An improved feature selection approach for chronic heart disease detection
S. J. Sushma, Tsehay Admassu Assegie, D. C. Vinutha, S. Padmashree
Abstract
Irrelevant feature in heart disease dataset affects the performance of binary classification model. Consequently, eliminating irrelevant and redundant feature (s) from training set with feature selection algorithm significantly improves the performance of classification model on heart disease detection. Sequential feature selection (SFS) is successful algorithm to improve the performance of classification model on heart disease detection and reduces the computational time complexity. In this study, sequential feature selection (SFS) algorithm is implemented for improving the classifier performance on heart disease detection by removing irrelevant features and training a model on optimal features. Furthermore, exhaustive and permutation based feature selection algorithm are implemented and compared with SFS algorithm. The implemented and existing feature selection algorithms are evaluated using real world Pima Indian heart disease dataset and result appears to prove that the SFS algorithm outperforms as compared to exhaustive and permutation based feature selection algorithm. Overall, the result looks promising and more effective heart disease detection model is developed with accuracy of 99.3%.
Keywords
Chronic heart disease; Feature selection; Heart disease diagnosis; Model optimization; Random forest model
DOI:
https://doi.org/10.11591/eei.v10i6.3001
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191, e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .