Hand gesture recognition using discrete wavelet transform and convolutional neural network
Muhammad Biyan Priatama, Ledya Novamizanti, Suci Aulia, Erizka Banuwati Candrasari
Abstract
Public services are available to all communities including people with disabilities. One obstacle that impedes persons with disabilities from participating in various community activities and enjoying the various public services available to the community is information and communication barriers. One way to communicate with people with disabilities is with hand gestures. Therefore, the hand gesture technology is needed, in order to facilitate the public to interact with the disability. This study proposes a reliable hand gesture recognition system using the convolutional neural network method. The first step, carried out pre-processing, to separate the foreground and background. Then the foreground is transformed using the discrete wavelet transform (DWT) to take the most significant subband. The last step is image classification with convolutional neural network. The amount of training and test data used are 400 and 100 images repectively, containing five classes namely class A, B, C, # 5, and pointing. This study engendered a hand gesture recognition system that had an accuracy of 100% for dataset A and 90% for dataset B.
Keywords
Convolutional neural networks; Discrete wavelet transform; Hand gesture recognition
DOI:
https://doi.org/10.11591/eei.v9i3.1977
Refbacks
There are currently no refbacks.
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191 , e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .