑙𝑠𝑒𝑚 with 𝐵𝐸𝑅𝑇𝑎𝑙𝑠𝑒𝑚−𝑓𝑔 and 𝑃 − 𝐵𝐸𝑅𝑇𝑎𝑙𝑠𝑒𝑚, 

reducing WER by 1-3%. Chiu and Chen [26] proposed TPBERT, combining BERT with unsupervised topic 

modeling for N-best hypothesis reranking, achieving a WER of 20.49% on the AMI dataset. BERT-ASR, 

proposed by Nguyen et al. [27], utilizes whole word masking for efficient next word classification, showing 

lower perplexity and CER on the AISHELL-1 dataset. Finally, Yu et al. [28] introduced NAR-BERT-ASR, 

combining pretrained LM benefits with non-autoregressive capabilities, achieving the lowest CERs on the 

AISHELL-1 dataset with significant speed improvements. 

Transformer-based models have shown significant improvements in ASR. Hrinchuk et al. [29] 

proposed a transformer ASR correction model, achieving an average WER of 14% on LibriSpeech datasets 

by applying transformer-based encoder-decoder architecture to a deep-convolutional E2E model called 

Jasper. Zhang et al. [30] developed a transformer-based spelling correction model that achieved a CER of 

3.41% on a Mandarin dataset. Chen et al. [31] introduced a transformer with a directional decoder (STBD), 

achieving a CER of 5.8% on AISHELL-1. Wang et al. [32] highlighted that transformer-based models 

outperform BLSTM models in hybrid acoustic modeling. Li et al. [33] modified the self-attention decoder of 

the transformer by integrating it with DACS, achieving a WER of 5.5% on WSJ and a CER of 7.4% on 

AISHELL-1. Finally, Kim et al. [34] proposed Squeezeformer, which uses Temporal U-Net structure and 

depth-wise down-sampling, achieving the lowest WER of 2.27 on LibriSpeech. 

RNN-based models have shown promising results in improving ASR. Klosowski [35] proposed an 

RNN model with an embedding layer, two LSTM hidden layers, and dense layers, which achieved increased 

accuracy from 0.402 to 0.936 and decreased loss from 2.779 to 0.265 after training for 500 epochs using 

Polish text data. Oruh et al. [36] applied an LSTM RNN model to address bandwidth limitations in ASR, 
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achieving 99.36% accuracy on the Pannous dataset. Hori et al. [37] developed an RNN language model 

(RNN-LM) with a look-ahead mechanism, achieving 5.1% WER on WSJ and 5.4% WER on LibriSpeech. 

CNN-based models have been effectively combined with ASR systems to enhance topic detection accuracy. 

Sun et al. [38] proposed a multi-stream CNN framework using two ASR systems, HMM-BiLSTM and CTC, 

which process word embeddings. This model, tested on the Japanese CTS dataset, outperformed both an 

unsupervised model and a CNN with single-stream input. Additionally, Aitoulghazi et al. [39] introduced 

DarSpeech, a model based on deep speech with two CNN layers for feature extraction, demonstrating 

increased accuracy with larger input data sizes. 

To overcome the issues identified earlier, this paper primarily aims to develop an advanced 

algorithm that can accurately refine the hypothesis in the presence of background noises, thereby mitigating 

the impact of environmental disturbances. This research aims to enhance the existing algorithm's capacity to 

comprehend diverse human speech patterns, accents, and linguistic nuances by integrating NLP 

methodologies to generate contextually relevant transcription. Lastly, to boost the accuracy of the output 

generated by NLP-based speech recognition, the existing algorithm will be refined to select the hypothesis 

that contains the lowest WER or CER, ensuring the highest accuracy score, from N-best hypotheses list. 

 

 

2. METHOD 

In this research work, a proposed model incorporating NLP techniques in enhancing speech 

recognition is introduced to increase the reliability and efficiency of ASR. The experimental setup and 

implementation of the proposed model of this research work are shown in the following subsections in 

providing a comprehensive understanding. As the proposed NLP-enhanced speech recognition is used to 

process the audio data consisting of acoustic signals carrying diverse semantic information (SI), some key 

presumptions must be adhered to achieve higher accuracy and efficiency in the proposed algorithm. One of 

the most important presumptions is that the contextual information of the audio data should be clearly 

defined in the presence of minimal background noise. Moreover, English language audio data should be used 

without long pausing between utterances, containing only one speaker, and with accurate transcriptions of 

test data. Lastly, only the first ten best hypotheses generated will be considered. 

 

2.1.  Dataset 

LibriSpeech corpus, particularly the test-other subset, is chosen to be the primary dataset in 

evaluating the models due to its extensive collection of English-language audiobook recordings and the 

presence of more background noises, diverse accents, and other acoustic variations, which could increase the 

reliability of the results. This dataset is a widely recognized benchmark in the domain of ASR systems. 

 

2.2.  Data preprocessing 

Kaldi voice recognition toolbox, an open-source toolkit utilizing a dynamic neural network capable of 

performing data preprocessing and extracting features required by our proposed model, is selected to generate 

the features required by our model. Kaldi must be installed in a Unix-like environment to allow the operations 

and audio test data in LibriSpeech to be converted into .wav format. Figure 1 depicts the flowchart of 

operations performed by Kaldi in generating the features required. To produce N-best hypotheses list, vectors 

are extracted and utilized in recognizing speakers and digitization tasks. This decoding process creates a lattice 

file that contains information about the probability of various sequences of words given the input. 

The lattice file generated is converted into a list of N-best hypotheses, which consist of linear 

sequences of words, as shown in Figure 2. In addition, the lattices will be transformed into human-readable 

texts, representing the most likely word sequence, as shown in Figure 3. In extracting acoustic features from 

audio datasets, Mel-frequency cepstral coefficients (MFCCs) are computed, which provide the details of the 

signal's spectral envelope that assist in configuring vocal tract. These coefficients are essential for further 

analysis and model training. The MFCCs computed will be required to compute the cepstral mean and variance 

normalization (CMVN) statistics, which normalize the characteristics, ensuring consistency across different 

utterances and speakers. Prior to processing the data with the proposed model, hypothesis pairs will be created. 

 

2.3.  Bidirectional encoder representations from transformers and transformer architecture model 

Figure 4 summarizes the architecture of the combination of BERT and transformer model. To create 

a format that the pre-trained BERT model can accept, the text of the hypothesis pair will be tokenized into 

individual units using BERT Tokenizer. The pre-trained BERT model used will accept the tokens of words 

from the transcript of hypothesis pair and produce embedding vectors that carry the contextualized 

representations of each token owing to its ability to capture contextual information from the tokens in 

bidirectional (left and right) simultaneously. 
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Figure 1. Flowchart of feature extraction with Kaldi 

 

 

 
 

Figure 2. Sample of generated N-best hypotheses list 

 

 

 
 

Figure 3. Sample of best generated hypothesis 

 

 

The initial step in preparing BERT embeddings is crucial. Transformer encoder, which consists of 6 

layers of blocks stacked hierarchically, will refine these outputs based on the attention-weighted relationships 

between tokens in the sentence, achieved with PyTorch. These transformer encoder blocks, each applying 

self-attention mechanisms to capture contextual relationships within the input text, learn hierarchical 

representations of the input text so more contextual information will be acquired, enhancing the contextual 

information captured in the initial step. As a result, a new set of embeddings will be produced. Acoustic 

features extracted from the Kaldi voice recognition toolbox will be concatenated with transformer 

embeddings using linear transformation to match the embedding dimension before being passed to two Bi-

LSTM layers and several pooling operations. Bi-LSTM layers identify the dependencies in terms of sequence 

in bi-directional (forward and backward), which aids in understanding the temporal relationships, while 

average pooling and max pooling aggregate the data across the sequence and reduce the dimensionality of the 

data. The pooling operations performed significantly improve computation efficiency, reduce overfitting 

issues, and generate a more concise representation. The output from average and max pooling will be 

processed through two fully connected layers with the rectified linear unit (ReLU) activation function to 

allow the learning of complex relations as well as patterns of the features concatenated to develop more 

comprehensive representations. The first fully connected layer reduces the dimensionality of the feature 

representations, while the second fully connected layer produces the final output logits. The integrated 
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feature representation will be passed into a sigmoid activation function to squash the output logits to a range 

between 0 and 1, facilitating binary classification tasks generating an output that carries the sentence-level SI 

by combining contextual, acoustic, and sequential information, producing a rich and comprehensive 

representation. 

 

 

 
 

Figure 4. Flowchart of BERT and transformer architecture model 

 

 

2.4.  Fine-graining with GPT-2 model 

In generating fine-grained information required to fine-tune the model’s understanding of text,  

GPT-2 model provides embeddings and token probabilities. The pre-trained GPT-2 model allows more 

flexibility in targeting the most appropriate word tokens [40] with its attention mechanisms. This model takes 

the hypothesis pair text as input and tokenizes it using GPT-2 tokenizer. This tokenized text is then passed 

through the GPT-2 model to generate the last hidden states, representing each token's embeddings in the 

sequence. These embeddings are transformed into probabilities using a SoftMax function, resulting in a 

probability distribution over the vocabulary for each token in the sentence. This approach aims to generate 

fine-grained information with additional features applicable in various downstream tasks. The flowchart 

below depicts the summarized procedures taken in fine-graining. 

 

2.5.  The main architecture 

The selected hypothesis pair will then be passed to the BERT model to generate contextualized 

token embeddings, followed by a transformer encoder later to refine the embeddings based on attention-

weighted relationships between tokens. This generates sentence-level SI. Besides that, fine-graining the pair 

of hypotheses using the GPT-2 model is conducted to generate representations with more features. 

Simultaneously, GPT-2 model is implemented in computing the probabilities of linguistic information of the 

hypothesis pair, which is 𝑃𝑙𝑚(ℎ𝑖). This linguistic probability is multiplied with acoustic probability for each 

hypothesis, as shown in (1), to integrate both acoustic and linguistic information: 

 

𝑃𝑎𝑐(ℎ𝑖) ∗ 𝑃𝑙𝑚(ℎ𝑖) (1) 

 

Concatenation of all the outputs from BERT and transformer architecture model, fine-graining using 

GPT-2 model, and combination of linguistic and acoustic probabilities from the hypothesis pair is carried out 

prior to processing it through fully connected layer (FC) with sigmoid activation function to compute the 

output, 𝑣𝑖𝑗 . This output will be defined as 1 if the WER of the first hypothesis, ℎ𝑖, is less than the second in 
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the pair, ℎ𝑗, and 0 otherwise. The scores for each hypothesis in the pair will be updated based on 𝑣𝑖𝑗 , as stated 

in (2) and (3): 

 

𝑠𝑐𝑜𝑟𝑒𝑠𝑒𝑚(ℎ𝑖)+= 𝑣𝑖𝑗 (2) 

 

𝑠𝑐𝑜𝑟𝑒𝑠𝑒𝑚(ℎ𝑗)+= 1 − 𝑣𝑖𝑗 (3) 

 

The cumulated score generated for each hypothesis will be used to select the top N hypotheses, with 

N representing the total number of hypotheses generated, to compute the pseudo probability, while 𝑃𝑠𝑒𝑚(ℎ𝑖), 

the pseudo probability is multiplied by the linguistic probability and acoustic probability using weighted 

combinations of 𝛼, 𝛽, 𝛾 = 1, see (4): 

 

𝑊̂ = 𝑎𝑟𝑔𝑚𝑎𝑥ℎ𝑖
𝜖𝐻 𝑃𝑎𝑐(ℎ𝑖)

𝛼 ∗ 𝑃𝑙𝑚(ℎ𝑖)
𝛽 ∗ 𝑃𝑠𝑒𝑚(ℎ𝑖)

𝛾 (4) 

 

The hypothesis with the best score will be chosen based on the above computations. The WER is 

computed between the best hypothesis and transcription, while the total duration includes processing and 

Kaldi durations. This proposed model can learn all the semantic, linguistic, and acoustic information of the 

audio data, hence empowering the accuracy of ASR in NLP in the recognition of spoken words. 

 

2.6.  Experimental setup 

The baseline model, namely the Kaldi voice recognition tool, is set up in an open-source Linux-

based operating system to allow its seamless integration and utilization within our research framework. This 

ensures compatibility with the required dependencies and libraries, such as CUDA for GPU acceleration, 

versions of Python, i.e., Python 3.10, and C++ compilers. A pretrained model is integrated, allowing the ASR 

to decode audio files using a time-delay neural network (TDNN) acoustic model to generate the word lattices 

for transcription. Utilizing the transcriptions generated, the recurrent neural network language model 

(RNNLM) is employed to select the best hypothesis. In experimenting with the proposed model, alpha (𝛼), 

beta (𝛽), and gamma (𝛾) are adjusted to 1 for the generation of the best hypothesis. Alpha (𝛼) controls the 

weight of the acoustic probabilities which affect the acoustic feature alignment during transcription, beta (𝛽 

adjusts the effect of language modelling on transcription results by modifying the impact of linguistic 

probability obtained from GPT-2, while gamma (𝛾) is a parameter provides additional control over the final 

selection based on combined scores for pseudo-probabilities used in ranking top-N hypotheses. These three 

parameters are adjusted as shown in (5), which is used to calculate the best hypothesis, as depicted in (4). 

 

𝑐𝑜𝑚𝑚𝑏𝑖𝑛𝑒𝑑 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑃𝑎𝑐(ℎ𝑖)
𝛼 ∗ 𝑃𝑙𝑚(ℎ𝑖)

𝛽 ∗ 𝑃𝑠𝑒𝑚(ℎ𝑖)
𝛾 (5) 

 

Besides that, a random selection model is developed to serve as a benchmark for comparison in our 

assessment. This model does not take into account auditory characteristics or contextual information when 

choosing words or sentences at random from a predefined vocabulary or corpus. Its inclusion guarantees an 

equitable comparison between various approaches. With these configurations, we hope to guarantee a fair 

comparison of the models and a thorough comprehension of the experimental process. The results obtained 

from the experiments conducted on the proposed model, Kaldi baseline model, and the random selection 

methodology are analyzed and discussed in the following chapter. 

 

 

3. RESULTS AND DISCUSSION 

In this section, the result of the proposed model is discussed in detail alongside a comparison with 

the baseline model and random selection methodologies, which are utilized to rescoring the list of N-best 

hypotheses. Table 1 illustrates the results obtained by evaluating each model with the LibriSpeech dataset, in 

which the key performance metrics utilized to assess their performance are the WER as well as the execution 

time. These results will be further elaborated in the subsections.  
 
 

Table 1. The performance of different models on LibriSpeech dataset 

Model 
Performance metrics 

WER (%) Execution time (s) 

Kaldi model 23.3974 157.599918 

Random selection 18.5971 157.602507 

Proposed model 17.9783 198.089685 
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3.1.  Word error rate 

The bar chart, as illustrated in Figure 5, shows the mean WER obtained by the three models used in 

the experiment. Kaldi's baseline model achieved the highest WER compared to the other two models. By 

applying random selection to the N-best hypotheses generated by the baseline model, the WER is reduced to 

18.5971%. However, using our proposed model to restore the N-best hypotheses generated by the baseline 

model further reduces the WER to 17.9783%, making it the model with the best accuracy. Moreover,  

Figure 5 also provides more detailed information on the distribution of WER across the models, showing that 

the proposed model has the lowest median WER. 

 

 

 
 

Figure 5. Comparison of WER of each model 

 

 

3.2.  Execution time 

On the other hand, the details of the execution time of all the models are depicted in Figure 6. Based 

on Figure 6, the mean execution time of the proposed model is the longest at 198.09 seconds, which is 

approximately 40.5 seconds longer than the execution time of the baseline model. The random selection 

methodology has a difference of less than 0.01 seconds compared to the baseline model. More details on the 

distribution of the mean execution time are shown in Figure 6, where the Kaldi baseline model and random 

selection methodology have almost the same median execution time. 

 

 

 
 

Figure 6. Bar chart of mean duration of each model 
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Based on the calculation obtained, which can be seen in Figure 7, the analysis shows that the 

proposed model outperforms both the baseline and random selection models in terms of WER, indicating 

higher accuracy in transcription. Specifically, it shows a significant WER improvement of 23.16%, despite 

requiring higher computational resources, as evidenced by the higher execution time. The experimental 

findings highlight the pivotal role of rescoring techniques in achieving accurate transcriptions, notably by 

integrating advanced NLP models such as BERT, transformer encoder, and GPT-2. Despite the increased 

computational demands associated with this approach, the results consistently demonstrate the proposed 

model's capability to generate highly reliable transcriptions. Its proficiency in refining hypotheses and 

enhancing transcription fidelity positions the proposed model as the optimal choice for NLP tasks prioritizing 

accuracy. 
 

 

 
 

Figure 7. Bar chart of WER improvement shown by each model 

 

 

4. CONCLUSION 

In conclusion, a novel model integrating BERT, transformer encoder, and GPT-2 models is to 

overcome the limitations of the existing ASR, which include the inability to identify the spoken words in a 

noisy condition accurately, the presence of diverse speaking patterns leading to wrong transcriptions being 

produced, and the failure to choose the hypothesis with the most relevant contextual information due to the 

negligence of linguistic and acoustic features. With the proposed model, a significant improvement of 

23.16% in WER, achieving a WER of 17.98% which outperforms other models, has been demonstrated while 

being evaluated with LibriSpeech, indicating enhanced transcription accuracy. However, a comparative 

analysis with other state-of-the-art models such as DeepSpeech, Wav2Vec 2.0, Conformer, ESPnet, and 

Whisper is necessary to highlight the relative performance of our model. To further improve the transcription 

accuracy of the proposed model, it would be beneficial to incorporate additional audio datasets, including 

multilingual and multidialectal audio files. This approach could optimize performance by allowing the model 

to adapt to diverse audio characteristics and nuances, thereby improving the transcription quality across 

different languages and dialects. Moreover, there exists a significant possibility of optimizing the model's 

configuration by adjusting its hyperparameters. To determine the settings that optimize performance 

measures like accuracy, efficiency, and resilience in a variety of real-world scenarios, this procedure may 

entail more methodical experimentation. Furthermore, while the results from the present small-scale datasets 

are encouraging, expanding to bigger and more diverse audio datasets would be advantageous. With a richer 

training environment brought about by this extension, the model could recognize more complex 

dependencies in audio inputs. Additionally, future work should also focus on assessing the model’s 

performance in real-time speech applications, considering factors such as efficiency, latency, and scalability 

for real-world deployment. The computational costs, inference speed, and memory usage of the transformer-

based architecture should also be carefully evaluated, especially given the typical computational expense of 

such models. 
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