Unmanned aerial vehicles and machine learning for detecting objects in real time

Mustafa Fahem Al Baghdadi, Mehdi Ebady Manaa

Abstract


An unmanned aerial vehicle (UAV) image recognition system in real-time is proposed in this study. To begin, the you only look once (YOLO) detector has been retrained to better recognize objects in UAV photographs. The trained YOLO detector makes a trade-off between speed and precision in object recognition and localization to account for four typical moving entities caught by UAVs (cars, buses, trucks, and people). An additional 1500 UAV photographs captured by the embedded UAV camera are fed into the YOLO, which uses those probabilities to estimate the bounding box for the entire image. When it comes to object detection, the YOLO competes with other deep-learning frameworks such as the faster region convolutional neural network. The proposed system is tested on a wild test set of 1500 UAV photographs with graphics processing unit GPU acceleration, proving that it can distinguish objects in UAV images effectively and consistently in real-time at a detection speed of 60 frames per second.

Keywords


Object detection; Real-time system; UAV; YOLO

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v11i6.4185

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).