A study on social media addiction analysis on the people of Bangladesh using machine learning algorithms

Minjun Nahar Mim, Mehedi Firoz, Mohammad Monirul Islam, Mahady Hasan, Md. Tarek Habib

Abstract


Social media has become a fundamental element of contemporary life, providing countless benefits but also posing substantial concerns. While technology improves connectedness and information exchange, excessive use raises issues about social and personal well-being. The emergence of social media addiction emphasizes its influence on everyday routines and mental health, with many people favoring online activities above vital tasks, resulting in real repercussions. Twitter, Facebook, and Snapchat have a significant impact on emotional well-being, adding to global rates of despair and anxiety. To measure the frequency of social media reliance, we studied data from 1,417 individuals using machine learning methods such as decision tree (DT) classifier, random forest (RF) classifier, support vector classifier (SVC), k-nearest neighbors (K-NN), and multinomial naive Bayes (NB). Understanding the behavioral patterns that drive addiction allows us to create tailored therapies to encourage healthy digital behaviors. This study highlights the critical necessity to address social media addiction as a complicated societal issue. Our major goal is to determine the amount of people who are addicted to social media.

Keywords


Classification; Depression; Frustration; Illnesses; Machine learning; Social media addiction

Full Text:

PDF


DOI: https://doi.org/10.11591/eei.v13i5.5680

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).