Bluetooth beacons based indoor positioning in a shopping malls using machine learning

Kamel Maaloul, Brahim Lejdel, Eliseo Clementini, Nedioui Med Abdelhamid


The adoption of Bluetooth beacon technology demonstrates a broad interest in indoor positioning technology because of its low cost and ease of use. Bluetooth beacons usually have an accuracy of fewer than 4 meters. The use of machine learning (ML) leads to results with greater accuracy compared to using traditional filtering methods. In this paper, we provide indoor localization based on Bluetooth beacons using several different ML techniques. We used ML algorithms to locate customers' devices in shopping malls. The extra-trees classifier and k-neighbors classifier found the device with greater than 90% accuracy. Other algorithms were able to determine the location with less accuracy. The results also showed that Bluetooth technology is a valid solution to find the data used to analyze the spatial-temporal behavior of individuals.


Bluetooth beacons; Extra-trees classifier; Indoor localization; Machine learning; Smartphone sensors

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).