Hand motion pattern recognition analysis of forearm muscle using MMG signals

M. R. Mohamad Ismail, C. K. Lam, K. Sundaraj, M. H. F. Rahiman

Abstract


Surface Mechanomyography (MMG) is the recording of mechanical activity of muscle tissue. MMG measures the mechanical signal (vibration of muscle) that generated from the muscles during contraction or relaxation action. It is widely used in various fields such as medical diagnosis, rehabilitation purpose and engineering applications. The main purpose of this research is to identify the hand gesture movement via VMG sensor (TSD250A) and classify them using Linear Discriminant Analysis (LDA). There are four channels MMG signal placed into adjacent muscles which PL-FCU and ED-ECU. The features used to feed the classifier to determine accuracy are mean absolute value, standard deviation, variance and root mean square. Most of subjects gave similar range of MMG signal of extraction values because of the adjacent muscle. The average accuracy of LDA is approximately 87.50% for the eight subjects. The finding of the result shows, MMG signal of adjacent muscle can affect the classification accuracy of the classifier.

Keywords


Classification; Forearm muscle; Linear discriminant analysis; Mechanomyography

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v8i2.1415

Refbacks

  • There are currently no refbacks.




Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).