Sentiment analysis from Bangladeshi food delivery startup based on user reviews using machine learning and deep learning

Abu Kowshir Bitto, Md. Hasan Imam Bijoy, Md. Shohel Arman, Imran Mahmud, Aka Das, Joy Majumder


Food delivery methods are at the top of the list in today's world. People's attitudes toward food delivery systems are usually influenced by food quality and delivery time. We did a sentiment analysis of consumer comments on the Facebook pages of Food Panda, HungryNaki, Pathao Food, and Shohoz Food, and data was acquired from these four sites’ remarks. In natural language processing (NLP) task, before the model was implemented, we went through a rigorous data pre-processing process that included stages like adding contractions, removing stop words, tokenizing, and more. Four supervised classification techniques are used: extreme gradient boosting (XGB), random forest classifier (RFC), decision tree classifier (DTC), and multi nominal Naive Bayes (MNB). Three deep learning (DL) models are used: convolutional neural network (CNN), long term short memory (LSTM), and recurrent neural network (RNN). The XGB model exceeds all four machine learning (ML) algorithms with an accuracy of 89.64%. LSTM has the highest accuracy rate of the three DL algorithms, with an accuracy of 91.07%. Among ML and DL models, LSTM DL takes the lead to predict the sentiment.


Bangla sentiment analysis; Deep learning; Food delivery service; Machine learning; Natural language processing

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).