Machine learning prediction for academic misconduct prediction: an analysis of binary classification metrics

Suraya Masrom, Nor Hafiza Abdul Samad, Ratna Septiyanti, Nurshafinas Roslan, Rahayu Abdul Rahman


Academic misconduct is unethical behavior in academic work. To sustain integrity culture and mitigating unethical conducts among higher education institutions community, the academic misconduct detection must be done at an earlier stage. Thus, this study attempted to provide a new empirical contribution with the analysis of binary classification performances metrics to describe the ability of machine learning in predicting academic misconduct. Four machine learning algorithms have been used namely generalized linear model (GLM), logistic regression (LR), decision tree (DT), and random forest (RF). Beside performances comparison, this paper presents the analysis of academic misconduct factors that were constructed based on demography and fraud triangle theory (FTT). The findings showed that all the four machine learning algorithms have obtained good ability in the prediction models with the accuracy at above 80% and below 20% of the classification errors. Rationalization from the FTT attributes has shown as the most important factor in GLM, LR, and DT. In RF, opportunity of FTT attributes have become the most important. Compared to FTT attributes, demography attributes were not providing much benefits to all the machine learning models but remain applicable at very low weight correlations.


Academic misconduct; Binary classification; Demography; Fraud triangle theory; Machine learning

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).