Jumping particle swarm optimization algorithm framework for content-based image retrieval system

Atheer Bassel, Mohammed Jameel, Mohammed Ayad Saad


Content-based image retrieval (CBIR) has been studied well in the last decades in numerous research fields such as medicine, journalism, and private life. Applications of CBIR have been widely employed in medical images due to their direct impact on human life. With continues growing of digital libraries, there is a need for an efficient method to retrieve images from large datasets. In this paper, a new method was developed for CBIR based on the jumping particle swarm optimization (JPSO) algorithm. The proposed algorithm represents a developed instant of particle swarm optimization (PSO). However, JPSO the approach does not consider the velocity components to guide particle movements in the problem space. Instead of relying on inertia and velocity, intermittently random jumps (moves) occur from one solution to another within the discrete search space. To test the performance of the proposed algorithm, three types of medical image databases were used in the experiment which are the endoscopy 100, dental 100, and 50 skull image databases. The results show that the proposed algorithm could achieve high accuracy in image extraction and retrieve the accurate image category compared with other research works.


Content-based image retrieval; Jumping particle swarm optimization; Medical image retrieval; Metaheuristic algorithms; Wavelet transformation

Full Text:


DOI: https://doi.org/10.11591/eei.v12i6.5024


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).