Performance enhancement of large-scale linear dynamic MIMO systems using GWO-PID controller

Mohammed Qasim Sulttan, Salam Waley Shneen, Jafaar Mohammed Daif Alkhasraji


The multi-input multi-output (MIMO) technique is becoming grown and integrated into wireless wideband communication. MIMO techniques suffer from a large-scale linear dynamic problem, it will be easy to adjust the proportional-integral-derivative (PID) of a continuous system, unlike the nonlinear model. This work displays the tuning of the PID controller for MIMO systems utilizing a statistical grey wolf optimization (GWO) and evaluated by objective function as integral time absolute error (ITAE). The instantaneous adjusting characteristic GWO approach is the criterion that distinguishes such a combination-proposed strategy from that existing in the traditional PID approach. The GWO algorithm searching-based methodology is used to determine the adequate gain factors of the PID controller. The suggested approach guarantees stability as the initial scheme for a steady state condition. A combination of ITAE combined with the GWO reduction method is adopted to reduce the steady-state transient time responses between the higher-order initial scheme and the unit amplitude response. Simulation outcomes are illustrated using MATLAB software to show the capability of adopting the GWO scheme for PID controlling.


Gray wolf optimization; Integral time absolute error; Multi-input multi-output; Proportional-integral-derivative

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).