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1. INTRODUCTION

Feature separation in music involves separating a composite sound into its various elements such as
pitch and timbre to analyze and manipulate each component separately [1]. Feature separation makes many
modern audio applications possible, from improving music information retrieval (MIR), instrument
recognition, genre classification, better transcription accuracy, and adaptive learning applications in music
education. A feature-based approach remains relevant as it simplifies complex audio data into interpretable
components, enhancing separation accuracy and computational efficiency. By reducing noise and improving
model learning, it ensures cleaner isolation of musical elements across diverse datasets. This approach also
supports robust evaluation, making it indispensable for relevant applications.

Recent breakthroughs in deep learning [2] and advances in signal-processing techniques [3] allow
many modern techniques to access existing neural network architectures to learn complex feature
representation from the data directly. By leveraging multiple richly annotated datasets in the training of these
models, they have achieved previously unrealized accuracy in the extraction of audio features even from
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heavily mixed audio. As a result, feature separation has served as a foundation for intelligent audio systems
from everything digital, real-time performance feedback, interactive virtual reality (VR) soundscapes, and
advanced forensic audio analysis [4], to extensive workflows in customizable music production. This
research aims to evaluate the effectiveness of feature separation in music across diverse datasets. It seeks to
benchmark performance using precision, recall, and F1-score to identify which dataset best supports accurate
separation of audio features. The challenges of feature separation are discussed below.

Challenges feature separation with music poses a number of challenges, many of which affect the
ability and speed of extracting meaningful features from audio signals [5], [6]. Even when you extract a
meaningful feature, often they contain distortion or low fidelity, which consequently reduce the reliability of
the feature for your downstream task [7]. Also, the variabilities in recordings [8] through various genres,
recordings, instrumentations, recording setups and effects introduces instability to the meaning of features,
even if they are based on the same pattern. The amount of processing needed for separating the desired
features in real-time [9] while performing gigs, being an important part of performance or in someone
playing an adaptive music system is normally quite high as well; often requiring very high amounts of
processing and random-access memory (RAM), causing access issues for audio performers alike. The
expense to set up deep learning models that have the ability to separate multiple meaningful features can be
significant, and are limited even more by the unavailability of large diversified datasets of labelled and
annotated features; downloadable datasets are often incomplete which also skews the viability of the machine
learning, limiting the relevance of the extracted features, even in terms of what features to extract can
sometimes be subjective, based on arbitrary criteria; moreover, feature sets could vary widely from one
context to another [10]. Using separated features may also create a few legal issues surrounding unauthorized
remixing, reproduction and/or analysis of copyrighted material. Overcoming these barriers necessitates
improvements in algorithm design, more data availability, and trade-offs between existing technology and
ethical realities.

2. ANALYSIS OF MUSIC ISOLATION APPLICATIONS

Applications supported by music separation include audio repair, karaoke systems, music remixing,
and cleaning. Additionally, it facilitates the following activities: music education and practice, forensic audio
analysis, music transcription, VR and gaming, musician performance analysis, music sampling and licensing,
and MIR. The use of artificial intelligence (Al) and deep learning ensures more accurate and efficient
handling of complex audio.

Table 1 (see in Appendix) [11]-[19] investigates different applications of music isolation
technology, offering a detailed comparison about the specific purpose of each application and the potential
benefits of applications: ranging from the enhancement of creativity to audio quality improvements. The
table also mentions the limitations of the applications.

3. DATASET ACQUISITION

Choosing a dataset for music separation is arguably the most important step in determining if the
results are accurate and meaningful. It is imperative that the dataset is diverse, high quality, and
representative of the audio contexts it is trying to solve. Information regarding the datasets, DSD100,
MUSDB, MUSDB18, and MUSDB18-HQ will be presented below.

The Table 2 provides an overview of four popular music datasets used in music source separation
research: DSD100, MUSDB, MUSDB18, and MUSDB18-HQ. It highlights the availability of isolated stems
for specific musical components (bass, drum, vocal, and other) and whether the dataset includes mixtures.
‘v ¢ indicates the availability of a specific component or mixture in the dataset, while a ‘- signifies that the
component is not provided. This comparison helps researchers select the most suitable dataset based on the
requirements of their music separation tasks.

Table 2. Overview of music dataset

Dataset Bass Drum Vocal Other Mixtures
DSD100 4 4 V4 V4 V4
MUSDB v v v v v
MUSDB18 - - - v
MUSDB18-HQ 4 4 V4 V4 V4
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3.1. Dataset description

The demixing secrets dataset 100 (DSD100) is a dataset with 100 entire length music recordings that
was created for music split-source research. The four components of each track—vocals, drums, bass, and
other instruments—are given independent stems and are supplied as a blend. The dataset has been separated
into 50 testing tracks and 50 training tracks, each in 44.1 kHz high-quality WAV format. DSD100 is widely
used to benchmark source separation algorithms, as it offers a diverse collection of genres and ensures a
standardized framework for evaluating separation performance [20], [21]. MUSDB is a widely used dataset
regarding music isolation. It includes 150 entire length compositions from four different genres: hip-hop,
pop, rock, and electronic. Separated into 50 testing and 100 training tracks, the dataset offers separated stems
for bass, drums, vocals, and other components in addition to high-quality, 16-bit WAV files at 44.1 kHz. It is
specifically designed to support research in separating different musical sources from mixed audio tracks,
offering both mixed and individual source files for comprehensive evaluation in various music separation
tasks [22]. The MUSDB18 dataset is one of the most recognized benchmarks in the field of music separation
research. It consists of 150 full tracks in four different genres: hip-hop, pop, rock, and electronic. It has 50
evaluations and 100 training tracks; all provided in high-resolution a 16-bit WAV format at 44.1 kHz. Each
file includes individual stems for bass, drums, vocals, and other instruments, allowing researchers to work
with specific elements in a mixed audio context. MUSDB18 is a valuable resource for both academic
research and practical music processing, given its popularity in training and evaluation of source separation
algorithms [23]. The high-quality MUSDB18 dataset, known as the MUSDB18-HQ dataset, is frequently
utilized in the field of music source separation research, containing the same 150 full length tracks in genres
such as pop, rock, electronic, and hip-hop. The difference with MUSDB18-HQ is that the tracks are high-
resolution uncompressed WAVs unlike the original MUSDB18 dataset. Since many separation applications
require high fidelity audio for effective processing, having access to high-resolution files is helpful where the
sound quality is a paramount reason to ensure the source separation is conducted effectively. The dataset
includes separated stems for voices, other instruments, bass, and drums, as well as mixed audio tracks,
supporting a range of music separation and evaluation tasks. Its higher quality makes MUSDB18-HQ
particularly suitable for research where audio quality is critical [24].

4. METHOD

The method entails extracting comprehensive audio features from preprocessed datasets and
subsequently training a deep learning model for multi-class classification using standardized features, as
detailed in the following section.

The Figure 1 presents the overall processing workflow which shows the process starting with a
mixed audio file containing overlapping sources, which is converted into a spectrogram using Mel-frequency
cepstral coefficients (MFCC) [4] or short time fourier transform (STFT) [25] or time-domain waveform [26],
[27] to obtain the depiction of time frequency. Deep learning models, such as convolutional neural network
(CNN) [28] or transformer-based architectures [29] extract distinguishing features from the spectrogram.
These features are utilized specifically in music separation methods, to obtain separated audio components
such as bass, drum, vocals, and other instruments. Additionally, the separated sources can then be
reconstructed as the audio signal using the inverse short-time fourier transform (ISTFT) to obtain the output
extracted audio sources. Figure 2 illustrates feature classification pipeline where raw audio is converted into
spectrograms, followed by extraction of features like MFCC, Chroma, and Tonnetz. A SoftMax classifier is
the result of feeding these features into a neural network that has several ReLU and dropout layers. The
80-20 train-test split is used to train the model for 100 epochs. Finally, the system classifies the four
categories features like bass, drum, vocal, and other.
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Figure 1. workflow of music separation
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Figure 2. Neural network-based feature separation

4.1. Feature separation techniques

MFCC frequently used in speech and music recognition tasks because they can capture the timbre of
audio. It emphasises perceptually relevant frequencies by applying a Mel filter bank to the audio signal's
power spectrum. The discrete cosine transform (DCT) is then used to convert this filtered spectrum into the
cepstral domain, producing a compressed representation of the spectral envelope. In order to accurately
depict the audio characteristics, 40 MFCC features are usually extracted. Chroma characteristics show the
harmonic and tonal content of audio by mapping frequencies onto 12 semitone bins that correspond to
musical pitches. This makes them particularly useful for recording harmonic frameworks and chord
progressions in music. The features are typically derived from the STFT of the audio signal and consist of
twelve chroma features, one for each chroma bin. Mel-spectrogram captures the spectral energy distribution
of audio on a perceptual Mel scale, which approximates how humans perceive frequency. It works by
computing the power spectrogram of the audio signal and then mapping it onto the Mel scale using a
filterbank. This representation is widely used in deep learning models for various audio processing tasks. The
default number of Mel bands, usually 128; this determines how many features are extracted. Spectral
contrast, where one measures the contrast between peaks and valleys in the frequency spectrum, is a helpful
technique for identifying different musical instruments, or textures, by separating the frequency spectrum
into sub-bands and calculating the contrast between the loudest component and the softest component for
each sub-band. Tonnetz features express the tonal connections in audio, such as key and harmony, by
projecting the harmonic content into a 6-dimensional tonal space. These features are particularly useful for
tasks like chord recognition and key detection. The input is derived from the harmonic part of the audio
signal, which can be isolated. A total of 6 Tonnetz features are extracted to capture these tonal characteristics.
These audio features were selected as they represent distinct but complementary aspects of sound: MFCC
capture the timbre of audio by modeling the spectral envelope on a perceptual Mel scale, making them
essential for distinguishing voices, instruments, and phonemes. Chroma features map frequencies to 12
semitone bins, enabling robust detection of harmonic structures and chord progressions regardless of octave
shifts. Mel-spectrograms preserve detailed time—frequency energy patterns on the Mel scale, providing rich
input for deep learning models. Spectral contrast measures the difference between spectral peaks and valleys,
aiding in distinguishing instrument types and textures. Tonnetz features encode tonal relationships in a 6D
space, supporting key and harmony recognition. Together, these features complement each other by capturing
timbre, pitch, harmony, texture, and detailed spectral dynamics, providing a comprehensive representation
for music and speech analysis. Their combination ensures that both perceptual and structural elements of
audio are captured, improving model accuracy. This makes them well-suited for deep learning tasks like
source separation and transcription.
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4.2. Design and training of a neural network

The model is designed using a sequential architecture, forming a simple feed-forward neural
network. The input layer consists of 193 neurons, corresponding to the 193 extracted audio features. It
includes two hidden layers, each with 128 neurons and RelLU activation functions [27] to introduce non-
linearity. To prevent overfitting, dropout layers are applied after the hidden layers, randomly dropping 10%,
25%, and 50% of the neurons during training. Four neurons in the output layer have a softmax activation
function [30], which allows for multi-class classification into groups like drums, vocals, bass, and others. The
Adam optimizer enabled effective training, dropout layers were included for regularization to reduce
overfitting, and categorical cross-entropy was employed as the loss function. The model was trained with a
batch size of 256, and early stopping tracked the validation loss and stopped training if no progress was seen
in 100 epochs.

Vocal features include pitch (the degree to which a sound is perceived as low or high), recognition
(the ability to identify gender), timbre (quality of a tone), dynamics (loudness or softness), onsets and offsets
(the timing of notes), and harmonics (integer multiples of the fundamental frequency). The many features of
vocal health include Jitter and Shimmer in pitch and amplitude. Bass features are characterized as frequency
range (typically below 250 Hz), pitch (clear pitch contour which defines harmonic progression), timbre
(defined tone quality, usually captured by MFCC), rhythm and onset (timing, and a significant contributor to
rhythmic structure), and dynamics (loudness). Other features such as harmonic content (strong fundamentals
and active harmonics) and correlation with other instruments (often collabs with drums or rhythm guitars)
help to identify features of the bass as well. Drum features are defined by transient nature (sharp attacks to
clearly distinguish them from sustained instruments), frequency range (kick- lows, snare- mid range, hi-hat-
higher range, toms- mid range), rhythmic patterns (often specific grooves and rhythms). Other noteworthy
features of the drum include onset detection (the placement in time of hits, using spectral flux and zero
crossing rate to detect hits) as well as timbre (the quality of a sound that distinguishes it), often captured with
MFCC, and also dynamics (the loudness of hits can vary to express uniqueness). Other instruments have
frequency ranges that can be divided into low-heavy, medium-vocals, and high-medium-cymbals, violins,
and flutes are examples of high; guitars, pianos, and saxophones as an example of mid; and bass guitars, kick
drums, and tambourines as lower.

4.3. Training the dataset

The DSD100, MUSDB, and MUSDB18-HQ datasets were used for training, with 50 audio files
selected for each class bass, drums, vocals, and others and all audio files resampled to a uniform rate of
44.1 kHz for consistency. From each file, a comprehensive set of features was extracted, such as Tonnetz,
MFCCs, Chroma, Mel-spectrogram, and Spectral Contrast, forming 193-dimensional feature vectors. Labels
were assigned accordingly and one-hot encoded to fit a softmax classification framework, producing target
arrays with shape (number of samples 4). 80% of the data was used for training, and 20% was used for
testing, and all features were standardized using StandardScaler for zero mean and unit variance to ensure
stable model convergence. While the MUSDB18 dataset was excluded from training due to the absence of
isolated sources, the DSD100, MUSDB, and MUSDB18-HQ datasets, which contain isolated instrument
stems, were effectively employed. To switch between datasets during experimentation, only the folder path
needs to be updated.

5. EVALUATION OF FEATURE SEPARATION OF MUSIC

Assess the capability of feature separation using DSD100, MUSDB, and MUSDB18-HQ datasets.
The assessment is carried out using, precision, recall, and F1-score with consideration to accuracy, macro
averages and weighted averages. The results for each dataset are evaluated thoroughly and highlight the key
performance relating to the feature extraction.

Table 3 displays the DSD100 dataset showed moderate precision for bass and drums (0.775), while
vocals had the highest precision (0.85). All classes indicated equivalent recall, meaning that relevant
instances were consistently retrieved. The F1-score was also similar to recall and precision and showed
satisfactory performance for all categories; particularly, vocal classification had the greatest performance.

Table 3. Evaluation of the feature separation using DSD100 dataset
DSD 100 dataset
Accuracy Macro average Weighted average
Bass Drum Vocal Other Bass Drums Vocal Other Bass Drum Vocal Other
Precision 0.775 0.775 0.85 0.7 0771 0.813 0.841 0.7 0.805 0.857 0.884 0.811
Recall 0.775 0.775 0.85 0.7 0.788 0.803 0.861 0.7 0.775 0.775 0.850 0.700
Fl-score 0.775 0.775 0.85 0.7 0.759 0.775 0.836 0.7 0.774 0.791 0.857 0.711
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According to Table 4, with respect to model evaluation, the MUSDB dataset showed improvements
over DSD100 with improvements of note for precision scores in the category of other (0.875) bass (0.8) and a
more consistent precision of 0.775 for vocals. Recall scores aligned with precision scores indicating balanced
retrieval and the F1-score produced evidence to suggest that the model can distinguish most relevant features,
harmonic and tonal in particular.

Table 4. Evaluation of feature separation using MUSDB dataset
MUSDB
Accuracy Macro average Weighted average
Bass Drum Vocal Other Bass Drums Vocal Other Bass Drum Vocal Other
Precision 0.8 0.7 0.775 0875 0.810 0.731 0.771 0.861 0.858 0.792 0.809 0.897
Recall 0.8 0.7 0.775 0875 0836 0.747 0.778 0.889 0.800 0.700 0.775 0.875
Fl-score 0.8 0.7 0.775 0875 0797 0.693 0749 0.865 0.805 0.701 0.771 0.879

According to Table 5, the MUSDB18-HQ dataset performed the best of the three datasets with
vocals performed the best in precision (0.9), followed by drums (0.875) and bass (0.95), while the "other"
category performed well similarly at 0.825. High recall across all classes indicated reliable retrieval, and the
F1-scores further confirmed the accuracy in classification of the dataset with bass, vocals, and drums having
the most success in terms of feature separation.

Table 5. Evaluation of feature separation with MUSDB18-HQ dataset
MUSDB18-HQ
Accuracy Macro average Weighted average
Bass Drum Vocal Other Bass Drums Vocal Other Bass Drum Vocal Other
Precision 095 0.875 0.9 0.825 0942 0.861 0.890 0.836 0956 0.889 0.899 0.872
Recall 095 0875 0.9 0.825 0.956 0.886 0.894 0.847 0950 0.875 0.900 0.825
Fl-score 095 0.875 0.9 0.825 0.946 0.867 0889 0.820 0950 0.876 0.897 0.834

6. DISCUSSION

A comparison study is presented between three significant datasets, DSD100, MUSDB, and
MUSDB18-HQ, for audio feature classification. There are four categories of songs for audio feature
classification: bass, drums, vocals, and others. To compare the performance of dataset DSD100, MUSDB,
and MUSDB18-HQ analyzed their performance with metrics defined with Precision, Recall, and F1-score.
Evaluating the datasets with regards to audio feature classification across four categories (bass, drums,
vocals, and others): DSD100, MUSDB, and MUSDB18-HQ. While all datasets performed well for
classifying audio features across varied levels, there was a meaningful difference through the datasets across
categories.

MUSDB18-HQ vyielded the best performance in the bass category with a precision, recall, and
F1-score equal to 0.95, respectively. The MUSDB18-HQ significantly outperformed MUSDB and DSD100
which yielded a F1-score of 0.775. The robust F1-score indicates the MUSDB18-HQ has enhanced fidelity
that allows accurate representation of the lower frequency components in the feature isolations. Compared to
DSD100, the MUSDB18-HQ had improved F1-score by 22.58%, and over MUSDB improved 18.75%
overall Fl1-score reflecting the expected superiority of MUSDB18-HQ separating bass signal. The drums
categories MUSDB18-HQ achieved 0.875 for both precision and recall values, with a F1-score improvement
of 25.05% over MUSDB (0.7), and 12.9% over DSD100 (0.775). The high expansion and coverage of
MUSDB18-HQ likely yielded higher performance values as the method automatically reduced the number of
false elements for this source group with periodic arrangements and variable rhythmic elements.
Outperforming DSD100 and MUSDB in vocals category also were good metrics each respective created
F1-score analysis 0.9, 0.85 for DSD100 and 0.775 for MUSDB, which created an F1-score improvement over
DSD100 of 11.76% and 20.04% improvement over MUSDB. The high fidelity of the data set increased the
possibility of isolating and confirming vocal components, portraying a valuable source for future study
interested specifically in vocal separation activities. The classification grouping of other shows that MUSDB
had a little better outcome of a Fl-score of 0.8 shown as compared to DSD100 output of 0.775, and
MUSDB18-HQ score was yet again improved with 0.875 F1-score.

Figure 3 displays the accuracy performance of the model across the four sources (bass, drum, vocal,
and other) using three datasets (DSD100, MUSDB, and MUSDB18-HQ) for validation. The Y-axis
represents accuracy (ranging from 0 to 1), while the X-axis represents the separated sources: bass, drum,
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vocal, and other, with the performance of the three datasets represented by colored bars (Green: DSD100
Accuracy, Red: MUSDB Accuracy, Blue: MUSDB18-HQ Accuracy). We observe that MUSDB18-HQ is
consistently the top performer with the highest accuracy scores for “bass” (~0.93), “drum” (~0.88), and
“vocal” (~0.90), highlighting the advantage high-quality data affords for source separation evaluation. For
the “other” category, MUSDB returns slightly higher performances than MUSDB and DSD100 (~0.88).
However, in all cases, DSD100 performs the worst across all four sources. These findings highlight that
dataset quality and characteristics strongly influence the accuracy of different sources, with MUSDB18-HQ
being particularly effective for instrument-specific separation.

PERFORMANCE
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Figure 3. Feature separation performance for bass, drum, vocal, and other categories

7. CONCLUSION

This research establishes that MUSDB18-HQ can be considered the most rigorous and reliable
dataset for the task, especially when it comes to bass, vocals, drums, and other. It significantly outperformed
all other datasets based on all key metrics of F1-score, recall, and precision but especially when it comes to
the bass, vocals, and drums datasets. These three categories exhibited high levels of capture and separation in
audio that validated the potential of this dataset to effectively save audio components. Although overall,
MUSDB had a slightly better performance on the "other" category, in overall F1-score improvements, and
consistent across datasets, MUSDB18-HQ is more advantageous for being utilized across music remixing,
audio restoration, and other music technology applications. This continues to show that MUSDB18-HQ has
so much potential in improving the implementation of more effective music separation systems, as well as
being able to apply to other various music practices. Future work will include experimenting and applying
new feature extraction approaches, as well as refining the model architectures of the models as well as
finding more datasets with diverse applications to further advance music source separation. The ongoing
advancement in research will broaden the doors for creative and analytical approaches to music and audio
processing across multiple industries.
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APPENDIX

Table 1. Impacts of music separation applications
Application Description Purposes Benefits Challenges

Music Transforms existing musical Artistic expression Enhanced creative Risk of losing the

remixing compositions into fresh club and DJ culture freedom. essence of the original

[11] versions by modifying Flexible reimagining of track.
tempo, instrumentation, or music with isolated Potential copyright and
structure and adding new components. licensing challenges.
elements.

Karaoke It allows individuals to sing Entertainment social ~ Creation of clean, Computationally

systems along to instrumental bonding practice, customizable demanding processes.

[12] versions of songs with lyrics and performance instrumentals. Challenges in achieving
displayed on a screen, Real-time volume control artifact-free separation.
leveraging music extraction and dynamic adjustments.
to create high-quality
instrumental tracks.

Audio Enhances the quality of audio  Removing noise, Targeted noise reduction Risk of introducing

restoration recordings by removing noise  distortions restoring  with minimal impact on artifacts during

and cleaning and distortions while lost frequencies, and  quality. extraction.

[13] maintaining sound integrity preserve originality Flexibility in recombining High computational
through music extraction. and using restored requirements.

elements.

MIR Uses computational Music Enhanced accuracy in Computationally

[14] techniques to extract, recommendation musical analysis. intensive tasks.
analyze, and organize and analysis Broad application scope in  Difficulties in processing
musical information, Music synthesisand  research and industry. highly complex
integrating music extraction composition compositions.
for deeper analysis.

Music Structured teaching and Emotional Precision in analyzing Dependency on

educationand  learning of music enhanced expression and musical elements. technology for

practice by tools that simplify cultural Accessibility to high- educational

[15] complex compositions understanding quality educational enhancements.
through music extraction. Creativity and resources. Potential loss of

imagination traditional teaching
nuances.

Music Converting musical sounds Arrangement and Precise identification of Dependence on accurate

transcription into written notation composition overlapping frequencies. extraction for quality

[16] enhanced by separating Education and Efficient handling of transcription.
components for precision. learning complex arrangements. Limitations in processing

certain intricate audio
files.

Gaming and Music extraction enhances Real-time feedback Improved user experience Technical challenges in
VR [17] gaming and VR experiences Spatial audio for and interactivity. real-time
by creating dynamic, sound localization Creative, adaptive implementation.
adaptive soundscapes. soundscapes. High resource and
computational
requirements.
Performance Systematic evaluation of a Interpretation Data-driven, objective Relies on advanced
analysis for musician's performance using  refinement insights. music extraction tools.
musicians extracted audio components. Impact assessment Real-time feedback for Costs associated with
[18] precise corrections. implementing
technology.
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Table 1. Impacts of music separation applications (continued)

Application Description Purposes Benefits Challenges
Music Reusing segments of existing ~ Creative expression Efficient identification of Legal disputes over
sampling and music and ensuring legal Genre blending licensable materials. unauthorized sampling.
licensing compliance through Efficient identification of High costs and time for
[19] extraction techniques. licensable materials. securing licenses.
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