Using particle swarm optimization to solve test functions problems
Issa Ahmed Abed, May Mohammed Ali, Afrah Abood Abdul Kadhim
Abstract
In this paper the benchmarking functions are used to evaluate and check the particle swarm optimization (PSO) algorithm. However, the functions utilized have two dimension but they selected with different difficulty and with different models. In order to prove capability of PSO, it is compared with genetic algorithm (GA). Hence, the two algorithms are compared in terms of objective functions and the standard deviation. Different runs have been taken to get convincing results and the parameters are chosen properly where the Matlab software is used. Where the suggested algorithm can solve different engineering problems with different dimension and outperform the others in term of accuracy and speed of convergence.
Keywords
Best solution; Comparison; Operators; Optimization; Warm
DOI:
https://doi.org/10.11591/eei.v10i6.3244
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
<div class="statcounter"><a title="hit counter" href="http://statcounter.com/free-hit-counter/" target="_blank"><img class="statcounter" src="http://c.statcounter.com/10241695/0/5a758c6a/0/" alt="hit counter"></a></div>
Bulletin of EEI Stats
Bulletin of Electrical Engineering and Informatics (BEEI) ISSN: 2089-3191, e-ISSN: 2302-9285 This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU) .