A comparative study of different imputation methods for daily rainfall data in east-coast Peninsular Malaysia
Siti Mariana Che Mat Nor, Shazlyn Milleana Shaharudin, Shuhaida Ismail, Nurul Hila Zainuddin, Mou Leong Tan
Abstract
Rainfall data are the most significant values in hydrology and climatology modelling. However, the datasets are prone to missing values due to various issues. This study aspires to impute the rainfall missing values by using various imputation method such as Replace by Mean, Nearest Neighbor, Random Forest, Non-linear Interactive Partial Least-Square (NIPALS) and Markov Chain Monte Carlo (MCMC). Daily rainfall datasets from 48 rainfall stations across east-coast Peninsular Malaysia were used in this study. The dataset were then fed into Multiple Linear Regression (MLR) model. The performance of abovementioned methods were evaluated using Root Mean Square Method (RMSE), Mean Absolute Error (MAE) and Nash-Sutcliffe Efficiency Coefficient (CE). The experimental results showed that RF coupled with MLR (RF-MLR) approach was attained as more fitting for satisfying the missing data in east-coast Peninsular Malaysia.
Keywords
MCMC; Missing value; Nearest neighbor; NIPALS; Random forest; Replace by mean
DOI:
https://doi.org/10.11591/eei.v9i2.2090
Refbacks
There are currently no refbacks.
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191, e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .