Performance analysis of convolutional neural network architectures over wireless capsule endoscopy dataset

Parminder Kaur, Rakesh Kumar


Wireless capsule endoscopy is one of the diagnostic methods used to record the video of the gastrointestinal tract. The endoscopy capsule stays in the digestive system for at least eight hours. It is difficult for gastroenterologists to examine such a lengthy video and identify the ailment. Convolutional neural networks (CNN) are a powerful solution to several computer vision problems. CNN can speed up the reviewing time of the recorded video by classifying video frames into various categories. The primary emphasis of this research paper is to examine and evaluate the performance of three different CNN architectures-VGG, inception, and MobileNet-in classifying the disease. Experimental results demonstrate that MobileNetV2’s accuracy is 91%, whereas InceptionV3 and VGG16 have an accuracy of 94% which is better than the accuracy of MobileNetV3. However, MobileNeV2 performed relatively better than the other CNN models in terms of computational time and cost. The model’s F-score, precision, and recall values are computed and compared also.


Capsule endoscopy; Convolution; Inception; MobileNet; Visual geometry group

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Bulletin of EEI Stats

Bulletin of Electrical Engineering and Informatics (BEEI)
ISSN: 2089-3191, e-ISSN: 2302-9285
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).