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 In music, feature separation is the process of separating distinguishable 

auditory characteristics, such as pitch, timbre, rhythm, and harmonic content, 

from a complicated, mixed signal. Virtual reality (VR), gaming, music 

transcription, karaoke systems, audio restoration, music information retrieval 

(MIR), music education, and audio forensics, are just a few of the areas 

where the topic has attracted a lot of attention. Feature extraction is crucial 

in music separation as it identifies and isolates sound elements, improving 

accuracy, and reducing noise. It simplifies raw audio into meaningful data 

for efficient processing and effective model learning. Without it, clean 

separation of audio components is very difficult. In this research, extracting 

features from mixed audio sources enables clean and accurate isolation of 

musical elements, enhancing quality, supporting precise evaluations, and 

boosting neural network performance across varied datasets including 

DSD100, MUSDB, and MUSDB18-HQ, which collectively afford rich 

musical content for making evaluations and benchmarks. Evaluation metrics, 

such as F1-score, precision, and recall, are utilized to demonstrate the 

performance data of the extracted features. The MUSDB18-HQ dataset 

yielded an overall increase of 17.86% in the F1-score metrics with 

significant increases in drums (+25.05%) and vocals (+20.04%), showing 

that the dataset was highly effective for feature separation.  
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1. INTRODUCTION 

Feature separation in music involves separating a composite sound into its various elements such as 

pitch and timbre to analyze and manipulate each component separately [1]. Feature separation makes many 

modern audio applications possible, from improving music information retrieval (MIR), instrument 

recognition, genre classification, better transcription accuracy, and adaptive learning applications in music 

education. A feature-based approach remains relevant as it simplifies complex audio data into interpretable 

components, enhancing separation accuracy and computational efficiency. By reducing noise and improving 

model learning, it ensures cleaner isolation of musical elements across diverse datasets. This approach also 

supports robust evaluation, making it indispensable for relevant applications. 

Recent breakthroughs in deep learning [2] and advances in signal‑processing techniques [3] allow 

many modern techniques to access existing neural network architectures to learn complex feature 

representation from the data directly. By leveraging multiple richly annotated datasets in the training of these 

models, they have achieved previously unrealized accuracy in the extraction of audio features even from 

https://creativecommons.org/licenses/by-sa/4.0/
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heavily mixed audio. As a result, feature separation has served as a foundation for intelligent audio systems 

from everything digital, real‑time performance feedback, interactive virtual reality (VR) soundscapes, and 

advanced forensic audio analysis [4], to extensive workflows in customizable music production. This 

research aims to evaluate the effectiveness of feature separation in music across diverse datasets. It seeks to 

benchmark performance using precision, recall, and F1-score to identify which dataset best supports accurate 

separation of audio features. The challenges of feature separation are discussed below. 

Challenges feature separation with music poses a number of challenges, many of which affect the 

ability and speed of extracting meaningful features from audio signals [5], [6]. Even when you extract a 

meaningful feature, often they contain distortion or low fidelity, which consequently reduce the reliability of 

the feature for your downstream task [7]. Also, the variabilities in recordings [8] through various genres, 

recordings, instrumentations, recording setups and effects introduces instability to the meaning of features, 

even if they are based on the same pattern. The amount of processing needed for separating the desired 

features in real-time [9] while performing gigs, being an important part of performance or in someone 

playing an adaptive music system is normally quite high as well; often requiring very high amounts of 

processing and random-access memory (RAM), causing access issues for audio performers alike. The 

expense to set up deep learning models that have the ability to separate multiple meaningful features can be 

significant, and are limited even more by the unavailability of large diversified datasets of labelled and 

annotated features; downloadable datasets are often incomplete which also skews the viability of the machine 

learning, limiting the relevance of the extracted features, even in terms of what features to extract can 

sometimes be subjective, based on arbitrary criteria; moreover, feature sets could vary widely from one 

context to another [10]. Using separated features may also create a few legal issues surrounding unauthorized 

remixing, reproduction and/or analysis of copyrighted material. Overcoming these barriers necessitates 

improvements in algorithm design, more data availability, and trade-offs between existing technology and 

ethical realities. 

 

 

2. ANALYSIS OF MUSIC ISOLATION APPLICATIONS 

Applications supported by music separation include audio repair, karaoke systems, music remixing, 

and cleaning. Additionally, it facilitates the following activities: music education and practice, forensic audio 

analysis, music transcription, VR and gaming, musician performance analysis, music sampling and licensing, 

and MIR. The use of artificial intelligence (AI) and deep learning ensures more accurate and efficient 

handling of complex audio. 

Table 1 (see in Appendix) [11]-[19] investigates different applications of music isolation 

technology, offering a detailed comparison about the specific purpose of each application and the potential 

benefits of applications: ranging from the enhancement of creativity to audio quality improvements. The 

table also mentions the limitations of the applications. 

 

 

3. DATASET ACQUISITION 

Choosing a dataset for music separation is arguably the most important step in determining if the 

results are accurate and meaningful. It is imperative that the dataset is diverse, high quality, and 

representative of the audio contexts it is trying to solve. Information regarding the datasets, DSD100, 

MUSDB, MUSDB18, and MUSDB18-HQ will be presented below. 

The Table 2 provides an overview of four popular music datasets used in music source separation 

research: DSD100, MUSDB, MUSDB18, and MUSDB18-HQ. It highlights the availability of isolated stems 

for specific musical components (bass, drum, vocal, and other) and whether the dataset includes mixtures. 

‘✔‘ indicates the availability of a specific component or mixture in the dataset, while a ‘-‘ signifies that the 

component is not provided. This comparison helps researchers select the most suitable dataset based on the 

requirements of their music separation tasks. 

 

 

Table 2. Overview of music dataset 
Dataset Bass Drum Vocal Other Mixtures 

DSD100 ✔ ✔ ✔ ✔ ✔ 

MUSDB ✔ ✔ ✔ ✔ ✔ 

MUSDB18 - - - - ✔ 

MUSDB18-HQ ✔ ✔ ✔ ✔ ✔ 
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3.1.  Dataset description 

The demixing secrets dataset 100 (DSD100) is a dataset with 100 entire length music recordings that 

was created for music split-source research. The four components of each track—vocals, drums, bass, and 

other instruments—are given independent stems and are supplied as a blend. The dataset has been separated 

into 50 testing tracks and 50 training tracks, each in 44.1 kHz high-quality WAV format. DSD100 is widely 

used to benchmark source separation algorithms, as it offers a diverse collection of genres and ensures a 

standardized framework for evaluating separation performance [20], [21]. MUSDB is a widely used dataset 

regarding music isolation. It includes 150 entire length compositions from four different genres: hip-hop, 

pop, rock, and electronic. Separated into 50 testing and 100 training tracks, the dataset offers separated stems 

for bass, drums, vocals, and other components in addition to high-quality, 16-bit WAV files at 44.1 kHz. It is 

specifically designed to support research in separating different musical sources from mixed audio tracks, 

offering both mixed and individual source files for comprehensive evaluation in various music separation 

tasks [22]. The MUSDB18 dataset is one of the most recognized benchmarks in the field of music separation 

research. It consists of 150 full tracks in four different genres: hip-hop, pop, rock, and electronic. It has 50 

evaluations and 100 training tracks; all provided in high-resolution a 16-bit WAV format at 44.1 kHz. Each 

file includes individual stems for bass, drums, vocals, and other instruments, allowing researchers to work 

with specific elements in a mixed audio context. MUSDB18 is a valuable resource for both academic 

research and practical music processing, given its popularity in training and evaluation of source separation 

algorithms [23]. The high-quality MUSDB18 dataset, known as the MUSDB18-HQ dataset, is frequently 

utilized in the field of music source separation research, containing the same 150 full length tracks in genres 

such as pop, rock, electronic, and hip-hop. The difference with MUSDB18-HQ is that the tracks are high-

resolution uncompressed WAVs unlike the original MUSDB18 dataset. Since many separation applications 

require high fidelity audio for effective processing, having access to high-resolution files is helpful where the 

sound quality is a paramount reason to ensure the source separation is conducted effectively. The dataset 

includes separated stems for voices, other instruments, bass, and drums, as well as mixed audio tracks, 

supporting a range of music separation and evaluation tasks. Its higher quality makes MUSDB18-HQ 

particularly suitable for research where audio quality is critical [24]. 

 

 

4. METHOD 

The method entails extracting comprehensive audio features from preprocessed datasets and 

subsequently training a deep learning model for multi-class classification using standardized features, as 

detailed in the following section. 

The Figure 1 presents the overall processing workflow which shows the process starting with a 

mixed audio file containing overlapping sources, which is converted into a spectrogram using Mel-frequency 

cepstral coefficients (MFCC) [4] or short time fourier transform (STFT) [25] or time-domain waveform [26], 

[27] to obtain the depiction of time frequency. Deep learning models, such as convolutional neural network 

(CNN) [28] or transformer-based architectures [29] extract distinguishing features from the spectrogram. 

These features are utilized specifically in music separation methods, to obtain separated audio components 

such as bass, drum, vocals, and other instruments. Additionally, the separated sources can then be 

reconstructed as the audio signal using the inverse short-time fourier transform (ISTFT) to obtain the output 

extracted audio sources. Figure 2 illustrates feature classification pipeline where raw audio is converted into 

spectrograms, followed by extraction of features like MFCC, Chroma, and Tonnetz. A SoftMax classifier is 

the result of feeding these features into a neural network that has several ReLU and dropout layers. The  

80-20 train-test split is used to train the model for 100 epochs. Finally, the system classifies the four 

categories features like bass, drum, vocal, and other. 
 

 

 
 

Figure 1. workflow of music separation 
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Figure 2. Neural network-based feature separation 

 

 

4.1.  Feature separation techniques 

MFCC frequently used in speech and music recognition tasks because they can capture the timbre of 

audio. It emphasises perceptually relevant frequencies by applying a Mel filter bank to the audio signal's 

power spectrum. The discrete cosine transform (DCT) is then used to convert this filtered spectrum into the 

cepstral domain, producing a compressed representation of the spectral envelope. In order to accurately 

depict the audio characteristics, 40 MFCC features are usually extracted. Chroma characteristics show the 

harmonic and tonal content of audio by mapping frequencies onto 12 semitone bins that correspond to 

musical pitches. This makes them particularly useful for recording harmonic frameworks and chord 

progressions in music. The features are typically derived from the STFT of the audio signal and consist of 

twelve chroma features, one for each chroma bin. Mel-spectrogram captures the spectral energy distribution 

of audio on a perceptual Mel scale, which approximates how humans perceive frequency. It works by 

computing the power spectrogram of the audio signal and then mapping it onto the Mel scale using a 

filterbank. This representation is widely used in deep learning models for various audio processing tasks. The 

default number of Mel bands, usually 128; this determines how many features are extracted. Spectral 

contrast, where one measures the contrast between peaks and valleys in the frequency spectrum, is a helpful 

technique for identifying different musical instruments, or textures, by separating the frequency spectrum 

into sub-bands and calculating the contrast between the loudest component and the softest component for 

each sub-band. Tonnetz features express the tonal connections in audio, such as key and harmony, by 

projecting the harmonic content into a 6-dimensional tonal space. These features are particularly useful for 

tasks like chord recognition and key detection. The input is derived from the harmonic part of the audio 

signal, which can be isolated. A total of 6 Tonnetz features are extracted to capture these tonal characteristics. 

These audio features were selected as they represent distinct but complementary aspects of sound: MFCC 

capture the timbre of audio by modeling the spectral envelope on a perceptual Mel scale, making them 

essential for distinguishing voices, instruments, and phonemes. Chroma features map frequencies to 12 

semitone bins, enabling robust detection of harmonic structures and chord progressions regardless of octave 

shifts. Mel-spectrograms preserve detailed time–frequency energy patterns on the Mel scale, providing rich 

input for deep learning models. Spectral contrast measures the difference between spectral peaks and valleys, 

aiding in distinguishing instrument types and textures. Tonnetz features encode tonal relationships in a 6D 

space, supporting key and harmony recognition. Together, these features complement each other by capturing 

timbre, pitch, harmony, texture, and detailed spectral dynamics, providing a comprehensive representation 

for music and speech analysis. Their combination ensures that both perceptual and structural elements of 

audio are captured, improving model accuracy. This makes them well-suited for deep learning tasks like 

source separation and transcription. 
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4.2.  Design and training of a neural network 

The model is designed using a sequential architecture, forming a simple feed-forward neural 

network. The input layer consists of 193 neurons, corresponding to the 193 extracted audio features. It 

includes two hidden layers, each with 128 neurons and ReLU activation functions [27] to introduce non-

linearity. To prevent overfitting, dropout layers are applied after the hidden layers, randomly dropping 10%, 

25%, and 50% of the neurons during training. Four neurons in the output layer have a softmax activation 

function [30], which allows for multi-class classification into groups like drums, vocals, bass, and others. The 

Adam optimizer enabled effective training, dropout layers were included for regularization to reduce 

overfitting, and categorical cross-entropy was employed as the loss function. The model was trained with a 

batch size of 256, and early stopping tracked the validation loss and stopped training if no progress was seen 

in 100 epochs. 

Vocal features include pitch (the degree to which a sound is perceived as low or high), recognition 

(the ability to identify gender), timbre (quality of a tone), dynamics (loudness or softness), onsets and offsets 

(the timing of notes), and harmonics (integer multiples of the fundamental frequency). The many features of 

vocal health include Jitter and Shimmer in pitch and amplitude. Bass features are characterized as frequency 

range (typically below 250 Hz), pitch (clear pitch contour which defines harmonic progression), timbre 

(defined tone quality, usually captured by MFCC), rhythm and onset (timing, and a significant contributor to 

rhythmic structure), and dynamics (loudness). Other features such as harmonic content (strong fundamentals 

and active harmonics) and correlation with other instruments (often collabs with drums or rhythm guitars) 

help to identify features of the bass as well. Drum features are defined by transient nature (sharp attacks to 

clearly distinguish them from sustained instruments), frequency range (kick- lows, snare- mid range, hi-hat- 

higher range, toms- mid range), rhythmic patterns (often specific grooves and rhythms). Other noteworthy 

features of the drum include onset detection (the placement in time of hits, using spectral flux and zero 

crossing rate to detect hits) as well as timbre (the quality of a sound that distinguishes it), often captured with 

MFCC, and also dynamics (the loudness of hits can vary to express uniqueness). Other instruments have 

frequency ranges that can be divided into low-heavy, medium-vocals, and high-medium-cymbals, violins, 

and flutes are examples of high; guitars, pianos, and saxophones as an example of mid; and bass guitars, kick 

drums, and tambourines as lower. 

 

4.3.  Training the dataset 

The DSD100, MUSDB, and MUSDB18-HQ datasets were used for training, with 50 audio files 

selected for each class bass, drums, vocals, and others and all audio files resampled to a uniform rate of  

44.1 kHz for consistency. From each file, a comprehensive set of features was extracted, such as Tonnetz, 

MFCCs, Chroma, Mel-spectrogram, and Spectral Contrast, forming 193-dimensional feature vectors. Labels 

were assigned accordingly and one-hot encoded to fit a softmax classification framework, producing target 

arrays with shape (number of samples 4). 80% of the data was used for training, and 20% was used for 

testing, and all features were standardized using StandardScaler for zero mean and unit variance to ensure 

stable model convergence. While the MUSDB18 dataset was excluded from training due to the absence of 

isolated sources, the DSD100, MUSDB, and MUSDB18-HQ datasets, which contain isolated instrument 

stems, were effectively employed. To switch between datasets during experimentation, only the folder path 

needs to be updated. 

 

 

5. EVALUATION OF FEATURE SEPARATION OF MUSIC 

Assess the capability of feature separation using DSD100, MUSDB, and MUSDB18-HQ datasets. 

The assessment is carried out using, precision, recall, and F1-score with consideration to accuracy, macro 

averages and weighted averages. The results for each dataset are evaluated thoroughly and highlight the key 

performance relating to the feature extraction. 

Table 3 displays the DSD100 dataset showed moderate precision for bass and drums (0.775), while 

vocals had the highest precision (0.85). All classes indicated equivalent recall, meaning that relevant 

instances were consistently retrieved. The F1-score was also similar to recall and precision and showed 

satisfactory performance for all categories; particularly, vocal classification had the greatest performance.  

 

 

Table 3. Evaluation of the feature separation using DSD100 dataset 
DSD 100 dataset 

 Accuracy Macro average Weighted average 

Bass Drum Vocal Other Bass Drums Vocal Other Bass Drum Vocal Other 

Precision 0.775 0.775 0.85 0.7 0.771 0.813 0.841 0.7 0.805 0.857 0.884 0.811 

Recall 0.775 0.775 0.85 0.7 0.788 0.803 0.861 0.7 0.775 0.775 0.850 0.700 

F1-score 0.775 0.775 0.85 0.7 0.759 0.775 0.836 0.7 0.774 0.791 0.857 0.711 
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According to Table 4, with respect to model evaluation, the MUSDB dataset showed improvements 

over DSD100 with improvements of note for precision scores in the category of other (0.875) bass (0.8) and a 

more consistent precision of 0.775 for vocals. Recall scores aligned with precision scores indicating balanced 

retrieval and the F1-score produced evidence to suggest that the model can distinguish most relevant features, 

harmonic and tonal in particular. 

 

 

Table 4. Evaluation of feature separation using MUSDB dataset 
MUSDB 

 Accuracy Macro average Weighted average 

Bass Drum Vocal Other Bass Drums Vocal Other Bass Drum Vocal Other 

Precision 0.8 0.7 0.775 0.875 0.810 0.731 0.771 0.861 0.858 0.792 0.809 0.897 

Recall 0.8 0.7 0.775 0.875 0.836 0.747 0.778 0.889 0.800 0.700 0.775 0.875 
F1-score 0.8 0.7 0.775 0.875 0.797 0.693 0.749 0.865 0.805 0.701 0.771 0.879 

 

 

According to Table 5, the MUSDB18-HQ dataset performed the best of the three datasets with 

vocals performed the best in precision (0.9), followed by drums (0.875) and bass (0.95), while the "other" 

category performed well similarly at 0.825. High recall across all classes indicated reliable retrieval, and the 

F1-scores further confirmed the accuracy in classification of the dataset with bass, vocals, and drums having 

the most success in terms of feature separation. 

 

 

Table 5. Evaluation of feature separation with MUSDB18-HQ dataset 
MUSDB18-HQ 

 Accuracy Macro average Weighted average 

Bass Drum Vocal Other Bass Drums Vocal Other Bass Drum Vocal Other 

Precision 0.95 0.875 0.9 0.825 0.942 0.861 0.890 0.836 0.956 0.889 0.899 0.872 
Recall 0.95 0.875 0.9 0.825 0.956 0.886 0.894 0.847 0.950 0.875 0.900 0.825 

F1-score 0.95 0.875 0.9 0.825 0.946 0.867 0.889 0.820 0.950 0.876 0.897 0.834 

 

 

6. DISCUSSION 

A comparison study is presented between three significant datasets, DSD100, MUSDB, and 

MUSDB18-HQ, for audio feature classification. There are four categories of songs for audio feature 

classification: bass, drums, vocals, and others. To compare the performance of dataset DSD100, MUSDB, 

and MUSDB18-HQ analyzed their performance with metrics defined with Precision, Recall, and F1-score. 

Evaluating the datasets with regards to audio feature classification across four categories (bass, drums, 

vocals, and others): DSD100, MUSDB, and MUSDB18-HQ. While all datasets performed well for 

classifying audio features across varied levels, there was a meaningful difference through the datasets across 

categories. 

MUSDB18-HQ yielded the best performance in the bass category with a precision, recall, and  

F1-score equal to 0.95, respectively. The MUSDB18-HQ significantly outperformed MUSDB and DSD100 

which yielded a F1-score of 0.775. The robust F1-score indicates the MUSDB18-HQ has enhanced fidelity 

that allows accurate representation of the lower frequency components in the feature isolations. Compared to 

DSD100, the MUSDB18-HQ had improved F1-score by 22.58%, and over MUSDB improved 18.75% 

overall F1-score reflecting the expected superiority of MUSDB18-HQ separating bass signal. The drums 

categories MUSDB18-HQ achieved 0.875 for both precision and recall values, with a F1-score improvement 

of 25.05% over MUSDB (0.7), and 12.9% over DSD100 (0.775). The high expansion and coverage of 

MUSDB18-HQ likely yielded higher performance values as the method automatically reduced the number of 

false elements for this source group with periodic arrangements and variable rhythmic elements. 

Outperforming DSD100 and MUSDB in vocals category also were good metrics each respective created  

F1-score analysis 0.9, 0.85 for DSD100 and 0.775 for MUSDB, which created an F1-score improvement over 

DSD100 of 11.76% and 20.04% improvement over MUSDB. The high fidelity of the data set increased the 

possibility of isolating and confirming vocal components, portraying a valuable source for future study 

interested specifically in vocal separation activities. The classification grouping of other shows that MUSDB 

had a little better outcome of a F1-score of 0.8 shown as compared to DSD100 output of 0.775, and 

MUSDB18-HQ score was yet again improved with 0.875 F1-score. 

Figure 3 displays the accuracy performance of the model across the four sources (bass, drum, vocal, 

and other) using three datasets (DSD100, MUSDB, and MUSDB18-HQ) for validation. The Y-axis 

represents accuracy (ranging from 0 to 1), while the X-axis represents the separated sources: bass, drum, 
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vocal, and other, with the performance of the three datasets represented by colored bars (Green: DSD100 

Accuracy, Red: MUSDB Accuracy, Blue: MUSDB18-HQ Accuracy). We observe that MUSDB18-HQ is 

consistently the top performer with the highest accuracy scores for “bass” (~0.93), “drum” (~0.88), and 

“vocal” (~0.90), highlighting the advantage high-quality data affords for source separation evaluation. For 

the “other” category, MUSDB returns slightly higher performances than MUSDB and DSD100 (~0.88). 

However, in all cases, DSD100 performs the worst across all four sources. These findings highlight that 

dataset quality and characteristics strongly influence the accuracy of different sources, with MUSDB18-HQ 

being particularly effective for instrument-specific separation. 

 

 

 
 

Figure 3. Feature separation performance for bass, drum, vocal, and other categories 

 

 

7. CONCLUSION 

This research establishes that MUSDB18-HQ can be considered the most rigorous and reliable 

dataset for the task, especially when it comes to bass, vocals, drums, and other. It significantly outperformed 

all other datasets based on all key metrics of F1-score, recall, and precision but especially when it comes to 

the bass, vocals, and drums datasets. These three categories exhibited high levels of capture and separation in 

audio that validated the potential of this dataset to effectively save audio components. Although overall, 

MUSDB had a slightly better performance on the "other" category, in overall F1-score improvements, and 

consistent across datasets, MUSDB18-HQ is more advantageous for being utilized across music remixing, 

audio restoration, and other music technology applications. This continues to show that MUSDB18-HQ has 

so much potential in improving the implementation of more effective music separation systems, as well as 

being able to apply to other various music practices. Future work will include experimenting and applying 

new feature extraction approaches, as well as refining the model architectures of the models as well as 

finding more datasets with diverse applications to further advance music source separation. The ongoing 

advancement in research will broaden the doors for creative and analytical approaches to music and audio 

processing across multiple industries. 

 

 

ACKNOWLEDGMENTS 

This work was supported by the Manonmaniam Sundaranar University, Centre for Information 

Technology and Engineering, Tirunelveli, Tamil Nadu, India. 

 

 

FUNDING INFORMATION 

Authors state no funding involved. 

 

 

AUTHOR CONTRIBUTIONS STATEMENT 

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author 

contributions, reduce authorship disputes, and facilitate collaboration. 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 14, No. 5, October 2025: 3903-3912 

3910 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Sakthidevi 

Shunmugalingam 

Parvathi 

✓ ✓  ✓  ✓  ✓ ✓ ✓     

Divya Chandrasekar     ✓ ✓ ✓   ✓ ✓ ✓   

 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 

 

 

CONFLICT OF INTEREST STATEMENT 

Authors state no conflict of interest. 

 

 

DATA AVAILABILITY 

Data availability is not applicable to this paper as no new data were created or analyzed in this 

study. 

 

 

REFERENCES 
[1] F. Alías, J. C. Socoró, and X. Sevillano, “A review of physical and perceptual feature extraction techniques for speech, music and 

environmental sounds,” Applied Sciences, vol. 6, no. 5, pp. 1-44, 2016, doi: 10.3390/app6050143. 

[2] J. Zhang, “Music Feature Extraction and Classification Algorithm Based on Deep Learning,” Scientific Programming, vol. 1, pp. 
1–9, 2021, doi: 10.1155/2021/1651560. 

[3] M. Müller, D. P. W. Ellis, A. Klapuri, and G. Richard, “Signal processing for music analysis,” IEEE Journal on Selected Topics 

in Signal Processing, vol. 5, no. 6, pp. 1088–1110, 2011, doi: 10.1109/JSTSP.2011.2112333. 
[4] H. Dzulfikar, S. Adinandra, and E. Ramadhani, “The Comparison of Audio Analysis Using Audio Forensic Technique and Mel 

Frequency Cepstral Coefficient Method (MFCC) as the Requirement of Digital Evidence,” Jurnal Online Informatika, vol. 6, no. 

2, pp. 145–154, 2021, doi: 10.15575/join.v6i2.702. 
[5] E. Yücesoy, “Gender Recognition Based on the Stacking of Different Acoustic Features,” Applied Sciences (Switzerland), vol. 14, 

no. 15, pp. 1-13, 2024, doi: 10.3390/app14156564. 

[6] M. Mirbeygi, A. Mahabadi, and A. Ranjbar, “Speech and music separation approaches - a survey,” Multimedia Tools and 
Applications, vol. 81, no. 15, pp. 21155–21197, 2022, doi: 10.1007/s11042-022-11994-1. 

[7] S. George, S. Zielinski, and F. Rumsey, “Feature extraction for the prediction of multichannel spatial audio fidelity,” IEEE 

Transactions on Audio, Speech and Language Processing, vol. 14, no. 6, pp. 1994–2005, 2006, doi: 10.1109/TASL.2006.883248. 
[8] A. Holzapfel and Y. Stylianou, “Musical genre classification using nonnegative matrix factorization-based features,” IEEE 

Transactions on Audio, Speech and Language Processing, vol. 16, no. 2, pp. 424–434, 2008, doi: 10.1109/TASL.2007.909434. 

[9] M. Mirbeygi, A. Mahabadi, and A. Ranjbar, “RPCA-based real-time speech and music separation method,” Speech 
Communication, vol. 126, pp. 22–34, 2021, doi: 10.1016/j.specom.2020.12.003. 

[10] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, “FMA: A dataset for music analysis,” in Proceedings of the 18th 

International Society for Music Information Retrieval Conference, ISMIR, 2017, pp. 316–323, doi: 10.48550/arXiv.1612.01840. 
[11] M. A. M. Ramírez, W. H. Liao, G. Fabbro, S. Uhlich, C. Nagashima, and Y. Mitsufuji, “Automatic music mixing with deep 

learning and out-of-domain data,” in Proceedings of the 23rd International Society for Music Information Retrieval Conference, 

ISMIR 2022, 2022, pp. 411–418. 
[12] P. Patel, A. Ray, K. Thakkar, K. Sheth, and S. H. Mankad, “Karaoke Generation from songs: recent trends and opportunities,” in 

Proceedings of 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, APSIPA ASC 

2022, 2022, pp. 1238–1246, doi: 10.23919/APSIPAASC55919.2022.9980133. 
[13] J.-M. Lemercier, J. Richter, S. Welker, E. Moliner, V. Välimäki, and T. Gerkmann, “Diffusion Models for Audio Restoration: A 

review,” IEEE Signal Processing Magazine, vol. 41, no. 6, pp. 72–84, 2024, doi: 10.1109/MSP.2024.3445871. 

[14] M. Furner, M. Z. Islam, and C. T. Li, “Knowledge discovery and visualisation framework using machine learning for music information 
retrieval from broadcast radio data,” Expert Systems with Applications, vol. 182, pp. 1-11, 2021, doi: 10.1016/j.eswa.2021.115236. 

[15] J. Nissen, “Aspirations and limitations: the state of world music education in secondary schools in multicultural Manchester,” 

British Journal of Music Education, vol. 40, no. 3, pp. 385–396, 2023, doi: 10.1017/S0265051723000098. 
[16] X. Gu, L. Ou, W. Zeng, J. Zhang, N. Wong, and Y. Wang, “Automatic Lyric Transcription and Automatic Music Transcription 

from Multimodal Singing,” ACM Transactions on Multimedia Computing, Communications and Applications, vol. 20, no. 7, pp. 

1–29, 2024, doi: 10.1145/3651310. 
[17] J. G. R. Borquez, C. D. V. Soto, J. A. D. P. Flores, R. A. Briseño, and J. V. Aldás, “Neurogaming in Virtual Reality: A Review of 

Video Game Genres and Cognitive Impact,” Electronics, vol. 13, no. 9, pp. 1-39, 2024, doi: 10.3390/electronics13091683. 

[18] M. S. Zelenak, “Self-efficacy and music performance: A meta-analysis,” Psychology of Music, vol. 52, no. 6, pp. 649–667, 2024, 
doi: 10.1177/03057356231222432. 

[19] J. Watson, “Copyright and the Production of Hip Hop Music,” SSRN Electronic Journal, 2024, doi: 10.2139/ssrn.4739736. 

[20] W. H. Heo, H. Kim, and O. W. Kwon, “Source separation using dilated time-frequency DenseNet for music identification in 
broadcast contents,” Applied Sciences (Switzerland), vol. 10, no. 5, pp. 1-18, 2020, doi: 10.3390/app10051727. 

[21] N. Takahashi and Y. Mitsufuji, “Multi-Scale multi-band densenets for audio source separation,” in IEEE Workshop on 

Applications of Signal Processing to Audio and Acoustics, IEEE, Oct. 2017, pp. 21–25, doi: 10.1109/WASPAA.2017.8169987. 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Feature separation of music across diverse dataset: a … (Sakthidevi Shunmugalingam Parvathi) 

3911 

[22] R. Zafar, A. Liutkus, F. Robert, A. Stöter, S. I. Mimilakis, and R. Bittner, “The MUSDB18 corpus for music separation,” 2017. 
[23] W. H. Heo, H. Kim, and O. W. Kwon, “Integrating dilated convolution into denseLSTM for audio source separation,” Applied 

Sciences (Switzerland), vol. 11, no. 2, pp. 1–19, 2021, doi: 10.3390/app11020789. 

[24] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, and R. Bittner, “MUSDB18-HQ - an uncompressed version of MUSDB18,” 
Zenodo, 2019. 

[25] P. Magron, R. Badeau, and B. David, “Model-Based STFT Phase Recovery for Audio Source Separation,” IEEE/ACM 

Transactions on Audio Speech and Language Processing, vol. 26, no. 6, pp. 1091–1101, 2018, doi: 
10.1109/TASLP.2018.2811540. 

[26] A. Défossez, N. Usunier, L. Bottou, and F. Bach, “Music Source Separation in the Waveform Domain,” arXiv preprint, 2019, doi: 

10.48550/arXiv.1911.13254. 
[27] S. Sarkar, “Time-domain music source separation for choirs and ensembles,” 2024.  

[28] P. Mangal and R. Deolalikar, “Music Source Separation with Deep Convolution Neural Network,” in Lecture Notes in Networks 

and Systems, pp. 199–206, 2023, doi: 10.1007/978-981-19-5331-6_21. 
[29] S. Rouard, F. Massa, and A. Defossez, “Hybrid Transformers for Music Source Separation,” in ICASSP, IEEE International 

Conference on Acoustics, Speech and Signal Processing - Proceedings, IEEE, Jun. 2023, pp. 1–5, doi 

10.1109/ICASSP49357.2023.10096956. 
[30] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-Margin Softmax Loss for Convolutional Neural Networks,” in Proceedings of the 

33 rd International Conference on Machine Learning, New York, NY, USA, 2016, pp. 1–10. 

 

 

APPENDIX 

 

Table 1. Impacts of music separation applications 
Application Description Purposes Benefits Challenges 

Music 
remixing 

[11] 

Transforms existing musical 
compositions into fresh 

versions by modifying 

tempo, instrumentation, or 
structure and adding new 

elements. 

Artistic expression 
club and DJ culture 

Enhanced creative 
freedom. 

Flexible reimagining of 

music with isolated 
components. 

Risk of losing the 
essence of the original 

track. 

Potential copyright and 
licensing challenges. 

Karaoke 
systems 

[12] 

It allows individuals to sing 
along to instrumental 

versions of songs with lyrics 

displayed on a screen, 
leveraging music extraction 

to create high-quality 

instrumental tracks. 

Entertainment social 
bonding practice, 

and performance 

Creation of clean, 
customizable 

instrumentals. 

Real-time volume control 
and dynamic adjustments. 

Computationally 
demanding processes. 

Challenges in achieving 

artifact-free separation. 

Audio 

restoration 

and cleaning 
[13] 

Enhances the quality of audio 

recordings by removing noise 

and distortions while 
maintaining sound integrity 

through music extraction. 

Removing noise, 

distortions restoring 

lost frequencies, and 
preserve originality 

Targeted noise reduction 

with minimal impact on 

quality. 
Flexibility in recombining 

and using restored 

elements. 

Risk of introducing 

artifacts during 

extraction. 
High computational 

requirements. 

MIR 

[14] 

Uses computational 

techniques to extract, 

analyze, and organize 
musical information, 

integrating music extraction 

for deeper analysis. 

Music 

recommendation 

and analysis 
Music synthesis and 

composition 

Enhanced accuracy in 

musical analysis. 

Broad application scope in 
research and industry. 

Computationally 

intensive tasks. 

Difficulties in processing 
highly complex 

compositions. 

Music 

education and 

practice 
[15] 

Structured teaching and 

learning of music enhanced 

by tools that simplify 
complex compositions 

through music extraction. 

Emotional 

expression and 

cultural 
understanding 

Creativity and 

imagination 

Precision in analyzing 

musical elements. 

Accessibility to high-
quality educational 

resources. 

Dependency on 

technology for 

educational 
enhancements. 

Potential loss of 

traditional teaching 
nuances. 

Music 

transcription 
[16] 

Converting musical sounds 

into written notation 
enhanced by separating 

components for precision. 

Arrangement and 

composition 
Education and 

learning 

Precise identification of 

overlapping frequencies. 
Efficient handling of 

complex arrangements. 

Dependence on accurate 

extraction for quality 
transcription. 

Limitations in processing 

certain intricate audio 
files. 

Gaming and 

VR [17] 

Music extraction enhances 

gaming and VR experiences 
by creating dynamic, 

adaptive soundscapes. 

Real-time feedback 

Spatial audio for 
sound localization 

Improved user experience 

and interactivity. 
Creative, adaptive 

soundscapes. 

Technical challenges in 

real-time 
implementation. 

High resource and 

computational 
requirements. 

Performance 

analysis for 
musicians 

[18] 

Systematic evaluation of a 

musician's performance using 
extracted audio components. 

Interpretation 

refinement 
Impact assessment 

Data-driven, objective 

insights. 
Real-time feedback for 

precise corrections. 

Relies on advanced 

music extraction tools. 
Costs associated with 

implementing 
technology. 
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Table 1. Impacts of music separation applications (continued) 
Application Description Purposes Benefits Challenges 

Music 
sampling and 

licensing 

[19] 

Reusing segments of existing 
music and ensuring legal 

compliance through 

extraction techniques. 

Creative expression 
Genre blending 

Efficient identification of 
licensable materials. 

Efficient identification of 

licensable materials. 

Legal disputes over 
unauthorized sampling. 

High costs and time for 

securing licenses. 
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